Geophysical Studies at the FRC Susan S. Hubbard, Ken Williams, Jinsong Chen Lawrence Berkeley National Laboratory

- BACKGROUND: Previous Geophysical Research associated with Biostimulation/Bioaugmentation Projects
 - Characterization
 - Monitoring during biostimulation: Lab and Field-Scale
- FRC GEOPHYSICS: Area 3
 - * Geophysical Data Acquisition
 - Preliminary
 - Proposed
- Characterization and Monitoring

Field-Scale Characterization using surface and crosshole

Surface GPR Data Used for mapping geologic layers

GPR data and flowmeter data **Estimation of:**

- **1. Geological Units**
- 2. Hydraulic Conductivity (K)
- **3. Spatial Correlation Parameters**

Hubbard, Chen,

WRR 37(10), 2001

0 (10/4)

Rubin et al.

- 4. Injected Plume Moments
- 5. Geochemical Parameters
- 6. Monitoring Biostimulation

Field-Scale Estimation of Hydraulic Conductivity using Crosshole GPR

1/4m by 1/4 resolution

High K

Low K \rightarrow High K \rightarrow

Bayesian Estimation Method

(Chen, Hubbard and Rubin WRR 2001)

*Bacteria followed similar paths at NC to Bromide
*Tomography Estimates useful for improving numerical flow and transport model (Scheibe et al., Ground Water, 2002)

J. Chen et al., in preparation for ES&T, 2002 Iron data provided by **Chris Murray** (PNNL) and **Eric Roden** (University of Alabama)

Field-Scale Geochemical Parameter Estimation using MCMC Radar Attenuation Estimated Fe2

Na

Estimated Lithology

Estimated Fe3

Пенк

Background: Geophysical Monitoring of Bacterial-Induced Phenomena

Biostimulation induces system transformations that can be dynamic, complex, and coupled

Chapelle, 2000

Extremely difficult to understand using wellbore data

- Investigate utility of geophysical methods for providing information about system transformations over space and time: <u>Gas Generation</u>, Biofilm development & Precipitation
 - Seismic Amplitudes: Lab Scale
 - Radar Velocity: Lab Scale

Seismic Amplitudes: Field Scale

Lab Experiment: using Seismic Amplitudes to detect gas generation Reduction of NO₃⁻ ----- N₂

Electron Acceptor: Nitrate, Initial Concentration ~300mg/L

Carbon Source: Acetate

Microbe: Pseudomonas Stutzeri (courtesy PNNL)

Grown to $\sim 2 \ge 10^7$ cells/gram sand and suspended in a nutrient depleted growth media

rrrrrr

BERKELEY LAB

*Cross-column seismic measurements Evaluate seismic signal amplitude as a function of gas production *K measured using constant head tests
* Gas sampling of evolved N₂ Ken Williams with assist from Mary Firestone (UCB) and Fred Brockman (PNNL). In preparation for *ES&T*

Hydraulic Conductivity and Seismic Amplitude Responses during Stimulation

Examples of decreases in Seismic Amplitudes

Radar Monitoring of Gas Evolution during biostimulation of OY-107

Ksat

Seismic -Columns

Dielectric measurements collected every hour at each probe for 40 days Probe 2

Probe 1

Probe 3

Electron Acceptor: Nitrate, Initial Concentration ~300mg/L

Carbon Source: Acetate

Microbe: OY107 Acidovorax

Grown to $\sim 2 \ge 10^7$ cells/gram in sand and suspended in a nutrient depleted growth media Background: Geophysical Biostimulation Monitoring

Radar Lab-Scale N₂ Estimation Results

•Final estimates corroborated by column weight loss, K_s and seismic amplitude measurements Earth Sciences Division • Lawrence Berkeley National Laboratory

Field-Scale Biostimulation Monitoring using Time-Lapse Seismic Tomography

Lactate Injection Well

Spatiotemporal variations in seismic amplitude correlated with N2 production near the wellbore AT THE FIELD SCALE!

FRC Area 3 Geophysics

Seismic and Radar Data Preliminary Analysis

Plans for new Data Acquisition

Estimation Approach and Objectives

Geophysical Characterization at the FRC

Crosshole Seismic/Radar Acquisition Test FW024-FW026 FRC Area 3

rerre

DEPENDENCE NY L

Log Data: David Watson Flowmeter Data: Mike Fienen and Peter Kitanidis

Trends: Radar Attributes vs. K and U at FW024

Hydraulic Conductivity (flowmeter) and GPR Attributes

0.062

GPR Velocity (m/ns)

0.064

0.060

0.056

~ 1

** Indications: Low GPR Amplitude and Velocity~ High K and High U **

0.066

Approach: Bayesian / Monte Carlo Markov Chain

Proposed Crosshole Acquisition

Cer.

rrrrrr

DEBKELEY LA

Uses of Geophysical Data at the FRC

Field Scale: Characterization and Monitoring

- * Use to refine field plan
- Constrain numerical flow and transport models boundaries & K
- * Assess efficacy of initial "Groundwater Flush"
- ***** Detection of any evolved N2 in inner flowcell
- Delineate boundaries of inner and outer flowcells
- Possible detection of urananite and aluminum hydroxide precipitation

<u>Lab Scale</u>: Systematic Investigation of Geophysical Attributes

* Investigate geophysical responses in terms of various system transformations and heterogeneity. Perform in conjunction with Criddle et al.?

The end

