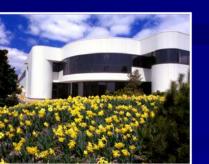


Advanced Light Source (ALS)
LBNL



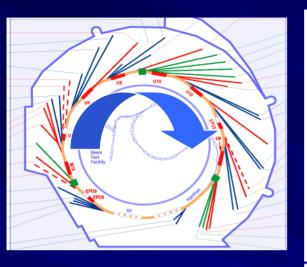

Stanford Synchrotron
Radiation Laboratory
(SSRL)
ht SLAC

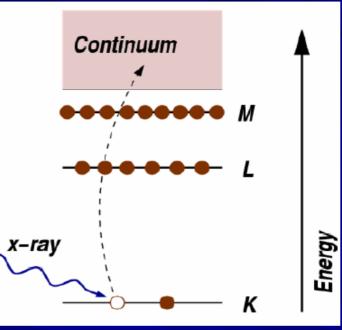
Four Points of Light

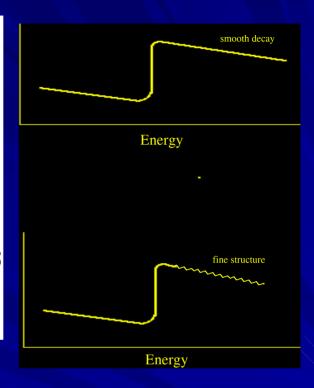
National Synchrotron Light Source (NSLS)
BNL

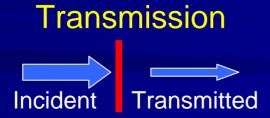
Advanced Photon Source (APS) ANL

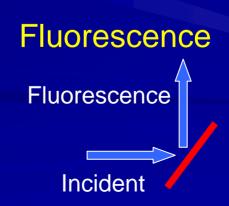
Four Points of Light




- Imaging
 - Element Specific
 - Scale from 10's of nm to several mm
 - 2-D (maps) and 3-D (tomography)
- X-ray Absorption Spectroscopy
 - Bulk, Micro, Surface
 - Oxidation state, local chemical structure and bonding
 - "Every" element of interest (from Carbon to Actinides)
- Molecular Vibrational States (IR)
- X-ray Scattering/Diffraction
 - Bulk, Micro, Surface






X-ray Spectroscopy and Imaging

Choices

ALS SSRL, NSLS

APS

Soft X-rays

~100 eV/photon Lighter Elements

~100,000s eV/photon Heavier Elements

Hard X-rays

Sample Preparation and Handling

Simpler

Complex

Bulk Spectroscopy (XANES, EXAFS)

Micro-XRF
Micro-spectroscopy
(Hard X-ray)

Soft X-ray Imaging

Data Interpretation

Simpler Complex

Imaging

XANES

EXAFS

Four Points of Contact

Peter Nico, psnico@lbl.gov

Earth Sciences Division, Lawrence Berkeley National Laboratory

Bruce Ravel, bravel@anl.gov

Molecular Environmental Science Group, Argonne National Laboratory

Paul Northrup, northrup@bnl.gov

National Synchrotron Light Source, Brookhaven National Laboratory

Sam Webb, samwebb@slac.stanford.edu

Stanford Synchrotron Radiation Laboratory, SLAC

Our Purpose

- Point of Contact
 - Referrals to the person who knows
- Matching Research Questions with Capabilities
- Research Collaborations
 - Planning Experiments
 - Proposal Writing
 - Data Collection, Interpretation, and Integration

How much additional synchrotron need exists in the community and WHY?

- 1. Is type of data obtainable applicable to my project?
- 2. How do you actually prepare samples for analysis and get them to the synchrotron intact?
- 3. How do I get beam time?
- 4. How do I work out the timing between my experiment and my beam time?
- 5. How do I make use of the results without becoming a "beam jockey?"

