Applications of Geophysical Methods at the DOE Field Research Center, Oak Ridge 2002-2004

J.R. Sheehan

L.P. Beard, W.E. Doll, T.J. Gamey and D.B. Watson Oak Ridge National Laboratory, Oak Ridge, TN

Methods Employed

- Multielectrode Resistivity
- Seismic Refraction Tomography
- Geophysical Logging
- Azimuthal Resistivity
- Crosshole Resistivity

Seismic refraction tomography data acquisition: Profiling geologic setting

- Bison EWG-1

 accelerated weight drop source, stacks of
 4-8 shots
- Geometrics Strataview 48-channel seismograph, 1/8ms sample interval
- 1-2m receiver spacing
- 2-4m shot spacing

Seismic Refraction Tomography with well penetration (area 3)

Multielectrode Resistivity: Used to profile geologic setting and contaminants

Multielectrode resistivity data collection

- 56-electrode Sting Swift system
- Data acquired on two lines, 7m apart
- On Line 1, acquired one long line at 2m electrode spacing and two lines at 1m electrode spacing
- Both dipole-dipole and Schlumberger configurations tested

Resistivity with well nitrate concentrations (area 3)

Resistivity with velocity overlay

Resistivity (ohm-m)

Borehole and Surface results compared (area 3)

FW-109

Relating Drilling information to tomography result

- Depth of refusal for driven probes correlates well with the 1,000 m/s velocity contour
- Based on augerholes, the bottom of the transition zone (top of bedrock) corresponds to somewhere between the 1,500 m/s and 2,000 m/s velocity contours.
- The cores taken during augering in the vicinity of position 25 m to 35 m confirmed that bedrock in this area is about 15 m deep as estimated from the velocity profile.
- Borehole velocity logs follow the same trend as tomographic results.

Relating borehole geophysics and ground water sampling to resistivity results

- Borehole resistivity logs show the same resistivity trends as surface resistivity results
- Ground water nitrate concentrations correlate well with the surface resistivity results

Area 2 Seismic

Photos showing position of Line 1

Area 2 Seismic

Electrical conductivity Profiling

Data acquired by Geophex Ltd.

Area 3:

EM Logging During Flow Test

- 10 wells logged repetitively over a 1-week period with EM-39 borehole conductivity logger
- A dilute KCL solution was injected in well 24 and displaced highly conductive nitrate-rich fluids.

Time 014 hrs

Time 028 hrs

Time 046 hrs

Time 062 hrs

Time 078 hrs

Time 095 hrs

Time 119 hrs

Time 143 hrs

Time-lapse logging

- Time lapse EM logs showed a steady increase in the zone of increased resistivity as conductive fluids were displaced near the injection well.
- The resistivity pattern agreed with the flow direction and dip of the geological strata.

New Seismic and Resistivity Lines

Line A'-A: along south side of bio-oxidation tanks (F4, F5, F6)

Line B'-B, along north side of bio-denitrification tanks (F1, F2, F3)

Line D-D': along east side of S-3 ponds parking lot

Low-velocity feature across thee lines

Red areas on the lines are approximate locations of the low velocity (hole) feature with the yellow line showing the trend.

Location of Seismic Feature

Area 3: 2004 Seismic Refraction Tomography and Resistivity

- Resistivity shows bedrock interface, but no surprises
- Seismic data indicate a possible conduit, oriented along geologic strike, intersecting three profiles at similar depth

Azimuthal Resistivity, FRC Area 2

- To define the preferential flow direction, resistivity was measured repeatedly over a 5-day period during a flow test
- Bromide was injected at ~400 mg/L.
- Injection rate: 0.5 L/min for 24 hours followed by 24h at 3 L/min
- Two significant flow directions became apparent

Surface Resistivity, FRC Area 2

Schlumberger/Wenner inverted resistivity section across proposed bio-remediation test cell

Azimuthal Resistivity, FRC Area 2

Azimuthal Resistivity, FRC Area 2 electrode locations

Azimuthal Resistivity, FRC Area 2

Resistivity

Resistivity

Resistivity

Resistivity

Resistivity

Resistivity

Resistivity

Resistivity

Resistivity

Resistivity

Hour 40.5

Resistivity

Resistivity

Hour 48.5

Resistivity

Resistivity

Resistivity

Resistivity

Azimuthal Resistivity Summary

- Two directions showed most change in azimuthal resistivity: N30E, N105E
- These directions align roughly parallel with and orthogonal to the bromide solution flow direction.

Crosshole Resistivity

- Purpose: To test cross-borehole equipment and software preliminary to use at Area 2 bio-remediation test site.
- Data collected August 19-20, 2004
- Area 2, between wells 228 and 229 Area 1, between wells 065 and 066

Cross-borehole resistivity Area 1

NABIR-FW065-FW066-Inv Resistivity

Cross-borehole resistivity Area 2

NABIR FW228-229 Inverted Resistivity

Cross-borehole Results

- Inverted crosshole resistivities are reasonable for the geological conditions and groundwater geochemistry.
- Lower resistivities starting at ~5 m depth in Area 1 are most likely the beginning of higher nitrate concentrations.
- The localized high-resistivity feature in the FW 228-229 line is likely a rock or other aquatard, such as clay.

Conclusions

- Multielectrode resistivity was effective in imaging the ionic contamination plume
- Refraction tomography successfully mapped the transition zone between saprolite and bedrock that shows a significant influence on contaminant transport
- The geophysical results were used to help select the location and depth of investigation at Area 3 for field research
- Drilling, borehole geophysics, and ground water sampling verified the geophysical results

Conclusions

- Repeated EM conductivity logging during Area 3 flow test provided documentation for propagation of the injected fluid through time
- Azimuthal resistivity data acquired during flow tests (Area 2) indicates preferential pathways
- Crosshole resistivity sections in Areas 1 and 2 are in general agreement with known geology

