Department of the Interior
U.S. Geological Survey

LANDSAT 7 (L7) SYSTEM
 CALIBRATION PARAMETER FILE (CPF) DEFINITION

Version 6.0

May 2007

LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION

May 2007

Prepared By:

E. Micijevic	Date
Calibration Analyst	
SAIC	

Reviewed By:

D. Strande	Date
IAS Systems Engineer	
SAIC	

Reviewed By:
R. Lamb
CalVal Systems Engineer
SAIC

Reviewed By:
C. Engebretson

Date
Software Project Lead SAIC

Approved By:

R. Hayes	Date
CalVal Task Lead	
SAIC	

Approved By:
C. Torbert Date Landsat Ground Segment Manager SAIC

Approved By:
J. Lacasse \quad Date
Mission Management Officer
USGS

Mission Management Officer
USGS

Executive Summary

This document describes the contents of the Calibration Parameter File (CPF) generated by the Enhanced Thematic Mapper Plus (ETM+) functionality of the Image Assessment System (IAS). The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with applicability dates and is sent to the Landsat Archive Manager (LAM) for storage and eventual bundling with outbound Level 0 Reformatted Products (LORp). The CPF is also sent to International Ground Stations (IGSs) via the Landsat 7 (L7) Mission Operations Center (MOC). The CPF supplies the radiometric and geometric correction parameters required during Level 1 (L1) processing to create superior products of uniform consistency across the L7 system.

Document Number	Document Version	Publication Date	Change Number
430-15-01-002-0	Version 1.0	February 1998	
430-15-01-002-2	Version 2.0	July 1998	IAS980070 IAS980071 IAS980078 IAS980080 IAS980098
430-15-01-002-3	Version 3.0	June 1999	GS CCR 60 GS CCR 106 GS CCR 110
IAS-207	Version 4.0	January 2000	DHF CCR 1171
IAS-207	Version 5.0	August 2005	CCR 1819 CCR 3921
IAS-207	Version 6.0	May 2007	CCR 4788

Contents

Executive Summary iii
Document History iv
Contents v
List of Tables vi
Section 1 Introduction 1
1.1 Document Organization 1
1.2 File Structure 1
1.3 Calibration Parameter File Updates 2
1.3.1 Effective Dates 2
1.3.2 File-Naming Conventions 2
1.4 File Content Description 4
Section 2 CPF Parameters 5
Section 3 CPF ODL 92
3.1 Introduction 92
3.2 Sample ETM+ CPF ODL File 92
References 125

List of Tables

Table 1-1. Data Types in CPF .. 4
Table 2-1. Landsat 7 CPF Parameters.. 91

Section 1 Introduction

This document describes the contents of the Calibration Parameter File (CPF) generated by the Image Assessment System (IAS). The Landsat 7 (L7) functionality of the IAS is responsible for offline assessment of image quality to ensure compliance with the radiometric and geometric requirements of the L7 spacecraft and the Enhanced Thematic Mapper Plus (ETM+) sensor throughout the life of the mission.

In addition to its assessment functions, the IAS is responsible for the radiometric and geometric calibration of the L7 satellite and ETM+ sensor. The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with applicability dates and is archived at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) and eventually bundled with outbound Level Zero Reformatted Products (LORp). The CPF is also sent to the Landsat 7 Processing System (LPS), Level 1 (L1) production systems within EROS, and to International Ground Stations (IGSs) via the L7 Mission Operations Center (MOC). The CPF supplies the radiometric and geometric correction parameters required during L1 processing to create superior products of uniform consistency across the L7 system.

1.1 Document Organization

Section 1 introduces the CPF. It describes the CPF structure and language, the CPF updates, time stamps, and file-naming conventions, as well as the attributes used to characterize the calibration parameters.
Section 2 contains a table that lists and describes the CPF parameters. The actual prelaunch and postlaunch CPFs contain the most recent and accurate values available for these parameters.
Section 3 presents the syntax of the CPF Object Description Language (ODL) and provides a CPF example to illustrate the actual appearance of the file.

1.2 File Structure

All parameters are stored as American Standard Code for Information Interchange (ASCII) text using the ODL syntax developed by Jet Propulsion Laboratory (JPL). ODL is a tagged keyword language developed to provide a human-readable data structure to encode data for simplified interchange. The ODL interpreter developed by JPL may, in certain cases, provide for the handling of lexical elements (for example, building blocks) that are included in the Consultative Committee for Space Data Systems (CCSDS) specification of the Parameter Value Language (PVL). PVL is a superset of ODL. The IAS CPF is a pure ODL implementation without any PVL extensions.

The body of the file is composed of two statement types:

1. Attribute assignment statement - used to assign values to parameters
2. Group statements - used to aid in file organization and enhance parsing granularity of parameter sets

The Planetary Data System Standards Reference contains ODL details.

1.3 Calibration Parameter File Updates

The IAS regularly releases and distributes CPFs at the beginning of each calendar quarter. In addition to a new CPF for the coming calendar quarter, a CPF delivery also includes new versions of all CPFs for time periods affected by the most recent calibration update. Only the most recent available CPFs should be used in ETM+ data processing.

Prior to switching to bumper operational mode, CPFs needed to be released on a regular quarterly basis, primarily because of the Universal Time Code (UTC) corrected (UT1) time corrections and pole wander predictions included in the file. However, the CPFs could be updated at any given time, if needed, and released for the time periods shorter than a calendar quarter.

Following the ETM+ switch to bumper operational mode (April 1, 2007), multiple version updates can be expected during any given quarter due to a hardly predictive nature of the scanning mirror bumper parameters. The irregular (mid-quarter) updates do not affect the three-month CPF release schedule.

1.3.1 Effective Dates

Each CPF is time-stamped with an effective date range. The third and fourth parameters in the file—Effective_Date_Begin and Effective_Date_End—designate the range of valid acquisition dates and are in YYYY-MM-DD format. After the Effective_Date_End, the file is without applicable UT1 time predictions. EROS maintains a database of CPF names and their effective dates for associating product orders with the appropriate parameter files. The parameter file that accompanies an order has an effective date range that includes the acquisition date of the ordered image.

1.3.2 File-Naming Conventions

Through the course of the mission, a serial collection of CPFs is generated and sent to the Landsat Archive Manager (LAM) for distribution with LORp products. The probability exists that a CPF will be replaced due to improved calibration parameters for a given period, or perhaps due to file error. The need for unique file version numbers becomes necessary as file contents change. The unique 00 version number is reserved for the original CPF, created before the satellite's launch. Version numbers for all quarterly CPFs released after the launch begin with 01.

The IAS uses the following file-naming procedure to name the CPF:
L7CPFy ${ }_{1} \mathrm{y}_{1} \mathrm{y}_{1} \mathrm{y}_{1} \mathrm{~m}_{1} \mathrm{~m}_{1} \mathrm{~d}_{1} \mathrm{~d}_{1} _\mathrm{y}_{2} \mathrm{y}_{2} \mathrm{y}_{2} \mathrm{y}_{2} \mathrm{~m}_{2} \mathrm{~m}_{2} \mathrm{~d}_{2} \mathrm{~d}_{2} . n n$

$$
\text { where } \quad \begin{aligned}
\mathrm{L7} & =\text { constant for Landsat } 7 \\
\text { CPF } & =3 \text {-letter CPF designator } \\
\mathrm{y}_{1} \mathrm{y}_{1} \mathrm{y}_{1} \mathrm{y}_{1} & =4 \text {-digit effectivity starting year }
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{m}_{1} \mathrm{~m}_{1} & =2 \text {-digit effectivity starting month } \\
\mathrm{d}_{1} \mathrm{~d}_{1} & =2 \text {-digit effectivity starting day } \\
- & =\text { effectivity starting/ending date separator } \\
\mathrm{y}_{2} \mathrm{y}_{2} \mathrm{y}_{2} \mathrm{y}_{2} & =\text { 4-digit effectivity ending year } \\
\mathrm{m}_{2} \mathrm{~m}_{2} & =2 \text {-digit effectivity ending month } \\
\mathrm{d}_{2} \mathrm{~d}_{2} & =2 \text {-digit effectivity ending day } \\
. & =\text { Ending day/version number separator } \\
\mathrm{nn} & =\text { version number for this file (starts with } 01)
\end{aligned}
$$

For example, if the IAS created four CPFs at three-month intervals, and then updated the first file twice and the second and third files once, the assigned file names would be as follows:

File 1 L7CPF20000101_20000331.01 L7CPF20000101_20000331.02 L7CPF20000101_20000331.03
File 2 L7CPF20000401_20000630.01 L7CPF20000401_20000630.02
File 3 L7CPF20000701_20000930.01 L7CPF20000701_20000930.02
File 4 L7CPF20001001_20001231.01
This example assumes that the effective date ranges do not change. The effective date range for a file can change, however, if a specific problem (e.g., detector outage) is discovered somewhere within the nominal effective range. Assuming this scenario, two CPFs with new names and effective date ranges are spawned for the period under consideration. The Effective_Date_End for a new pre-problem CPF would change to the day before the problem occurred and the Effective_Date_Begin remains unchanged. A post-problem CPF with a new file name would be created with the Effective_Date_Begin corresponding to the imaging date when the problem occurred and the
Effective_Date_End corresponding to the original Effective_Date_End for the period under consideration. Both new CPFs, although they appeared for the first time for given effective dates, would a have version number for one higher than the CPF for the quarter they originated from. New versions of all other CPFs affected by the updated parameters also would be created.

Suppose, for example, that it was discovered that a detector stopped responding on July 25, 2000. Two new CPFs need to be created that supersede the period represented by file number three, version 2, and a new version of file number four. The new file names and version numbers become:

File 3 L7CPF20000701_20000930.01 L7CPF20000701_20000930.02

L7CPF20000701_20000725.03
L7CPF20000726_20000930.03
File 4 L7CPF20001001_20001231.01
L7CPF20001001_20001231.02

1.4 File Content Description

Table 2-1Error! Reference source not found. lists all CPF parameters. Within this table, each parameter entry is characterized by five attributes:

1. Parameter Group-identifies a related set of parameters.
2. Parameter Name—uniquely identifies and describes the content of each parameter.
3. Value Type—describes the parameter as either static or dynamic. A static value generally remains unchanged over the life of the mission. A dynamic value changes or has the potential to change over the life of the mission. Significant changes to dynamic values trigger a CPF update.
4. Data Type—referred to using Hierarchical Data Format (HDF) number type nomenclature, type\#, where type is either char (character), int (integer), or float (floating point), and \# is a decimal count of the number of bits used to represent the data type. The type mnemonics int and char may be preceded by the letter u, indicating an unsigned value. For example, the data type uint32 refers to an unsigned 32-bit integer value. Table 1-1 shows the data types relevant to the CPF.

Data Type	HDF Nomenclature
8-bit character	char8
8-bit unsigned integer	uint8
16-bit signed integer	int16
32-bit signed integer	int32
32-bit floating point number	float32
64-bit floating point number	float64

Table 1-1. Data Types in CPF

5. Description—briefly describes the parameter, its format, and its nominal, expected, or sample value(s). The valid parameter format for numeric data is described using letters S, N, and E . S stands for the sign and can assume values " + " or "-"; if no sign is specified, the " + " sign is assumed. N stands for any digit between 0 and 9 . The letter " E " is used in scientific (exponential) notation to represent the 'multiplication by 10 raised to the power' specified by the value following the letter E. For example, the valid format "SNNN.NNNNESNN" can assume any positive or negative value with a significant ranging from 0.0000 to 999.9999 multiplied by 10 raised to the power of any whole number between -99 and +99 .

Section 2 CPF Parameters

Table 2-1 lists the L7 CPF parameters.

Parameter Group	Parameter Name	Value Type	Data Type	Description
FILE_ATTRIBUTES	Spacecraft_Name (available in all CPFs with effective dates of January 1, 2007 and thereafter)	Static	char8	Descriptor used to identify the spacecraft for which the calibration parameters are applicable. Valid format: Landsat_7
FILE_ATTRIBUTES	Sensor_Name (available in all CPFs with effective dates of January 1, 2007 and thereafter)	Static	char8	Descriptor used to identify the sensor for which the calibration parameters are applicable. Valid format: Enhanced_Thematic_Mapper_Plus
FILE_ATTRIBUTES	Effective_Date_Begin	Dynamic	char8	Effective start date for this file Valid format: yyyy-mm-dd, where $\text { yyyy }=1998-2050, \mathrm{~mm}=01-12, \text { and dd }=01-31$
FILE_ATTRIBUTES	Effective_Date_End	Dynamic	char8	Effective end date for this file Valid format: yyyy-mm-dd, where $\text { yyyy }=1998-2050, \mathrm{~mm}=01-12, \text { and dd }=01-31$
FILE_ATTRIBUTES	CPF_File_Name	Dynamic	char8	Original file name assigned by IAS Valid format: L7CPFyyyymmdd-yyyymmdd.nn where yyyymmdd = effective start date and effective end date, respectively, and nn = incrementing version for within a quarter (01-99)
EARTH_CONSTANTS	Ellipsoid_Name	Static	char8	Name of the ellipsoid used to represent the semi-major and semi-minor axes of the Earth Valid format: TTTTT, where TTTTT = WGS84
EARTH_CONSTANTS	Semi_Major_Axis	Static	float64	Earth semi-major axis; distance in meters from the center of the Earth to the equator Valid format: NNNNNNN.NNN, where NNNNNNN.NNN $=6378137.000$
EARTH_CONSTANTS	Semi_Minor_Axis	Static	float64	Earth semi-minor axis; distance in meters from the center of the Earth to the poles Valid format: NNNNNNN.NNNN, where NNNNNNN.NNNN = 6356752.3142
EARTH_CONSTANTS	Ellipticity	Static	float64	Ratio describing polar flattening or Earth's deviation from an exact sphere (WGS84 standard) Valid format: N.NNNNNNNNNNNNNN, where N.NNNNNNNNNNNNNN $=0.00335281066474$ $=(1 / 298.257223563)$
EARTH_CONSTANTS	Eccentricity	Static	float64	Number describing the Earth ellipsoid eccentricity squared (WGS84 standard) Valid format: N.NNNNNNNNNNNNNN, where N.NNNNNNNNNNNNNN $=0.00669437999013$
EARTH_CONSTANTS	Earth_Spin_Rate	Static	float64	Earth's diurnal spin rate in radians per second Valid format: NN.NNNNNNNNESNN, where NN.NNNNNNNNNESNN $=72.921158553 E-06$
EARTH_CONSTANTS	Gravity_Constant	Static	float64	Universal gravitational constant times the mass of the Earth. This parameter is given in units of meters cubed per second squared ($\mathrm{m} 3 / \mathrm{s} 2$). Valid format: N.NNNNNNENN, where N.NNNNNNENN $=3.986005 E 14$
EARTH_CONSTANTS	$\begin{array}{\|l} \hline \text { J2_Earth_Model_ } \\ \text { Term } \end{array}$	Static	float64	Term that describes Earth's spherical harmonic Valid format: NNNN.NNESNN, where NNNN.NNESNN = 1082.63E-06

Parameter Group	Parameter Name	Value Type	Data Type	Description
ORBIT_PARAMETERS	WRS_Cycle_Days	Static	uint8	Time period, in days, required for the satellite to view Earth once Valid format: NN, where NN = 16
ORBIT_PARAMETERS	WRS_Cycle_Orbits	Static	uint8	Number of orbits or paths in a complete World Reference System (WRS) cycle Valid format: NNN, where NNN = 233
ORBIT_PARAMETERS	Scenes_Per_Orbit	Static	uint8	Number of scenes or row locations per orbit Valid format: NNN, where NNN = 248
ORBIT_PARAMETERS	Orbital_Period	Static	float64	Time required, in seconds, to complete one orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 5933.0472
ORBIT_PARAMETERS	Angular_Momentum	Static	float64	Angular momentum in orbit, specified in meters squared per second Valid format: NN.NNNNNNEN, where NN.NNNNNNEN = 53.136250E9
ORBIT_PARAMETERS	Orbit_Radius	Static	float64	Nominal distance in km from the Earth's center to the spacecraft track Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457
ORBIT_PARAMETERS	Orbit_Semimajor_Axis	Static	float64	Nominal semi-major axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457
ORBIT_PARAMETERS	Orbit_Semiminor_Axis	Static	float64	Nominal semi-minor axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4408
ORBIT_PARAMETERS	Orbit_Eccentricity	Static	float64	Nominal eccentricity of the satellite's orbit Valid format: N.NNNNNNNN, where N.NNNNNNNN $=0.00117604$
ORBIT_PARAMETERS	Inclination_Angle	Static	float64	Angle in degrees formed by Earth's equatorial and satellite plane Valid format: NN.NNNN, where NN.NNNN = 98.2096
ORBIT_PARAMETERS	Argument_Of_Perigee	Static	float32	Nominal angle in degrees of point nearest Earth in orbit as measured from ascending node in the direction of satellite motion Valid format: NN.N, where NN.N $=90.0$
ORBIT_PARAMETERS	Descending_Node_ Row	Static	uint8	Row corresponding to the Earth's equator Valid format: NN , where $\mathrm{NN}=60$
ORBIT_PARAMETERS	Long_Path1_Row60	Static	float32	Longitude in degrees west of the point at which path 1 crossed the equator (row 60) Valid format: SNN.N, where SNN.N = - 64.6
ORBIT_PARAMETERS	Descending_Node_ Time_Min	Static	char8	Minimum local solar time of descending node in a.m. hours and minutes Valid format: HH:MM, where HH:MM = 09:45
ORBIT_PARAMETERS	Descending_Node_ Time_Max	Static	char8	Maximum local solar time of descending node in a.m. hours and minutes Valid format: $\mathrm{HH}: \mathrm{MM}$, where $\mathrm{HH}: \mathrm{MM}=10: 15$
ORBIT_PARAMETERS	Nodal_Regression_ Rate	Static	float64	Rate in degrees per day that the orbital plane rotates with respect to the Earth Valid format: N.NNNNNNNNN, where N.NNNNNNNNN $=0.985647366$
$\begin{aligned} & \hline \text { SCANNER_} \\ & \text { PARAMETERS } \end{aligned}$	Lines_Per_Scan_30	Static	uint8	Detectors per scan for Bands 1-5 and 7 Valid format: NN, where NN = 16
SCANNER PARAMETERS	Lines_Per_Scan_60	Static	uint8	Detectors per scan for Band 6 Valid format: N , where $\mathrm{N}=8$
SCANNER_ PARAMETERS	Lines_Per_Scan_15	Static	uint8	Detectors per scan for Band 8 Valid format: NN, where NN = 32

Parameter Group	Parameter Name	Value Type	Data Type	Description
SCANNER PARAMETERS	Scans_Per_Scene	Static	int16	Scans per nominal WRS scene Valid format: NNN, where NNN = 375
SCANNER PARAMETERS	Swath_Angle	Dynamic	float32	Object space angle in radians of scan mirror travel during active scan time Valid format: N.NNNNN, where N.NNNNN = 0.26868 (after measurement of as-built ETM+)
SCANNER PARAMETERS	Scan_Rate	Static	float32	Angular scan velocity in radians per second of scan mirror Valid format: N.NNNNN, where N.NNNNN $=2.21095$
SCANNER PARAMETERS	Dwell_Time_30	Static	float64	Detector sample time in microseconds for Bands 1-5 and 7 Valid format: N.NNNNNNN, where N.NNNNNNN = 9.6110206
SCANNER PARAMETERS	Dwell_Time_60	Static	float64	```Detector sample time in microseconds for Band 6 Valid format: N.NNNNNN, where N.NNNNNN = 19.222041```
SCANNER_ PARAMETERS	Dwell_Time_15	Static	float64	Detector sample time in microseconds for Band 8 Valid format: N.NNNNNNN, where N.NNNNNNN = 4.8055103
SCANNER PARAMETERS	IC_Line_Length_30	Static	int16	Nominal number of detector samples for the Internal Calibrator (IC) for Bands 1-5 and 7 Valid format: NNNN, where NNNN = 1150
SCANNER PARAMETERS	IC_Line_Length_60	Static	int16	Nominal number of detector samples for the internal calibrator for Band 6 Valid format: NNN, where NNN $=575$
SCANNER PARAMETERS	IC_Line_Length_15	Static	int16	Nominal number of detector samples for the internal calibrator for Band 8 Valid format: NNNN, where NNNN $=2300$
SCANNER PARAMETERS	Scan_Line_Length_30	Static	int16	Nominal number of detector samples during active scan time for Bands 1-5 and 7 Valid format: NNNN, where NNNN $=6320$
SCANNER PARAMETERS	Scan_Line_Length_60	Static	int16	Nominal number of detector samples during active scan time for Band 6 Valid format: NNNN, where NNNN = 3160
SCANNER PARAMETERS	Scan_Line_Length_15	Static	int16	Nominal number of detector samples during active scan time for Band 8 Valid format: NNNNN, where NNNNN $=12640$
SCANNER PARAMETERS	Filter_Frequency_30	Static	float32	Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Bands 1-5 and 7 Valid format: NN.NN, where NN.NN = 52.02
SCANNER PARAMETERS	Filter_Frequency_60	Static	float32	Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Band 6 Valid format: NN.NN, where NN.NN = 26.01
SCANNER PARAMETERS	Filter_Frequency_15	Static	float32	Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Band 8 Valid format: NNN.NN, where NNN.NN = 115.00
SCANNER PARAMETERS	IFOV_B1234	Static	float32	Angle in μ rad subtended by a detector in Bands $1,2,3$, and 4 when the scanning motion is stopped Valid format: NN.N, where NN.N $=42.5$
SCANNER PARAMETERS	IFOV_B57_along_ scan	Static	float32	Along-scan angle in μ rad subtended by a detector in Bands 5 and 7 when the scanning motion is stopped Valid format: NN.N, where NN.N $=39.4$

Parameter Group	Parameter Name	Value Type	Data Type	Description
SCANNER PARAMETERS	$\begin{aligned} & \text { IFOV_B57_across_ } \\ & \text { scan } \end{aligned}$	Static	float32	Across-scan angle in μ rad subtended by a detector in Bands 5 and 7 when the scanning motion is stopped Valid format: NN.N, where NN.N $=42.5$
SCANNER PARAMETERS	IFOV_B6	Static	float32	Angle in μ rad subtended by a Band 6 detector when scanning motion is stopped Valid format: NN.N, where NN.N = 85.0
SCANNER PARAMETERS	IFOV_B8_along_scan	Static	float32	Along-scan angle in μ rad subtended by a Band 8 detector when the scanning motion is stopped Valid format: NN.N, where NN.N = 18.5
SCANNER PARAMETERS	$\begin{aligned} & \text { IFOV_B8_across_ } \\ & \text { scan } \end{aligned}$	Static	float32	Across-scan angle in $\mu \mathrm{rad}$ subtended by a Band 8 detector when scanning motion is stopped Valid format: NN.NN, where NN.NN $=21.25$
SCANNER PARAMETERS	Scan_Period	Static	float64	Time in milliseconds of a complete scan cycle, including forward and reverse scans Valid format: NNN.NN, where NNN.NN = 143.58
SCANNER PARAMETERS	Scan_Frequency	Static	float32	Number of scans in 1 second (Hz) Valid format: N.NNNNN, where N.NNNNN $=6.96476$
SCANNER PARAMETERS	Active_Scan_Time	Static	float32	Time in $\mu \mathrm{s}$ required for the scan mirror to travel from its scan-line-start to End-Of-Line (EOL) Valid format: NNNNN.NNN, where NNNNN.NNN = 60743.346
SCANNER PARAMETERS	Turn_Around_Time	Static	float32	Time in milliseconds from EOL to next scan-line-start, during which scan mirror motion reverses direction Valid format: NN.NNN, where: NN.NNN = 11.055
SPACECRAFT PARAMETERS	ADS_Interval	Static	float32	Time in milliseconds between Attitude Displacement Sensors (ADS) samples Valid format: N.N, where N.N $=2.0$
SPACECRAFT PARAMETERS	ADS_Roll_Offset	Static	float32	Amount of time in milliseconds from the start of a Payload Correction Data (PCD) cycle to roll axis measurement Valid format: N.NNN, where N.NNN $=0.375$
SPACECRAFT PARAMETERS	ADS_Yaw_Offset	Static	float32	Amount of time in milliseconds from the start of a PCD cycle to the yaw axis measurement Valid format: N.NNN, where N.NNN $=0.875$
SPACECRAFT PARAMETERS	ADS_Pitch_Offset	Static	float32	Amount of time in milliseconds from the start of a PCD cycle to the pitch axis measurement Valid format: N.NNN, where N.NNN $=1.375$
SPACECRAFT PARAMETERS	Data_Rate	Static	float32	ETM+ output bit rate in Mbps Valid format: NN.NNN, where NN.NNN $=74.914$
GROUP: MIRROR_PARAMETERS	Error_Conversion_ Factor	Static	float32	First half and second half scan mirror error measurement units in microseconds Valid format: N.NNNNNNNN, where N.NNNNNNNN $=0.18845139$ (5.306437 MHz)
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Along_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the departure from linearity of forward along scan mirror motion; Scan Angle Monitor (SAM) mode with Scan Mirror Electronics (SME) number 1 Valid format for each term: SN.NNNNNNESNN, where $\mathrm{S}=$ " + " or "-", $\mathrm{N}=0$ to 9 , and $\mathrm{E}=$ " E "
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Cross_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=$ "E"

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle1_ SME1_SAM	Static	float32	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in forward direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67166.9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle2 SME1_SAM	Static	float32	Angle in μ rad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67145.9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Along_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=$ " E "
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Cross_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where $\mathrm{S}=$ " + " or "-", $\mathrm{N}=0$ to 9 , and $\mathrm{E}=$ " E "
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Angle1_ SME1_SAM	Static	float32	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67142.8
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Angle2_ SME1_SAM	Static	float32	Angle in μ rad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67169.9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Along_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward along scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=" E "$
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Cross_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=$ "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle1_ SME2_SAM	Static	float32	Angle in μ rad from the start of the scan to midscan point in forward direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.7
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle2 SME2_SAM	Static	float32	Angle in $\mu \mathrm{rad}$ from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Along_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=$ "E"

$\begin{array}{l}\text { Parameter } \\ \text { Group }\end{array}$	$\begin{array}{l}\text { Parameter } \\ \text { Name }\end{array}$	$\begin{array}{l}\text { Value } \\ \text { Type }\end{array}$	$\begin{array}{c}\text { Data } \\ \text { Type }\end{array}$	$\begin{array}{l}\text { Description }\end{array}$
$\begin{array}{l}\text { GROUP: } \\ \text { MIRROR_PARAMETERS } \\ \text { GROUP: } \\ \text { ANGLES_SME2_SAM }\end{array}$	$\begin{array}{l}\text { Reverse_Cross_ } \\ \text { SME2_SAM }\end{array}$	Static	$\begin{array}{l}\text { float64 } \\ \text { array } \\ \text { (6 values) }\end{array}$	$\begin{array}{l}\text { Fifth-order polynomial coefficients that describe } \\ \text { the deviation of reverse cross scan mirror } \\ \text { motion from linear; SAM mode with SME } \\ \text { number } 2 \\ \text { Valid format for each term: SN.NNNNNNESNN, }\end{array}$
where S = "+" or "-", N = 0 to 9, and E = "E"				

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_SHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the forward scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where $\mathrm{S}=$ " + " or "-" and N = 0 to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Along_ SME1_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along the scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNNESNN, where S = " + " or "-", $N=0$ to 9 , and $E=$ "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Cross SME1_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; Bumper mode with SME number 1 Valid format: SN.NNNNNNESNN, where S = " + " or "-", $N=0$ to 9 , and $E=$ "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Angle1_ SME1_Bump	For CPFs with effective dates prior to April 1, 2007		
		Static	float32	Angle in μ rad from the start of the scan to the mid-scan point in reverse direction; Bumper mode with SME number 1. Valid format: NNNNN.N where NNNNN.N = 67156.7
		For CPFs with effective dates of April 1, 2007 and thereafter		
		Dynamic	float32 array of flexible length	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in reverse direction; Bumper mode with SME number 1. Array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9 .
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Angle2_ SME1_Bump	For CPFs with effective dates prior to April 1, 2007		
		Static	float32	Angle in $\mu \mathrm{rad}$ from the mid-scan point to the end of the scan in reverse direction; Bumper mode with SME number 1. Valid format: NNNNN.N where NNNNN.N = 67156.3
		For CPFs	vith effec	ve dates of April 1, 2007 and thereafter
		Dynamic	float32 array of flexible length	Angle in $\mu \mathrm{rad}$ from the mid-scan point to the end of the scan in reverse direction; Bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N $=0$ to 9 .
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_FHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the reverse scan angle; Bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where $S=$ " + " or "-" and N = 0 to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_SHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the reverse scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where $\mathrm{S}=$ " + " or "-" and N = 0 to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Along_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe deviation of forward along scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN, where S = " + " or "-", $N=0$ to 9 , and $E=$ "E"

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Cross_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of the forward cross scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN, where $\mathrm{S}="+$ " or "-", $\mathrm{N}=0$ to 9 , and $\mathrm{E}=$ "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Angle1_ SME2_Bump	For CPFs with effective dates prior to April 1, 2007		
		Static	float32	Angle in μ rad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 2. Valid format: NNNNN.N where NNNNN.N = 67162.7
		For CPFs with effective dates of April 1, 2007 and thereafter		
		Dynamic	float32 array of flexible length	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N $=0$ to 9 .
GROUP:	Forward_Angle2_ SME2_Bump	For CPFs with effective dates prior to April 1, 2007		
MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP		Static	float32	Angle in $\mu \mathrm{rad}$ from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 2. Valid format: NNNNN.N where NNNNN.N = 67162.8
		For CPFs with effective dates of April 1, 2007 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9 .
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_FHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the forward scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where $\mathrm{S}=$ "+" or "-" and N = 0 to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_SHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the forward scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where $\mathrm{S}=$ " + " or "-" and N = 0 to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Along_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; Bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=$ " $E "$
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Cross SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; Bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where $S=$ " + " or "-", $N=0$ to 9 , and $E=$ " E "

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Angle1_ SME2_Bump	For CPFs with effective dates prior to April 1, 2007		
		Static	float32	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2. Valid format is NNNNN.N where NNNNN.N = 67162.8
		For CPFs with effective dates of April 1, 2007 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in the reverse direction; Bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where $\mathrm{N}=0$ to 9 .
GROUP:	Reverse_Angle2	For CPFs with effective dates prior to April 1, 2007		
MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	SME2 Bump	Static	float32	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2. Valid format is NNNNN.N where NNNNN.N = 67162.7
		For CPFs with effective dates of April 1, 2007 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where $\mathrm{N}=0$ to 9 .
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_FHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the reverse scan angle; Bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_SHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the reverse scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the bumper A pickoff signal to the start of the reverse scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to the bumper A pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	```"Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00```

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians. Valid format: SNNNNN.N, where SNNNNN.N = -68665.0
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to the bumper B pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians. Valid format: SNNNNN.N, where SNNNNN.N = 68607.0
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to bumper A pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians. Valid format: SNNNNN.N, where SNNNNN.N = -68665.0

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to bumper B pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where $\mathrm{N}=0$ to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds. Valid format: NNNNN.NN, where $\text { NNNNN.NN = } 10110.00$
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians. Valid format: SNNNNN.N, where SNNNNN.N = 68607.0
GROUP: SCAN_LINE_CORRECTOR	Primary_Angular_ Velocity	Static	float32	Angular velocity in radians per second of the primary scan line corrector Valid format: N.NNNNN, where N.NNNNN $=0.00966$
GROUP: SCAN_LINE_CORRECTOR	Secondary_Angular_ Velocity	Static	float32	Angular velocity in radians per second of the secondary scan line corrector Valid format: N.NNNNN, where N.NNNNN $=0.00960$
GROUP: SCAN_LINE_CORRECTOR	Primary_Corrector_ Motion	Static	float32 array (6 values)	Fifth-order polynomial coefficients that describe the motion of the primary scan line corrector Valid format for each term: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: SCAN_LINE_CORRECTOR	Secondary_Corrector_ Motion	Static	float32 array (6 values)	Fifth-order polynomial coefficients that describe the motion of the secondary scan line corrector Valid format for each term: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: SCAN_LINE_CORRECTOR	Unpowered_Pointing_Bias (available in all CPFs with effective dates of July 14, 2003 and thereafter)	Dynamic	Float32	The best estimate of the pointing angle of the scan line corrector in its unpowered, "at-rest" pointing position Valid format: N.NNNNNNN, where N.NNNNNNN $=0.0000427$
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Along_Scan_Band_ Offsets	Static	float32 array (8 values)	Nominal displacement in μ rad from the center of the focal plane to each band's optical axis Valid format: SNNNN.NNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Across_Scan_Band_ Offsets	Static	float32 array (8 values)	Nominal displacement in μ rad from the center of the focal plane to each band's scan motion axis Valid format: SNNNN.NNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Forward_Focal_ Plane_Offsets	Static	float32 array (8 values)	Offset in Instrument Fields of View (IFOVs) for focal plane forward scans Valid format: SNNN.N, where S = "+" or "-" and $\mathrm{N}=0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Reverse_Focal_ Plane_Offsets	Static	float32 array (8 values)	Offset in IFOVs for focal plane reverse scans Valid format: SNNN.N, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B1	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B1	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 1 Valid format: $\mathrm{N} . \mathrm{NNN}$, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B2	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B2	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B3	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B3	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B4	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 4 Valid format: $\mathrm{N} . \mathrm{NNN}$, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B4	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B5	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B5	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B6	Static	float32 array (8 values)	Forward along scan detector offsets in IFOV for each detector in Band 6 Valid format: $\mathrm{N} . \mathrm{NNN}$, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B6	Static	float32 array (8 values)	Reverse along scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B7	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B7	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B8	Static	float32 array (32 values)	Forward along scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B8	Static	float32 array (32 values)	Reverse along scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B1	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B1	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across Scan_DO_B2	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B2	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B3	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across Scan_DO_B3	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward Across Scan_DO_B4	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B4	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B5	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B5	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_Scan_ DO_B6	Static	float32 array (8 values)	Forward across scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B6	Static	float32 array (8 values)	Reverse across scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across Scan_DO_B7	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B7	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B8	Static	float32 array (32 values)	Forward across scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B8	Static	float32 array (32 values)	Reverse across scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Forward_Even Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for forward band offsets, even detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where $\mathrm{N}=0 \mathrm{TO} 9$
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Forward_Odd Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for forward band offsets, odd detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Reverse_Even Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for reverse band offsets, even detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where $\mathrm{N}=0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Reverse_Odd Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for reverse band offsets, odd detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where $\mathrm{N}=0$ TO 9
GROUP: ATTITUDE_PARAMETERS	Gyro_To_Attitude_ Matrix	Static	float32 array (9 values)	Matrix describing the relationship of the gyro axis to the attitude control reference axis Valid format: SN.NNNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: ATTITUDE_PARAMETERS	ADSA_To_ETM_ Matrix	Static	float32 array (9 values)	Matrix describing the relationship of the Attitude Displacement Sensor Assembly (ADSA) to the ETM+ optical axis Valid format: SN.NNNNNNNNESNN, where S = " + " or "-", $\mathrm{N}=0$ to 9 , and $\mathrm{E}=$ "E"
GROUP: ATTITUDE_PARAMETERS	Attitude_To_ETM_ Matrix	Static	float32 array (9 values)	Matrix describing the relationship of the attitude control reference axis to the ETM+ optical axis Valid format: SN.NNNNNNNNESNN, where $\mathrm{S}=$ "+" or "-", N = 0 to 9 , and $E=$ "E"
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Roll_Bias	Static	float32	Spacecraft roll bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN $=0.00000000 \mathrm{E}+00$
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Pitch Bias	Static	float32	Spacecraft pitch bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN $=0.00000000 \mathrm{E}+00$
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Yaw_Bias	Static	float32	Spacecraft yaw bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN $=0.00000000 \mathrm{E}+00$
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_XA	Static	float32	Inertial Measurement Unit (IMU) XA axis drift bias in radians per second. Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN $=-2.23500000 \mathrm{E}-06$
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_YA	Static	float32	IMU YA axis drift bias in radians per second. Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN = -2.23500000E-06

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_ZA	Static	float32	IMU ZA axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 1.68230000E-06
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_XB	Static	float32	IMU XB axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 1..86665000E-06
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_YB	Static	float32	IMU YB axis drift bias in radians per second. Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN = -6.35100000E-07
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_ZB	Static	float32	IMU ZB axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 4.84810000E-08
GROUP: TIME_PARAMETERS	Scan_Time	Static	float32	Nominal scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 60743.0
GROUP: TIME_PARAMETERS	Forward_First_Half_ Time	Static	float32	Nominal forward first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4
GROUP: TIME_PARAMETERS	Forward_Second Half_Time	Static	float32	Nominal forward second half scan time in microseconds Valid format: NNNNN.N, where NNNNN. N = 30371.6
GROUP: TIME_PARAMETERS	Reverse_First_Half Time	Static	float32	Nominal reverse first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6
GROUP: TIME_PARAMETERS	Reverse_Second Half_Time	Static	float32	Nominal reverse second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4
GROUP: TRANSFER_FUNCTION GROUP: IMU	Fn	Static	float64	Inertial measurement unit transfer function resonant frequency (Hz) Valid format: N.NNNNNNN, where N.NNNNNNN = 3.3113091
GROUP: TRANSFER_FUNCTION GROUP: IMU	Zeta	Static	float64	Inertial measurement unit transfer function damping coefficient Valid format: N.NNNNNNNN, where N.NNNNNNNN $=0.66882924$
GROUP: TRANSFER_FUNCTION GROUP: IMU	Tau	Static	float64	Inertial measurement unit transfer function denominator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNNESN = -1.6086176E-2
GROUP: TRANSFER_FUNCTION GROUP: IMU	P	Static	float64	Inertial measurement unit transfer function numerator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNNESN = -4.1138195E-3
GROUP: TRANSFER_FUNCTION GROUP: IMU	Ak	Static	float64	Inertial measurement unit transfer function DC gain Valid format: N.NNNNNNN, where N.NNNNNNN = 1.0103061
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_num	Static	float64 array (18 values)	Transfer function numerator coefficients in order a0, a1, a2, a3, a4, a5; one set of six coefficients for each of the three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNNEN, where $S="+"$ or "-", N = 0 to 9 , and $E=$ "E"

Parameter	Parameter Name	Value Type	Data Type	Description

Parameter	Parameter	Value Type	Data Type	Description

Parameter Group	Parameter Name	Value Type	Data Type	Description
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B3L_Current	Dynamic	float32 array (16 values)	Band 3 current low gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS LOW```	B4L_Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch low gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B4L_Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch low gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: DETECTOR_GAINS GROUP:   DETECTOR_GAINS_LOW	B4L_Current	Dynamic	float32 array (16 values)	Band 4 current low gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS LOW```	B5L_Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch low gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B5L_Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch low gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B5L_Current	Dynamic	float32 array (16 values)	Band 5 current low gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B6L_Prelaunch	Static	float32 array (8 values)	Band 6 prelaunch low gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B6L_Postlaunch	Static	float32   array   (8 values)	Band 6 postlaunch low gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B6L_Current	Dynamic	float32 array (8 values)	Band 6 current low gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS LOW```	B7L_Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch low gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B7L_Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch low gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B7L_Current	Dynamic	float32 array (16 values)	Band 7 current low gain in counts/W/m^2-ster$\mu \mathrm{m}$ Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B8L_Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch low gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$ -   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B8L_Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch low gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW```	B8L_Current	Dynamic	float32 array (32 values)	Band 8 current low gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B1H_Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch high gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B1H_Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS HIGH```	B1H_Current	Dynamic	float32 array (16 values)	Band 1 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH	B2H_Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch high gain in counts/W/m^2- ster- $\mu \mathrm{m}$ Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS HIGH```	B2H_Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch high gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS HIGH```	B2H_Current	Dynamic	float32 array (16 values)	Band 2 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH	B3H_Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$ Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS HIGH```	B3H_Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B3H_Current	Dynamic	float32 array (16 values)	Band 3 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B4H_Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch high gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS HIGH```	B4H_Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B4H_Current	Dynamic	float32 array (16 values)	Band 4 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B5H_Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS HIGH```	B5H_Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B5H_Current	Dynamic	float32 array (16 values)	Band 5 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$ Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B6H_Prelaunch	Static	float32 array (8 values)	Band 6 prelaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B6H_Postlaunch	Static	float32 array (8 values)	Band 6 postlaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$ Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B6H_Current	Dynamic	float32 array (8 values)	Band 6 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B7H_Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch high gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B7H_Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch high gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B7H_Current	Dynamic	float32 array (16 values)	Band 7 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS HIGH```	B8H_Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch high gain in counts/W/m^2-   ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: DETECTOR_GAINS GROUP:   DETECTOR_GAINS_HIGH	B8H_Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch high gain in counts/W/m^2-ster- $\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH```	B8H_Current	Dynamic	float32 array (32 values)	Band 8 current high gain in counts/W/m^2-ster$\mu \mathrm{m}$   Valid format: NN.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: BIAS_LOCATIONS	Forward_Bias Location_30	Dynamic	int16	Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Bands 15 and 7 Valid format: NNN, where NNN = 143
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_30	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Bands 1-5 and 7 Valid format: NNN, where NNN = 500
GROUP: BIAS_LOCATIONS	$\begin{aligned} & \text { Forward_IC_ } \\ & \text { Region_30 } \end{aligned}$	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and 7 Valid format: NNN, where NNN $=814$
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_30	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Bands 15 and 7 Valid format: NNN, where NNN = 810
GROUP: BIAS_LOCATIONS	Reverse_Bias Length_30	Dynamic	int16	Number of pixels to use per line, in calculating bias for Bands 1-5 and 7 Valid format: NNN, where NNN $=500$
GROUP: BIAS_LOCATIONS	$\begin{aligned} & \text { Reverse_IC_ } \\ & \text { Region_30 } \end{aligned}$	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and 7 Valid format: NNN, where NNN $=810$
GROUP: BIAS_LOCATIONS	Forward_Bias_ Location_60	Dynamic	int16	Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 85
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_60	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275
GROUP: BIAS_LOCATIONS	$\begin{aligned} & \text { Forward_IC_ } \\ & \text { Region_60 } \end{aligned}$	Dynamic	int16	Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 380
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_60	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 400
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Length_60	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275
GROUP: BIAS_LOCATIONS	$\begin{aligned} & \text { Reverse_IC_ } \\ & \text { Region_60 } \end{aligned}$	Dynamic	int16	Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN $=410$
GROUP: BIAS_LOCATIONS	Forward Bias Location_15	Dynamic	int16	Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNN, where NNN = 286
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_15	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: BIAS_LOCATIONS	$\begin{aligned} & \text { Forward_IC_ } \\ & \text { Region_15 } \end{aligned}$	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1635
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_15	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNNN, where NNNN = 1610
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Length_15	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000
GROUP: BIAS_LOCATIONS	$\begin{array}{\|l} \text { Reverse_IC_ } \\ \text { Region_15 } \end{array}$	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1646
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW	B6L_Bias_Prelaunch	Static	float32 array (8 values)	Band 6 prelaunch low gain bias in digital counts Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW	B6L_Bias_Postlaunch	Static	float32 array (8 values)	Band 6 postlaunch low gain bias in digital counts Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW	B6L_Bias_Current	Dynamic	float32 array (8 values)	Band 6 current low gain bias in digital counts Valid format: NN.NNN, where $\mathrm{N}=0$ to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH	B6H_Bias_Prelaunch	Static	float32 array (8 values)	Band 6 prelaunch high gain bias in digital counts Valid format: SNN.NN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH	B6H_Bias_Postlaunch	Static	float32 array (8 values)	Band 6 postlaunch high gain bias in digital counts Valid format: SNN.NN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
```GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH```	B6H_Bias_Current	Dynamic	float32 array (8 values)	Band 6 current high gain bias in digital counts Valid format: SNN.NNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES   GROUP:   ACCA_BIASES_LOW	B1L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 1 low-gain Automated Cloud Cover Assessment (ACCA) bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_LOW	B2L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 2 low-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES   GROUP:   ACCA BIASES_LOW	B3L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 3 low-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_LOW	B4L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 4 low-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_LOW	B5L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 5 low-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_LOW	B6L_ACCA_Bias	Dynamic	float32 array (8 values)	Band 6 low-gain ACCA bias in digital counts for detectors 1-8   Valid format: NN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_LOW	B7L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 7 low-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_LOW	B8L_ACCA_Bias	Dynamic	float32 array (32 values)	Band 8 low-gain ACCA bias in digital counts for detectors 1-32   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_HIGH	B1H_ACCA_Bias	Dynamic	float32 array (16 values)	Band 1 high-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_HIGH	B2H_ACCA_Bias	Dynamic	float32 array (16 values)	Band 2 high-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH	B3H_ACCA_Bias	Dynamic	float32 array (16 values)	Band 3 high-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_HIGH	B4H_ACCA_Bias	Dynamic	float32 array (16 values)	Band 4 high-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_HIGH	B5H_ACCA_Bias	Dynamic	float32 array (16 values)	Band 5 high-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP:   ACCA_BIASES_HIGH	B6H_ACCA_Bias	Dynamic	float32 array (8 values)	Band 6 high-gain ACCA bias in digital counts for detectors 1-8   Valid format: SNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH	B7H_ACCA_Bias	Dynamic	float32 array (16 values)	Band 7 high-gain ACCA bias in digital counts for detectors 1-16   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH	B8H_ACCA_Bias	Dynamic	float32 array (32 values)	Band 8 high-gain ACCA bias in digital counts for detectors 1-32   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: ACCA_THRESHOLDS	Thresh_B3	Dynamic	float32	Band 3 ACCA threshold   Valid format: N.NNNN, where N.NNNN $=0.0800$
GROUP: ACCA_THRESHOLDS	Thresh_B3_Lower	Dynamic	float32	Band 3 land reflectance threshold Valid format: NN.NN, where NN.NN $=0.07$
GROUP: ACCA_THRESHOLDS	Thresh_B56_High	Dynamic	float32	Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000
GROUP: ACCA_THRESHOLDS	Thresh_B56_Low	Dynamic	float32	Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000
GROUP: ACCA_THRESHOLDS	Thresh_B6	Dynamic	float32	Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where $\text { NNN.NNN }=300.000$
GROUP: ACCA_THRESHOLDS	Thresh_B45_Ratio	Dynamic	float32	Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000
GROUP: ACCA_THRESHOLDS	Thresh_B42_Ratio	Dynamic	float32	Band 4-2 ratio threshold   Valid format: N.NNNNN, where   N.NNNNN = 2.16248
GROUP: ACCA_THRESHOLDS	Thresh_B43_Ratio	Dynamic	float32	Band 4-3 ratio threshold   Valid format: N.NNNN, where N.NNNN $=2.3500$
GROUP: ACCA_THRESHOLDS	Thresh_NDSI_Max	Dynamic	float32	Normalized Snow Difference Index (NDSI) ceiling   Valid format: N.NNNN, where N.NNNN $=0.7000$
GROUP: ACCA_THRESHOLDS	Thresh_NDSI_Min	Dynamic	float32	Normalized snow difference index floor Valid format: SN.NNNN, where SN.NNNN $=-0.2500$


Parameter   Group	Parameter   Name	Value   Type	Data   Type	Description
GROUP:   ACCA_THRESHOLDS	Thresh_NDSI_Snow	Dynamic	float32	NDSI threshold used to identify snow   Valid format: NN.NNNN, where   NN.NNNN $=0.8000$
GROUP:   ACCA_THRESHOLDS	Cloud_Percent_Min	Dynamic	float32	Minimum cloud cover percentage required for   pass two   Valid format: N.NNNN, where N.NNNN = 0.4000
GROUP:   ACCA_THRESHOLDS	Desert_Index	B8_Solar_Irradiance	Static	float32


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B1L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 1, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B2L_Lmin_Lmax	Static	float32   array   (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 2, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B3L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 3, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING_   PARAMETERS_LOW	B4L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 4, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING_   PARAMETERS LOW	B5L_Lmin_Lmax	Static	float32   array   (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 5, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $S=$ "+" or "-" and $N=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B6L_Lmin_Lmax	Static	float32   array   (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 6, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $\mathrm{S}=$ "+" or "-" and $N=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B7L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 7, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $N=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B8L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 8, low gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_LOW	B1H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 1, high gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $S=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIḠH	B2H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 2, high gain, $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIGH	B3H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 3, high gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIḠH	B4H_Lmin_Lmax	Static	float32   array   (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 4, high gain, $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIḠH	B5H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 5, high gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIGH	B6H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 6, high gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $S=$ "+" or "-" and $N=0$ to 9
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIGH	B7H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 7, high gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where S = "+" or "-" and $N=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   SCALING_PARAMETERS   GROUP: SCALING   PARAMETERS_HIGH	B8H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 8, high gain, W/m^2-ster- $\mu \mathrm{m}$ Valid format: SNNN.NN, where $S=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B1_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan Modulation Transfer Function Compensation (MTFC) for Band 1 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP:   MTF_COMPENSATION	B1_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 1   Valid format: SN.NNNNNNNN, where $S="+$ " or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B2_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 2   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B2_weights_across	Dynamic	float64   array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 2   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B3_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 3   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B3_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 3   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B4_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 4   Valid format: SN.NNNNNNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B4_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 4   Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP:   MTF_COMPENSATION	B5_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 5   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B5_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 5   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B6_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 6   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B6_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 6   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B7_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 7   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B7_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 7   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   MTF_COMPENSATION	B8_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 8   Valid format: SN.NNNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   MTF_COMPENSATION	B8_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 8   Valid format: SN.NNNNNNNN, where $\mathrm{S}=\mathrm{"+}$ " or "-" and $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B1_ME_Magnitude	Dynamic	float32 array (16 values)	Band 1 memory effect magnitude measured in Digital Numbers (DNs)   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B2_ME_Magnitude	Dynamic	float32 array (16 values)	Band 2 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B3_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B4_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B5_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B6_ME_Magnitude	Dynamic	float32 array (8 values)	Band 3 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B7_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B8_ME_Magnitude	Dynamic	float32 array (32 values)	Band 3 memory effect magnitude measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
```GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS```	B1_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 1 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B2_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 2 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0$ to 9
```GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS```	B3_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 3 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP:   ME_TIME_CONSTANTS	B4_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 4 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $N=0 \text { to } 9$
GROUP: MEMORY_EFFECT GROUP:   ME_TIME_CONSTANTS	B5_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 5 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP:   ME_TIME_CONSTANTS	B6_ME_Time_Constant	Dynamic	float32 array (8 values)	Band 6 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: MEMORY_EFFECT GROUP:   ME_TIME_CONSTANTS	B7_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 7 time constant measured in minor frames   Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0 \text { to } 9$
GROUP: MEMORY_EFFECT GROUP:   ME_TIME_CONSTANTS	B8_ME_Time_Constant	Dynamic	float32 array (32 values)	Band 8 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where $\mathrm{N}=0 \text { to } 9$
GROUP: GHOST_PULSE	Ghost_Pulse_Endpoints	Dynamic	float32 array (2 values)	Beginning and ending fractional minor frames that bound IC ghost pulse   Valid format: NNNN.NNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP: SCAN_CORRELATED_SHIFT	SCS_Reference_   Detectors	Dynamic	uint8 array (7 values)	Scan correlated shift reference detector, one per band   Valid format: NN, where NN = 1-16
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B1L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 1 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B2L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 2 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B3L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 3 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B4L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 4 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B5L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 5 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B7L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 7 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_LOW	B8L_SCS_Magnitudes	Dynamic	float32 array (32 values)	Magnitude of Band 8 low-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where $\mathrm{S}=\mathrm{"}+\mathrm{"}$ or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B1H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 1 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where $\mathrm{S}=\mathrm{"}+\mathrm{"}$ or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B2H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 2 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B3H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 3 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B4H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 4 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B5H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 5 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where $\mathrm{S}=\mathrm{"}+\mathrm{"}$ or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B7H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 7 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   SCAN_CORRELATED_SHIFT   GROUP: SCS_HIGH	B8H_SCS_Magnitudes	Dynamic	float32 array (32 values)	Magnitude of Band 8 high-gain shift in digital numbers   Valid format: SNNN.NNNNNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: STRIPING   GROUP:   STRIPING_FLAG_LOW	Correction Reference_B1_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 1, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_LOW	Correction Reference_B2_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 2, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction Reference_B3_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 3, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_LOW	Correction   Reference_B4_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 4, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_LOW	Correction   Reference_B5_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 5, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_LOW	Correction   Reference_B6_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 6, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_LOW	Correction   Reference_B7_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 7, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING   GROUP:   STRIPING_FLAG_LOW	Correction Reference_B8_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 8, low gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_HIGH	Correction   Reference_B1_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 1, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_HIGH	Correction   Reference_B2_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 2, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_HIGH	Correction   Reference_B3_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 3, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_HIGH	Correction   Reference_B4_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 4, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction   Reference_B5_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 5, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_HIGH	Correction   Reference_B6_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 6, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction Reference_B7_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 7, high gain Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP:   STRIPING_FLAG_HIGH	Correction   Reference_B8_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 8, high gain   Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise Level_B1_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 1, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_LOW	Detector_Noise Level_B2_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 2, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_LOW	Detector_Noise Level_B3_Low	Dynamic	float32   array (16 values)	Standard deviation of image region data for each detector of Band 3, low gain Valid format: N.NNNNNN, where $N=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE   GROUP:   DETECTOR_NOISE_LOW	Detector_Noise_ Level_B4_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 4, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_LOW	Detector_Noise Level_B5_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 5, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9 , where NN.NNNN = CPF
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_LOW	Detector_Noise Level_B6_Low	Dynamic	float32 array (8 values)	Standard deviation of image region data for each detector of Band 6, low gain Valid format: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_LOW	Detector_Noise_ Level_B7_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 7, low gain Valid format: N.NNNNNN, where $N=0$ to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B8_Low	Dynamic	float32   array (32 values)	Standard deviation of image region data for each detector of Band 8, low gain Valid format: N.NNNNNN, where $N=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_HIGH	Detector Noise Level_B1_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 1, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value Type	Data   Type	Description
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_HIGH	Detector_Noise Level_B2_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 2, high gain Valid format: N.NNNNNN, where $N=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_HIGH	Detector_Noise Level_B3_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 3, high gain   Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM   GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_HIGH	Detector_Noise Level_B4_High	Dynamic	float32   array (16 values)	Standard deviation of image region data for each detector of Band 4, high gain Valid format: N.NNNNNN, where $N=0$ to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP:   DETECTOR_NOISE_HIGH	Detector_Noise Level_B5_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 5, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
```GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH```	Detector Noise Level_B6_High	Dynamic	float32 array (8 values)	Standard deviation of image region data for each detector of Band 6, high gain Valid format: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise Level_B7_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 7, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise Level_B8_High	Dynamic	float32 array (32 values)	Standard deviation of image region data for each detector of Band 8, high gain Valid format: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B1_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 1, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B2_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 2, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B3_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 3, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B4_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 4, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B5_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 5, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B6_Low	Dynamic	float32 array (8 values)	Standard deviation of shutter region data for each detector of Band 6, low gain Valid format: N.NNNNN, where $\mathrm{N}=0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B7_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 7, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B8_Low	Dynamic	float32 array (32 values)	Standard deviation of shutter region data for each detector of Band 8, low gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B1_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 1, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: \qquad HIGH	Det_Shutter_Noise_ Level_B2_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 2, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
```GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH```	Det_Shutter_Noise_ Level_B3_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 3, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP:   DET_SHUTTER_NOISE GROUP:   DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B4_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 4, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP:   DET_SHUTTER_NOISE GROUP:   DET_SHUTTER_NOISE_   HIGH	Det_Shutter_Noise_ Level_B5_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 5, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP:   DET_SHUTTER_NOISE GROUP:   DET_SHUTTER_NOISE_   HIGH	Det_Shutter_Noise_ Level_B6_High	Dynamic	float32 array (8 values)	Standard deviation of shutter region data for each detector of Band 6, high gain Valid format: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP:   DET_SHUTTER_NOISE GROUP:   DET_SHUTTER_NOISE_   HIGH	Det_Shutter_Noise_ Level_B7_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 7, high gain Valid format: N.NNNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP:   DET_SHUTTER_NOISE GROUP:   DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B8_High	Dynamic	float32 array (32 values)	Standard deviation of shutter region data for each detector of Band 8, high gain Valid format: N.NNNNN, where $\mathrm{N}=0$ to 9
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B1	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 1 Valid format: NN, where NN = 15


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B2	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 2   Valid format: NN, where NN = 12
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B3	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 3   Valid format: NN, where NN = 08
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B4	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 4 Valid format: NN, where NN = 07
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B5	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy),   Band 5   Valid format: NN, where NN = 14
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B6	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 6 Valid format: NN, where NN = 01
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B7	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 7   Valid format: NN, where NN = 10
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B8	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 8 Valid format: NN, where NN = 27
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_   Threshold_B1	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 1   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_   Threshold_B2	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 2   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_   Threshold_B3	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 3   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B4	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 4   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_   Threshold_B5	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 5   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_   Threshold_B6	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 6   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B7	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 7   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP:   SATURATION THRESHOLDS	Saturation_Bin_ Threshold_B8	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 8   Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B1	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 1 Valid format: N , where $\mathrm{N}=2$ (default)


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B2	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare possible bin as saturation bin, Band 2   Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B3	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 3 Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B4	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 4   Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B5	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 5   Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin Number_B6	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 6 Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B7	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 7   Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B8	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 8   Valid format: N , where $\mathrm{N}=2$ (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B1	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 1 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent Bin Threshold_B2	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 2 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B3	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 3 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B4	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 4 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B5	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 5 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B6	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 6 candidate saturation bin to be a valid saturation bin Valid format: NN , where $\mathrm{NN}=10$ (default)


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B7	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 7 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM   GROUP: ADJACENT_BINS   GROUP: BIN_THRESHOLD	Adjacent_Bin Threshold_B8	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 8 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B1	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 1 Valid format: NNN, where NNN = 243
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B2	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 2 Valid format: NNN, where NNN $=218$
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B3	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 3   Valid format: NNN, where NNN = 193
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B4	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 4 Valid format: NNN, where NNN = 168
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B5	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 5   Valid format: NNN, where NNN = 97
GROUP: HISTOGRAM   GROUP: STARTING_PIXEL	Start_pixel_B6	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 6   Valid format: NNN, where NNN = 31
GROUP: HISTOGRAM   GROUP: STARTING_PIXEL	Start_pixel_B7	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 7   Valid format: NNN, where NNN = 123
GROUP: HISTOGRAM   GROUP: STARTING_PIXEL	Start_pixel_B8	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 8   Valid format: NNN, where NNN = 536
GROUP: HISTOGRAM   GROUP: WINDOW_WIDTH	Window_Samples_B1	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 1   Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B2	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 2   Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B3	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 3   Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM   GROUP: WINDOW_WIDTH	Window_Samples_B4	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 4   Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM   GROUP: WINDOW_WIDTH	Window_Samples_B5	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 5   Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM   GROUP: WINDOW_WIDTH	Window_Samples_B6	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 6   Valid format: NNNNN, where NNNNN = 2937
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B7	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 7   Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B8	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 8   Valid format: NNNNN, where NNNNN = 11748
GROUP: HISTOGRAM   GROUP: WINDOW_LENGTH	Window_Scans_B1	Dynamic	uint8	Number of scans in the window to be tested, Band 1   Valid format: NNN, where NNN = 375


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B2	Dynamic	uint8	Number of scans in the window to be tested, Band 2   Valid format: NNN, where NNN $=375$
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B3	Dynamic	uint8	Number of scans in the window to be tested, Band 3   Valid format: NNN, where NNN $=375$
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B4	Dynamic	uint8	Number of scans in the window to be tested, Band 4   Valid format: NNN, where NNN $=375$
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B5	Dynamic	uint8	Number of scans in the window to be tested, Band 5   Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B6	Dynamic	uint8	Number of scans in the window to be tested, Band 6   Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM   GROUP: WINDOW_LENGTH	Window_Scans_B7	Dynamic	uint8	Number of scans in the window to be tested, Band 7   Valid format: NNN, where NNN $=375$
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B8	Dynamic	uint8	Number of scans in the window to be tested, Band 8   Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B1	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 1   Valid format: NNN, where NNN $=0$
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B2	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 2   Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP:   OVERLAPPING_SCANS	Overlap_Scans_B3	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 3   Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B4	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 4   Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B5	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 5   Valid format: NNN, where NNN $=0$
GROUP: HISTOGRAM GROUP:   OVERLAPPING_SCANS	Overlap_Scans_B6	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 6   Valid format: NNN, where NNN $=0$
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B7	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 7   Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B8	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 8   Valid format: NNN, where NNN $=0$
GROUP: IMPULSE_NOISE	Median_Filter_Width	Static	uint8	Width of median filter Valid format: N , where $\mathrm{N}=3$
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B1L_Threshold	Dynamic	float32 array (16 values)	Band 1 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B2L_Threshold	Dynamic	float32 array (16 values)	Band 2 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B3L_Threshold	Dynamic	float32 array (16 values)	Band 3 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B4L_Threshold	Dynamic	float32 array (16 values)	Band 4 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B5L_Threshold	Dynamic	float32 array (16 values)	Band 5 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B6L_Threshold	Dynamic	float32 array (8 values)	Band 6 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B7L_Threshold	Dynamic	float32 array (16 values)	Band 7 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B8L_Threshold	Dynamic	float32 array (32 values)	Band 8 low-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B1H_Threshold	Dynamic	float32 array (16 values)	Band 1 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B2H_Threshold	Dynamic	float32 array (16 values)	Band 2 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B3H_Threshold	Dynamic	float32 array (16 values)	Band 3 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B4H_Threshold	Dynamic	float32 array (16 values)	Band 4 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B5H_Threshold	Dynamic	float32 array (16 values)	Band 5 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B6H_Threshold	Dynamic	float32 array (8 values)	Band 6 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B7H_Threshold	Dynamic	float32 array (16 values)	Band 7 high-gain noise threshold for an inequal case Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE   GROUP: IN_THRESHOLD	B8H_Threshold	Dynamic	float32 array (32 values)	Band 8 high-gain noise threshold for an inequal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP:   IN_SIGMA_THRESHOLD	B1L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 1 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP:   IN_SIGMA THRESHOLD	B2L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 2 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE   GROUP:   IN_SIGMA THRESHOLD	B3L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 3 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP:   IN_SIGMA_THRESHOLD	B4L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 4 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP:   IN_SIGMA THRESHOLD	B5L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 5 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP:   IN_SIGMA THRESHOLD	B6L_Sigma_Threshold	Dynamic	float32 array (8 values)	Band 6 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9
GROUP: IMPULSE_NOISE GROUP:   IN_SIGMA_THRESHOLD	B7L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 7 low-gain noise threshold for an equal case   Valid format: NN.NN, where $\mathrm{N}=0$ to 9


Parameter	Prarameter   Name	Value   Type	Data   Type	Description


Parameter	Proup	Value   Name	Data   Type	Description


Parameter Group	Parameter Name	Value Type	Data   Type	Description
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B2_Frequency_Min	Dynamic	float32 array (10 values)	Band 2 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B3_Frequency_Min	Dynamic	float32 array (10 values)	Band 3 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B4_Frequency_Min	Dynamic	float32 array (10 values)	Band 4 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B5_Frequency_Min	Dynamic	float32 array (10 values)	Band 5 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B6_Frequency_Min	Dynamic	float32 array (10 values)	Band 6 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B7_Frequency_Min	Dynamic	float32 array (10 values)	Band 7 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B8_Frequency_Min	Dynamic	float32 array (10 values)	Band 8 frequency minimums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B1_Frequency_Max	Dynamic	float32 array (10 values)	Band 1 frequency maximums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B2_Frequency_Max	Dynamic	float32 array (10 values)	Band 2 frequency maximums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B3_Frequency_Max	Dynamic	float32 array (10 values)	Band 3 frequency maximums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER $\bar{S}$ GROUP: FREQUENCY_ MAXIMUMS	B4_Frequency_Max	Dynamic	float32 array (10 values)	Band 4 frequency maximums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B5_Frequency_Max	Dynamic	float32 array (10 values)	Band 5 frequency maximums measured in inverse minor frames   Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9


Parameter	Proup	Value   Type	Data   Type	Description


Parameter	Parameter   Name	Value   Type	Data   Type	Description


Parameter Group	Parameter Name	Value Type	Data   Type	Description
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B2_Phase_Max	Dynamic	float32 array (10 values)	Band 2 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B3_Phase_Max	Dynamic	float32 array (10 values)	Band 3 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS   GROUP: PHASE_MAXIMUMS	B4_Phase_Max	Dynamic	float32 array (10 values)	Band 4 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B5_Phase_Max	Dynamic	float32 array (10 values)	Band 5 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS   GROUP: PHASE_MAXIMUMS	B6_Phase_Max	Dynamic	float32 array (10 values)	Band 6 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B7_Phase_Max	Dynamic	float32 array (10 values)	Band 7 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP:   CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B8_Phase_Max	Dynamic	float32 array (10 values)	Band 8 phase maximums measured in radians Valid format: NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B1_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 1 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MEANS	B2_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 2 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MEANS	B3_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 3 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B4_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 4 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B5_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 5 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B6_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 6 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MEANS	B7_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 7 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B8_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 8 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B1_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 1 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B2_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 2 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B3_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 3 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B4_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 4 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B5_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 5 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B6_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 6 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_SIGMAS	B7_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 7 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE SIGMAS	B8_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 8 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B1_Magnitude_Min	Dynamic	float32 array (10 values)	Band 1 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B2_Magnitude_Min	Dynamic	float32   array (10 values)	Band 2 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B3_Magnitude_Min	Dynamic	float32 array (10 values)	Band 3 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B4_Magnitude_Min	Dynamic	float32 array (10 values)	Band 4 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B5_Magnitude_Min	Dynamic	float32 array (10 values)	Band 5 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B6_Magnitude_Min	Dynamic	float32 array (10 values)	Band 6 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MINIMUMS	B7_Magnitude_Min	Dynamic	float32 array (10 values)	Band 7 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS	B8_Magnitude_Min	Dynamic	float32 array (10 values)	Band 8 magnitudes minimums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MAXIMUMS	B1_Magnitude_Max	Dynamic	float32 array (10 values)	Band 1 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MAXIMUMS	B2_Magnitude_Max	Dynamic	float32 array (10 values)	Band 2 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MAXIMUMS	B3_Magnitude_Max	Dynamic	float32 array (10 values)	Band 3 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_   MAXIMUMS	B4_Magnitude_Max	Dynamic	float32 array (10 values)	Band 4 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MAXIMUMS	B5_Magnitude_Max	Dynamic	float32 array (10 values)	Band 5 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MAXIMUMS	B6_Magnitude_Max	Dynamic	float32 array (10 values)	Band 6 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value Type	Data   Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MAXIMUMS	B7_Magnitude_Max	Dynamic	float32 array (10 values)	Band 7 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP:   MAGNITUDE_MAXIMUMS	B8_Magnitude_Max	Dynamic	float32 array (10 values)	Band 8 magnitudes maximums measured in DNs   Valid format: NNN.NNNNNNN, where $\mathrm{N}=0$ to 9
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B1_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 1, low gain   Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B2_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 2, low gain   Valid format: NNN, where NNN $=255$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B3_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 3, low gain   Valid format: NNN, where NNN $=255$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B4_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 4, low gain   Valid format: NNN, where NNN $=255$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B5_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 5, low gain   Valid format: NNN, where NNN $=255$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B6_low	Dynamic	uint8 array ( 8 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 6, low gain   Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_-   SATURATION   GROUP: AD_CONVERTER_-   SATURATION_LOW	High_AD_Level_B7_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 7, low gain   Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	High_AD_Level_B8_low	Dynamic	uint8 array (32 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 8, low gain   Valid format: NNN, where NNN = 255 (default)


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B1_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 1, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B2_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 2, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B3_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 3, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION LOW	Low_AD_Level_B4_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 4, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B5_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 5, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B6_low	Dynamic	uint8 array (8 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 6, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B7_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 7, low gain   Valid format: NNN, where NNN $=0$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_LOW	Low_AD_Level_B8_low	Dynamic	uint8 array (32 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 8, low gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B1_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 1, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B2_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 2, high gain Valid format: NNN, where NNN = 255 (default)


Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B3_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 3, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B4_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 4, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B5_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 5, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B6_high	Dynamic	uint8 array (8 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 6, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B7_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 7, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	High_AD_Level_B8_high	Dynamic	uint8 array ( 32 values)	Digital count at which analog-to-digital converter saturates at high end; Band 8, gain Valid format: NNN, where NNN $=255$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B1_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 1, high gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B2_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 2, high gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B3_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 3, high gain   Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_- SATURATION GROUP: AD_CONVERTER_- SATURATION_HIGH	Low_AD_Level_B4_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 4, high gain   Valid format: NNN, where NNN = 0 (default)


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B5_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 5, high gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B6_high	Dynamic	uint8 array ( 8 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 6, high gain   Valid format: NNN, where NNN $=0$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B7_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 7, high gain   Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: AD_CONVERTER_   SATURATION   GROUP: AD_CONVERTER_   SATURATION_HIGH	Low_AD_Level_B8_high	Dynamic	uint8 array ( 32 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 8, gain Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_LOW	High_Analog_Level_ B1_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, low gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_LOW	High_Analog_Level_ B2_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, low gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_LOW	High_Analog_Level_ B3_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3 , low gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_LOW	$\begin{array}{\|l} \hline \text { High_Analog_Level_ } \\ \text { B4_low } \end{array}$	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, low gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_LOW	High_Analog_Level_ B5_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5 , low gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_LOW	High_Analog_Level_ B6_low	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, low gain Valid format: NNN, where NNN = 255 (default)


Parameter	Parameter	Value   Type	Data   Type	Description
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION	High_Analog_Level_   B7_low	Dynamic	uint8 array   (16 values)	Digital count corresponding to the signal level at   which the analog portion of the signal chain   saturates at the high end; Band 7, low gain   SROUP: ANALOG_SIGNAL_
SATURATION_LOW				


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B1_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B2_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B3_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B4_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B5_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5 , high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B6_high	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B7_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	High_Analog_Level_ B8_high	Dynamic	uint8 array (32 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, high gain Valid format: NNN, where NNN = 255 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B1_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, high gain Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B2_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, high gain Valid format: NNN, where NNN = 0 (default)


Parameter Group	Parameter Name	Value Type	Data   Type	Description
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B3_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, high gain Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B4_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, high gain Valid format: NNN, where NNN $=0$ (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B5_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 5, high gain Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B6_high	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, high gain Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B7_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, high gain Valid format: NNN, where NNN = 0 (default)
GROUP:   DETECTOR_SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION   GROUP: ANALOG_SIGNAL_   SATURATION_HIGH	Low_Analog_Level_ B8_high	Dynamic	uint8 array (32 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B1L_RTemp_Prelaunch	Static	float64	Band 1 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B1L_RTemp_Postlaunch	Static	float64	Band 1 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B1L_RTemp_Current	Dynamic	float64	Band 1 current low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B2L_RTemp_Prelaunch	Static	float64	Band 2 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B2L_RTemp_Postlaunch	Static	float64	Band 2 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES   GROUP: REFERENCE_LOW	B2L_RTemp_Current	Dynamic	float64	Band 2 current low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B3L_RTemp_Prelaunch	Static	float64	Band 3 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B3L_RTemp_Postlaunch	Static	float64	Band 3 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B3L_RTemp_Current	Dynamic	float64	Band 3 current low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B4L_RTemp_Prelaunch	Static	float64	Band 4 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where $\text { SNNN.NNN = } 25.00$
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B4L_RTemp_Postlaunch	Static	float64	Band 4 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B4L_RTemp_Current	Dynamic	float64	Band 4 current low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where $\text { SNNN.NNN = } 25.00$
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B5L_RTemp_Prelaunch	Static	float64	Band 5 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B5L_RTemp_Postlaunch	Static	float64	Band 5 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B5L_RTemp_Current	Dynamic	float64	Band 5 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B6L_RTemp_Prelaunch	Static	float64	Band 6 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B6L_RTemp_Postlaunch	Static	float64	Band 6 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B6L_RTemp_Current	Dynamic	float64	Band 6 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B7L_RTemp_Prelaunch	Static	float64	Band 7 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B7L_RTemp_Postlaunch	Static	float64	Band 7 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B7L_RTemp_Current	Dynamic	float64	Band 7 current low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = -182.1


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B8L_RTemp_Prelaunch	Static	float64	Band 8 prelaunch low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B8L_RTemp_Postlaunch	Static	float64	Band 8 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B8L_RTemp_Current	Dynamic	float64	Band 8 current low-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B1H_RTemp_Prelaunch	Static	float64	Band 1 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B1H_RTemp_Postlaunch	Static	float64	Band 1 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B1H_RTemp_Current	Dynamic	float64	Band 1 current high-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B2H_RTemp_Prelaunch	Static	float64	Band 2 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B2H_RTemp_Postlaunch	Static	float64	Band 2 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_   TEMPERATURES   GROUP: REFERENCE_HIGH	B2H_RTemp_Current	Dynamic	float64	Band 2 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B3H_RTemp_Prelaunch	Static	float64	Band 3 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B3H_RTemp_Postlaunch	Static	float64	Band 3 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B3H_RTemp_Current	Dynamic	float64	Band 3 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where $\text { SNNN.NNN = } 25.00$
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B4H_RTemp_Prelaunch	Static	float64	Band 4 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B4H_RTemp_Postlaunch	Static	float64	Band 4 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B4H_RTemp_Current	Dynamic	float64	Band 4 current high-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00


Parameter Group	Parameter Name	Value Type	Data   Type	Description
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B5H_RTemp_Prelaunch	Static	float64	Band 5 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B5H_RTemp_Postlaunch	Static	float64	Band 5 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B5H_RTemp_Current	Dynamic	float64	Band 5 current high-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B6H_RTemp_Prelaunch	Static	float64	Band 6 prelaunch high-gain calibration reference temperature in degrees $C$ Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B6H_RTemp_Postlaunch	Static	float64	Band 6 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B6H_RTemp_Current	Dynamic	float64	Band 6 current high-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B7H_RTemp_Prelaunch	Static	float64	Band 7 prelaunch high-gain calibration reference temperature in degrees $C$ Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B7H_RTemp_Postlaunch	Static	float64	Band 7 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B7H_RTemp_Current	Dynamic	float64	Band 7 current high-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES   GROUP: REFERENCE_HIGH	B8H_RTemp_Prelaunch	Static	float64	Band 8 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_   TEMPERATURES   GROUP: REFERENCE_HIGH	B8H_RTemp_Postlaunch	Static	float64	Band 8 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B8H_RTemp_Current	Dynamic	float64	Band 8 current high-gain calibration reference temperature in degrees C   Valid format: SNNN.NNN, where   SNNN.NNN = 25.00
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B1L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 1 prelaunch low-gain calibration temperature sensitivity coefficient   Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-"   and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B1L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 1 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S=$ "+" or "-" and $\mathrm{N}=0$ to 9
```GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW```	B1L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 1 current low-gain calibration temperature sensitivity coefficient   Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9


Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B2L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 2 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B2L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 2 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B2L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 2 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B3L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 3 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B3L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 3 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B3L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 3 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B4L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 4 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B4L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 4 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B4L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 4 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B5L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 5 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B5L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 5 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B5L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 5 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeff_Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeff_Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeff_Current	Dynamic	float64 array (8 values)	Band 6 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeffOff_ Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeffOff_ Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeffOff_ Current	Dynamic	float64 array (8 values)	Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B7L_SCoeff_ Prelaunch	Static	float64 array (16 values)	Band 7 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B7L_SCoeff Postlaunch	Static	float64 array (16 values)	Band 7 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B7L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 7 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B8L_SCoeff_ Prelaunch	Static	float64 array (32 values)	Band 8 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B8L SCoeff Postlaunch	Static	float64 array (32 values)	Band 8 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B8L_SCoeff_Current	Dynamic	float64 array (32 values)	Band 8 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B1H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 1 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B1H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 1 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S=$ " + " or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B1H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 1 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B2H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 2 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B2H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 2 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B2H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 2 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B3H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 3 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
$\begin{aligned} & \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B3H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 3 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B3H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 3 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
```GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH```	B4H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 4 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B4H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 4 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
$\begin{aligned} & \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B4H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 4 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B5H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 5 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B5H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 5 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
$\begin{aligned} & \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B5H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 5 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B6H_SCoeff_Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B6H_SCoeff_Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B6H_SCoeff_Current	Dynamic	float64 array (8 values)	Band 6 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B6H_SCoeffOff_ Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch offset calibration temperature sensitivity coefficient   Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
$\begin{aligned} & \hline \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B6H_SCoeffOff_ Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeffOff_ Current	Dynamic	float64 array (8 values)	Band 6 current offset calibration temperature sensitivity coefficient   Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	$\begin{aligned} & \text { B7H_SCoeff_ } \\ & \text { Prelaunch } \end{aligned}$	Static	float64 array (16 values)	Band 7 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_   TEMPERATURES   GROUP: SENSITIVITY_HIGH	B7H_SCoeff_ Postlaunch	Static	float64 array (16 values)	Band 7 postlaunch high-gain calibration temperature sensitivity coefficient   Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
GROUP: SENSITIVITY_   TEMPERATURES   GROUP: SENSITIVITY_HIGH	B7H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 7 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
$\begin{aligned} & \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	$\begin{aligned} & \text { B8H_SCoeff_ } \\ & \text { Prelaunch } \end{aligned}$	Static	float64 array (32 values)	Band 8 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $N=0$ to 9
GROUP: SENSITIVITY_   TEMPERATURES   GROUP: SENSITIVITY_HIGH	$\begin{aligned} & \text { B8H_SCoeff_ } \\ & \text { Postlaunch } \end{aligned}$	Static	float64 array (32 values)	Band 8 postlaunch high-gain calibration temperature sensitivity coefficient   Valid format: SNNN.NNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
$\begin{aligned} & \text { GROUP: SENSITIVITY_ } \\ & \text { TEMPERATURES } \\ & \text { GROUP: SENSITIVITY_HIGH } \end{aligned}$	B8H_SCoeff_Current	Dynamic	float64 array (32 values)	Band 8 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   TRENDING_COEFFS	Lamp1_Coeffs	Static	float32 array (2 values)	Time since launch coefficients for Lamp 1   Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   TRENDING_COEFFS	Lamp2_Coeffs	Static	float32 array (2 values)	Time since launch coefficients for Lamp 2   Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	$\begin{aligned} & \text { B1L_Rad_State2_ } \\ & \text { Prelaunch } \end{aligned}$	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State3   Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B1L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State3 Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B2L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State2_   Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B3L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B4L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State2_   Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State2 Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B5L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State3 Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B7L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State1_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State1_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State1_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State2_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State2_   Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State2_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State3_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State3   Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_LOW	B8L_Rad_State3_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State1 Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State2 Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in $W / m^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B1H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State2_   Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State3   Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B2H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in $W / m^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State2_   Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State2 Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State2 Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State3_   Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B3H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State2 Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State3 Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in $W / m^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B4H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State1 Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State2_   Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State2_   Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State2 Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State3   Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B5H_Rad_State3_   Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State3_   Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B7H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State1_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State1 Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State1_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 1 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	$\begin{aligned} & \text { B8H_Rad_State2_ } \\ & \text { Prelaunch } \end{aligned}$	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	$\begin{array}{\|l} \begin{array}{l} \text { B8H_Rad_State2_ } \\ \text { Postlaunch } \end{array} \end{array}$	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State2_   Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 2 lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State3_   Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State3_   Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in $\mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9
GROUP: LAMP_RADIANCE GROUP:   LAMP_RADIANCE_HIGH	B8H_Rad_State3_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster- $\mu \mathrm{m}$; State 3 lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP: LAMP_REFERENCE	Lmp_Rtemp_ PreLaunch	Static	float32 array (14 values)	Prelaunch internal calibrator lamp radiance reference temperatures in degrees C   Valid format: SNNN.NNN, where $S="+$ " or "-" and $\mathrm{N}=0$ to 9   T1 = Cal shutter flag temp   T2 = Backup shutter flag temp   T3 = Silicon focal plane array temp   T4 = Cold focal plane monitor temp   T5 = Cal lamp housing temp   T6 = Scan line corrector temp   T7 = Cal shutter hub temp   T8 = Ambient pre-amp temp (high)   T9 = Ambient pre-amp temp (low)   T10 = Cold pre-amp temp (B7)   T11 = Post-amp temp (B4)   T12 = Primary mirror amp temp   T13 = Secondary mirror temp   T14 = Pan band post-amp temp
GROUP: LAMP_REFERENCE	Lmp_Rtemp_ Postlaunch	Static	float32 array (14 values)	Postlaunch internal calibrator lamp radiance reference temperatures in degrees C   Valid format: SNNN.NNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9   Descriptions of T1 through T14 are the same as above
GROUP: LAMP_REFERENCE	Lmp_Rtemp_Current	Dynamic	float32 array (14 values)	Current internal calibrator lamp radiance reference temperatures in degrees $C$   Valid format: SNNN.NNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9   Descriptions of T1 through T14 are the same as above
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 4 Valid format: SNNN.NNNNNNN, where $S="+$ " or "-" and $N=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 7 Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 2, Iow gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 2, Iow gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector7	Dynamic	float32   array (18 values)	IC coefficients for Band 2, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 2, Iow gain, detector 8 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 3, Iow gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector6	Dynamic	float32   array (18 values)	IC coefficients for Band 3, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients Detector5	Dynamic	float32   array (18 values)	IC coefficients for Band 4, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 4, Iow gain, detector 6 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector4	Dynamic	float32   array (18 values)	IC coefficients for Band 5, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 5, Iow gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector3	Dynamic	float32   array (18 values)	IC coefficients for Band 7, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector2	Dynamic	float32   array (18 values)	IC coefficients for Band 8, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 8, Iow gain, detector 3 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 5 Valid format: SNNN.NNNNNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients _Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 8, Iow gain, detector 6 Valid format: SNNN.NNNNNNN, where $S="+"$ or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector17	Dynamic	float32   array (18 values)	IC coefficients for Band 8, low gain, detector 17 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector18	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients Detector19	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 19 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector20	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 20 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $N=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients Detector21	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 21 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $N=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector22	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 22 Valid format: SNNN.NNNNNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector23	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 23 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector24	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 24 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector25	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 25 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $N=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector26	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 26 Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector27	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 27 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector28	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 28 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector29	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 29 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector30	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 30 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector31	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector32	Dynamic	float32   array (18 values)	IC coefficients for Band 8, low gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients Detector15	Dynamic	float32   array (18 values)	IC coefficients for Band 1, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B2H_Coefficients   Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients   Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 12 Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients Detector13	Dynamic	float32   array (18 values)	IC coefficients for Band 3, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 11 Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients   Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients Detector11	Dynamic	float32   array (18 values)	IC coefficients for Band 5, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B5H_Coefficients Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 3 Valid format: SNNN.NNNNNNN, where $S="+"$ or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 6 Valid format: SNNN.NNNNNNN, where $=+$ or and $N=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data Type	Description
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients   Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B7H_Coefficients   Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients _Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
```GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH```	B8H_Coefficients_ Detector9	Dynamic	float32   array (18 values)	IC coefficients for Band 8, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
$\begin{array}{\|l} \hline \text { GROUP: } \\ \text { REFLECTIVE_IC_COEFFS } \\ \text { GROUP: } \\ \text { REFLECT_IC_COEFFS_HIGH } \\ \hline \end{array}$	B8H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 12 Valid format: SNNN.NNNNNNN, where $S="+"$ or "-" and $\mathrm{N}=0$ to 9
```GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH```	B8H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector17	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 17 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector18	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector19	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 19 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector20	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 20 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector21	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 21 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP:   REFLECTIVE_IC_COEFFS   GROUP:   REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector22	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 22 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
$\begin{aligned} & \text { GROUP: } \\ & \text { REFLECTIVE_IC_COEFFS } \\ & \text { GROUP: } \\ & \text { REFLECT_IC_COEFFS_HIGH } \\ & \hline \end{aligned}$	B8H_Coefficients_ Detector23	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 23 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9


Parameter Group	Parameter Name	Value   Type	Data   Type	Description
```GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH```	B8H_Coefficients Detector24	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 24 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector25	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 25 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $N=0$ to 9
$\begin{array}{\|l} \hline \text { GROUP: } \\ \text { REFLECTIVE_IC_COEFFS } \\ \text { GROUP: } \\ \text { REFLECT_IC_COEFFS_HIGH } \\ \hline \end{array}$	B8H_Coefficients_ Detector26	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 26 Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector27	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 27 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector28	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 28 Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients Detector29	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 29 Valid format: SNNN.NNNNNNN, where $S="+"$ or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector30	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 30 Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector31	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients Detector32	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector1	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 1 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9 a1 = Scan line corrector view factor a2 = Central baffles (heater) a3 $=$ Secondary mirror and mask view factor a4 = Primary mirror and mask view factor a5 = Scan mirror view factor a6 = Black body (isolated) view factor a7 = Black body (control) view factor a8 = Cold focal plane control view factor a9 = Cold focal plane monitor view factor a10 = Baffle (tube) view factor a11 = Baffle (support) view factor a12 = Telescope housing view factor frb = Integrated instrument view factor Vbb = Blocked aperture black body view factor Vsh = Blocked aperture shutter view factor
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector2	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 2 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector3	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 3 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients Detector4	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 4 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector5	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 5 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ " + " or "-" and $N=0$ to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector6	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 6 Valid format: SNNN.NNNNNNNNN, where $S=$ " + " or "-" and $N=0$ to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector7	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 7 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ "+" or "-" and N $=0$ to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector8	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 8 Valid format: SNNN.NNNNNNNNN, where $\mathrm{S}=$ "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_TEMP_MODEL_COEFFS	B6_Temp_Model_Parm	Dynamic	float32 array (6 values)	Coefficients used to calculate scan mirror temperature where (a1) = Scan mirror/secondary mirror adjustment factor, (a2) = Average secondary mirror temperature, and (a3) - (a6) = reserved Valid format: SNNN.NNNNNNN, where S = "+" or "-" and SNNN.NNNNNNN $=+1.0178$ (a1) SNNN.NNNNNNN $=+0.0(\mathrm{a} 2)$ SNNN.NNNNNNN $=+0.0(\mathrm{a} 3)$ SNNN.NNNNNNN $=+0.0(\mathrm{a} 4)$ SNNN.NNNNNNN = +0.0 (a5) SNNN.NNNNNNN = +0.0 (a6)
GROUP: THERMISTOR_COEFFS	Black_Body_Isolated Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Black_Body_Control_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Cold_FP_Control_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where $\mathrm{S}=\mathrm{"}+$ " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Cold_FP_Monitor_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Cal_Shutter_Flag_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Backup_Shutter_ Flag_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: THERMISTOR_COEFFS	Baffle_Heater_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	$\begin{aligned} & \text { Silicon_FP_Array_ } \\ & \text { Temp } \end{aligned}$	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Primary_Mirror_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Secondary_Mirror_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	```Scan_Line_Corrector_ Temp```	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Baffle3_Tube_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Baffle2_Support_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Cal_Lamp_Housing_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Cal_Shutter_Hub_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where $S=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Ambient_Preamp_ HighCh_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Ambient_Preamp_ LowCh_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Postamp_Temp_B4	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Cold_Preamp_B7_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	```Pan_Band_Postamp_ Temp```	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Telescope_Housing_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Primary_Mirror_ Mask_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Secondary_Mirror_ Mask_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Telescope Baseplate_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Mem_Heat_Sink_ Power_Supply1_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: THERMISTOR_COEFFS	Mem_Heat_Sink_ Power_Supply2_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Mux1_Power_Supply_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNNN, where $\mathrm{S}=$ " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: THERMISTOR_COEFFS	Mux1_Electronics_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: LAMP_CURRENTS	Tec_Lamp_i1	Static	float32 array (2 values)	Calibration coefficients for raw data (telemetry value contains current in mA of primary onboard calibration lamp, telemetry name = TECLAMP1I) Valid format: SNNN.NNNNNNN, where S = " + " or "-" and $\mathrm{N}=0$ to 9
GROUP: LAMP_CURRENTS	Tec_Lamp_i2	Static	float32 array (2 values)	Calibration coefficients for raw data (telemetry value contains current in mA of primary onboard calibration lamp, telemetry name = TECLAMP2I) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and $\mathrm{N}=0$ to 9
GROUP: FILL_PATTERNS	Band_Fill_Pattern	Static	uint8 array (2 values)	Fill pattern used to fill erroneous or missing image data minor frames Valid format: NNN, where NNN $=(0,255)$ (alternating 0, 255's)

Table 2-1. Landsat 7 CPF Parameters

Section 3 CPF ODL

3.1 Introduction

The ODL syntax employs the following conventions:

- Parameter definition is in the form of parameter = value.
- Value can be either a scalar or an array. Array values are enclosed in parentheses and are separated by commas.
- Parameter arrays can and do exist on multiple lines.
- A carriage return <CR> and line feed <LF> end each line in the file.
- Blank spaces and lines are ignored.
- Each line of comments must begin with /* and end with */, including comments embedded on the same line as a parameter definition.
- Quotation marks are required for values that are text strings, including single characters. The exceptions to this rule are the GROUP and END_GROUP identifiers or values, which do not use quotation marks. The parameters Effective_Date_Begin and Effective_Date_End also do not have quotation marks. ODL recognizes dates if they follow prescribed formats.
- In general for ODL, case is not significant. However, for the CPF, the case is significant for keyword and group names. All group names are in all capital letters and keywords are in mixed case.
- Indentation is not significant but is used for readability.
- The reserved word END concludes the file.
- Most parameter values have been derived during prelaunch instrument and spacecraft testing and analysis. Formats for CPF numerical parameters are accurate; however, negative signs are not explicitly stated. A data dictionary that declares each parameter's data type and value range has been defined.

3.2 Sample ETM+ CPF ODL File

The following is a prototype of CPF file that contains valid parameter values for the first calendar quarter of 2007. To present the format structure, the hypothetical bumper mode specific parameters are also included in this example.

```
GROUP = FILE_ATTRIBUTES
    Spacecraft_Name = "Landsat_7"
    Sensor Name = "Enhanced Thematic Mapper Plus"
```



```
    Effective_Date_End = 2007-03-31
    CPF_File_N
END_GROUP = FILE ATTRIBUTES
GROŪP = EARTH CON}STANTS
    Ellipsoid_Name = "WGS84"
    Semi_Major_Axis = 6378137.000
    Semi_Minor_Axis = 6356752.3142
    Elli\overline{pticit\overline{y}}=0.00335281066474
    Eccentricity = 0.00669437999013
    Earth Spin Rate = 72.921158553E-06
    Gravi\overline{ty_Constant = 3.986005E14}
    J2_Earth_Model_Term = 1082.63E-06
END_\overline{GROUP = EART\overline{H}CONSTANTS}
GROU\overline{P = ORBIT PARAMMETERS}
    WRS_Cycle_Däys = 16
    WRS_Cycle_Orbits = 233
    Scenes_Per_Orbit = 248
```

```
    Orbital_Period = 5933.0472
    Angular Momentum = 53.136250E9
    Orbit_Rādius = 7083.4457
    Orbit_Semimajor_Axis = 7083.4457
    Orbit Semiminor Axis = 7083.4408
    Orbit Eccentricity = 0.00117604
    Incliñation_Angle = 98.2096
    Argument_Of_Perigee = 90.0
    Descending Node Row = 60
    Long Path1}\mp@subsup{\overline{1}}{}{-
    Descending_Node_Time_Min = "09:45"
    Descending_Node_Time_Max = "10:15"
    Nodal Regression Rate = 0.985647366
END_GRO\overline{UP}=ORBIT_\overline{PARAMETERS}
GRO\overline{UP}= SCANNER_P\overline{ARAMETERS}
    Lines_Per_Scan_30=16
    Lines Per-Scan - 60= = 
    Lines_Per_Scan_15=32
    Scans_Per_Scen\overline{e}=375
    Swath Angle = .26868
    Scan Rate = 2.21095
    Dwel\overline{l_Time_30=9.6110206}
    Dwell_Time_60=19.222041
    Dwell-Time-15=4.8055103
    IC_Liñe_Leñgth_30=1150
    IC_Line_Length_60=575
    IC Line Length 15 = 2300
```



```
    Scan_Line_Length_60=3160
    Scan_Line_Length_15=12640
    Filter_Frequency_30=52.02
    Filter_Frequency_60=26.01
    Filter_Frequency_15=115.00
    IFOV B\overline{1}234=42.5
    IFOV_B57_along_scan = 39.4
    IFOV_B57_across_scan = 42.5
    IFOV B6 = 85.0
    IFOV_B8_along_scan = 18.5
    IFOV_B8_across__scan = 21.25
    Scan_Period = 143.58
    Scan Frequency = 6.96476
    Activ̄e_Scan_Time = 60743.346
    Turn_Around_Time = 11.055
END_GRO}UP=S\overline{CANNER PARAMETERS
GRO\overline{UP}= SPACECRAFT \overline{PARAMETERS}
    ADS_Interval = 2.0
    ADS_Roll_Offset = 0.375
    ADS Pitc\overline{h}}\mathrm{ Offset =0.875
    ADS_Yaw_O\overline{ffset = 1.375}
    Dat\overline{a}Ra\overline{te}=74.914
END_GRŌUP = SPACECRAFT PARAMETERS
GROUP = MIRROR PARAMETERS
    Error_Conversion_Factor = 0.18845139
    GROUP = ANGLES_SME1_SAM
        Forward Alon\overline{g}}\textrm{SME}\overline{1}\mathrm{ SAM = (0.000000E+00,-2.188024E-03,3.507066E-01,-
1.638834E+0\overline{1},3.07\overline{0}082\textrm{E}+02,-2.016646E+03)
            Forward_CrOss_SME1_SAM = (-8.926001E-07,2.945449E-04,-2.799967E-02,1.024417E+00,-
1.579172E+0\overline{1},8.64\overline{4}595E\overline{+}01)
            Forward Angle1 SME1 SAM = 67166.9
            Forward_Angle2_SME1_SAM = 67145.9
            Reverse_Along_\overline{SME1_SAM = (0.000000E+00,2.717297E-03,-3.610215E-01,1.637412E+01,-}
3.045525E+02,1.987221E+03)
            Reverse Cross SME1 SAM = (-7.702087E-07,1.318691E-04,-4.507913E-03,-8.416380E-
02,5.421192\overline{E}+00,-\overline{5}.563\overline{4}24\textrm{E}+01)
            Reverse_Angle1_SME1_SAM = 67142.8
            Reverse Angle2 SME1 SAM = 67169.9
    END_GROUP }= ANGLES_SME1 SAM
    GRO\overline{UP}= ANGLES_SME\overline{1}_BUM\overline{P}
            Forward_Along_SME\overline{1}Bump = (1.177376E-19, -2.713081E-03, 3.605800E-01, -1.618500E+01,
3.001900E+0\overline{2}, -1.9650000E+03)
            Forward_Cross_SME1_Bump = (-3.159000E-07, 4.831800E-06, -1.336000E-03, 6.273300E-02, -
1.174500E+0\overline{0},7.9\overline{3}2400\overline{E}+00)
            Forward Angle1 SME1 Bump =
(68302.9,68\overline{3}02.9,6\overline{8}302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,
68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,6
8302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68
302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,683
02.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,6830
2.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302
.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.
9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9)
```

Forward_Angle2_SME1_Bump =
(69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5 $69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,6$ $9050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69$ $050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,690$ $50.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,6905$ $0.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050$ $.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050$. 5,69050.5,69050.5,69050.5,69050.5,69050.5)

Forward_FHSERR_SME1_Bump =
$(878,878,87 \overline{8}, 878,8 \overline{7} 8,87 \overline{8}, 878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878$, $878,8$ $78,87$ $8,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878)$

Forward_SHSERR_SME1_Bump $=(-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883$, 883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883, $883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-$ 883,-883)

Reverse_Along_SME1_Bump $=(-4.065758 \mathrm{E}-2,2.074688 \mathrm{E}-03,-3.345100 \mathrm{E}-01,1.567300 \mathrm{E}+01$, -
$2.953100 \mathrm{E}+0 \overline{2}, 1.9 \overline{5} 4000 \overline{\mathrm{E}}+03$)
Reverse_Cross_SME1_Bump $=(-5.611700 \mathrm{E}-07,-1.018300 \mathrm{E}-06,-1.553500 \mathrm{E}-04,2.048200 \mathrm{E}-03$,
$1.075500 \mathrm{E}-0 \overline{1},-1 . \overline{4} 5070 \overline{0} \mathrm{E}+00$)
Reverse_Angle1_SME1_Bump =
$(68234.3,68 \overline{2} 34.3,6 \overline{8} 234 . \overline{3}, 68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3$, $68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,6$ $8234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68$ $234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,682$ $34.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,6823$ $4.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234$ $.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234$. 3,68234.3,68234.3,68234.3,68234.3,68234.3)

Reverse Angle2 SME1 Bump =
$(68889.3,68 \overline{8} 89.3,6 \overline{8} 889 . \overline{3}, 68889.3,68889.3,68889.3,68889.3,68889 \cdot 3,68889.3,68889.3,68889.3,68889.3$, $68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6$ 8889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68 $889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,688$ $89.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6888$ $9.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889$ $.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889$. 3,68889.3,68889.3,68889.3,68889.3,68889.3)

Reverse_FHSERR_SME1_Bump =
$(785,785,78 \overline{5}, 785,7 \overline{8} 5,78 \overline{5}, 785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785$, $785,7$ $85,78$ $5,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785)$

Reverse_SHSERR_SME1_Bump $=(-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790$,
$790,-790,-790,-790,-790--790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-$ 790,-790)

END_GROUP = ANGLES_SME1_BUMP
GROŪP = ANGLES SME $\overline{2}$ SAM
Forward Along $\operatorname{SME} \overline{2} S A M=(0.000000 \mathrm{E}+00,-2.100656 \mathrm{E}-03,3.401124 \mathrm{E}-01,-1.558871 \mathrm{E}+01$,
$2.878695 \mathrm{E}+0 \overline{2},-1 . \overline{8} 7744 \overline{1} \mathrm{E}+03$) Forward_Cross_SME2_SAM $=(-2.374600 \mathrm{E}-09,-8.188300 \mathrm{E}-06,1.072700 \mathrm{E}-04,-3.646200 \mathrm{E}-03$,
$1.456200 \mathrm{E}-01,-1.486700 \mathrm{E}+00$)
Forward_Angle1_SME2_SAM $=67162.7$
Forward_Angle2_SME2_SAM $=67162.8$
Reverse_Along_SME2_S̄AM $=(0.000000 \mathrm{E}+00,2.746938 \mathrm{E}-03,-3.415100 \mathrm{E}-01,1.534667 \mathrm{E}+01$, -
$2.872800 \mathrm{E}+0 \overline{2}, 1.892100 \overline{\mathrm{E}}+03$)
Reverse_Cross_SME2_SAM $=(-6.351600 \mathrm{E}-07,1.258700 \mathrm{E}-05,-7.787700 \mathrm{E}-04,1.767400 \mathrm{E}-02$, -
$1.108500 \mathrm{E}-0 \overline{1},-1 . \overline{5} 9710 \overline{0} \mathrm{E}-01)$ Reverse_Angle1_SME2_SAM = 67162.8 Reverse ${ }^{-}$Angle2 ${ }^{-}$SME2 ${ }^{-}$SAM $=67162.7$
END_GROUP ${ }^{-}=$ANGLES_SME2_SAM
GROŪP = ANGLES SME $\overline{2}$ BUMP
Forward Along SME $\overline{2}$ Bump $=(0.000000 \mathrm{E}+00,-2.463915 \mathrm{E}-03,3.546100 \mathrm{E}-01,-1.609400 \mathrm{E}+01$,
$2.987000 \mathrm{E}+0 \overline{2},-1 . \overline{9} 5680 \overline{0} \mathrm{E}+03$)
Forward_Cross_SME2_Bump $=(-3.344900 \mathrm{E}-07,7.778000 \mathrm{E}-06,-1.768700 \mathrm{E}-03,8.061500 \mathrm{E}-02$, -
$1.463400 \mathrm{E}+0 \overline{0}, ~ 9.5 \overline{1} 2300 \overline{\mathrm{E}}+00$)
Forward_Angle1_SME2_Bump =
(67162.7, 67162.7, 67162. $\overline{7}, 67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7$, $67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162 \cdot 7,67162.7,67162.7,67162.7,6$ $7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67$ $162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,671$ $62.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,6716$ $2.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162 \cdot 7,67162.7,67162 \cdot 7,67162 \cdot 7,67162$
$.7,67162.7,67162.7,67162.7,67162.7,67162 \cdot 7,67162 \cdot 7,67162 \cdot 7,67162 \cdot 7,67162.7,67162.7,67162 \cdot 7,67162$. 7,67162.7,67162.7,67162.7,67162.7,67162.7)

Forward_Angle2_SME2_Bump =
$(67162.8,67 \overline{1} 62.8,6 \overline{7} 162 \cdot \overline{8}, 67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162 \cdot 8$, $67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6$ $7162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67$ $162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,671$ $62.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6716$ $2.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162$ $.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162$. 8,67162.8,67162.8,67162.8,67162.8,67162.8) Forward_FHSERR_SME2_Bump =
$(878,878,87 \overline{8}, 878,8 \overline{7} 8,87 \overline{8}, 878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878$, $878,8$ $78,87$ $8,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878,878)$

Forward SHSERR SME2 Bump $=(-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-$ $883,-883,-8 \overline{8} 3,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-883,-$ 883,-883)

Reverse_Along_SME2_Bump $=(0.000000 \mathrm{E}+00,2.234071 \mathrm{E}-03,-3.347900 \mathrm{E}-01,1.554200 \mathrm{E}+01$,
$2.927500 \mathrm{E}+0 \overline{2}, 1.9 \overline{3} 6900 \overline{\mathrm{E}}+03$)
Reverse_Cross_SME2_Bump $=(-6.024100 \mathrm{E}-07,6.736100 \mathrm{E}-06,-1.153000 \mathrm{E}-03,5.158900 \mathrm{E}-02$,
$9.145700 \mathrm{E}-0 \overline{1}, \quad 5.9 \overline{7} 7300 \overline{\mathrm{E}}+00$) Reverse_Angle1_SME2_Bump =
$(67162.8,67 \overline{1} 62.8,6 \overline{7} 162 . \overline{8}, 67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8$, $67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6$ $7162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67$ $162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,671$ $62.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,6716$ $2.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162$ $.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162$. 8, 67162.8,67162.8,67162.8,67162.8,67162.8) Reverse_Angle2_SME2_Bump =
(67162.7, 67162.7, $6 \overline{7} 162 . \overline{7}, 67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162 \cdot 7,67162.7$, $67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,6$ $7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67$ $162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,671$ $62.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,6716$ $2.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162$ $.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162$. $7,67162.7,67162.7,67162.7,67162.7,67162.7)$ Reverse_FHSERR_SME2_Bump =
$(785,785,78 \overline{5}, 785,7 \overline{8} 5,78 \overline{5}, 785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785$, $785,7$ $85,78$ $5,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785,785)$ Reverse_SHSERR_SME2_Bump $=(-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-$ 790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790, 790,-790,790, - $790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-790,-$ 790,-790)

END GROUP = ANGLES SME2 BUMP
END_GROUP = MIRROR_PARAMETERS
GROUP = BUMPER_MODE_PARAMETERS
SME1_BumperA_Dwel̄_Time =
(9770. $\overline{8}, 9770.8,9770 . \overline{8}, 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770$. 8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770 $.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,977$ $0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,97$ $70.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9$ $770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8$, $9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8)$

SME1_BumperA_Pickoff_Time =
(511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0, $511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511 \cdot 0,511 \cdot 0,511.0,511.0,511.0,511.0,5$ $11.0,511.0,511 \cdot 0,511 \cdot 0,511.0,511.0,511.0,511 \cdot 0,511 \cdot 0,511 \cdot 0,511 \cdot 0,511 \cdot 0,511 \cdot 0,511.0,511.0,511.0,51$ $1.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511$ $.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511$. $0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0)$

SME1_BumperA_Offset_Time $=10110.0$
SME1_BumperA_Angle $\overline{=}-69000.0$
SME1-BumperB_Dwell Time $=$
(9801. $\overline{7}, 9801.7,9801 . \overline{7}, 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801$. $7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801$ $.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801 \cdot 7,9801.7,9801.7,980$ $1.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,98$
$01.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9$ 801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7, 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7)

SME1_BumperB_Pickoff_Time =
(439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6, $439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,4$ $39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,43$ $9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439$ $.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439$. 6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6)

SME1_BumperB_Offset_Time $=10110.0$
SME1-BumperB Angle = 69000.0
SME2 BumperA Dwell Time =
(9770. $\overline{8}, 9770.8,9770 . \overline{8}, 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770$. $8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770$ $.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,977$ $0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,97$ $70.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9$ $770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8$, 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8)

SME2_BumperA_Pickoff_Time =
(511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0, $511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511 \cdot 0,511.0,511.0,511.0,511.0,5$ $11.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,51$ 1.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511 $.0,511.0,511 \cdot 0,511 \cdot 0,511.0,511.0,511 \cdot 0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511$.
$0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0)$
SME2_BumperA_Offset_Time $=10110.0$
SME2_BumperA_Angle $\overline{=}-69000.0$
SME2-BumperB_Dwell Time $=$
(9801. $\overline{7}, 9801.7 \overline{1}, 9801 . \overline{7}, 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801$.
$7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801$ $.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,980$ $1.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,98$ $01.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9$ 801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7, 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7)

SME2_BumperB_Pickoff_Time =
(439.6, 439.6, 439.6, 439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6, $439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,4$ $39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,43$ $9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439$ $.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439$.
6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6)
SME2 BumperB Offset Time $=10110.0$
SME2_BumperB_Angle $\overline{=} 69000.0$
END_GROUP = BUMPER_MODE_PARAMETERS
GROUP = SCAN_LINE_CORRECTOR
Primary_Anḡular_Velocity $=0.0$
Secondary_Angular_Velocity $=0.0$
Primary_Corrector_Motion $=(0.00000,0.00000,0.00000,0.00000,0.00000,0.00000)$
Secondary_Correct̄̄r_Motion $=(0.00000,0.00000,0.00000,0.00000,0.00000,0.00000)$
Unpowered_Pointing_Bias = 0.0000427
END GROUP = SCAN_LINE CORRECTOR
GROUP $=$ FOCAL_PLĀNE PARAMETERS
GROUP $=$ BAND_OFFSETS
Along_Scan_Band_Offsets $=(+3627.944,+2564.567,+1501.002,+438.166,-2577.619,-4072.538,-$
1473.263, +4692.000)

Across_Scan_Band_Offsets $=(+1.280,+0.537,-0.270,-1.447,+15.828,+31.762,+15.683,+0.000)$
Forward_Focal_Plāne_Offsets $=(+25.0,+50.0,+75.0,+100.0,+171.0,+206.0,+145.0,+0.0)$
Reverse_Focal_Plane_Offsets $=(-25.0,-50.0,-75.0,-100.0,-171.0,-206.0,-145.0,+0.5)$
END GROUP $=$ BAND OFFSETS
GROUP = DETECTOR_OFFSETS
Forward_Along_̄_Can_DO_B1 $=(1.250,1.298,1.324,1.250,1.253,1.241,1.254,1.271,1.207$,
$1.260,1.247,1.251,1.234,1.227,1.264,1.243)$
Reverse_Along_Scan_DO_B1 $=(1.241,1.278,1.320,1.230,1.244,1.224,1.256,1.260,1.223$,
$1.255,1.26 \overline{2}, 1.2 \overline{5} 2,1.25 \overline{1}, 1.234,1.287,1.258)$
Forward_Along_Scan_DO_B2 $=(1.260,1.278,1.263,1.276,1.269,1.246,1.233,1.232,1.281$,
$1.229,1.23 \overline{7}, 1.2 \overline{4} 0,1.22 \overline{8}, 1.246,1.221,1.267)$
Reverse_Along_Scan_DO_B2 $=(1.249,1.262,1.257,1.258,1.260,1.230,1.234,1.221,1.294$,
$1.224,1.25 \overline{3}, 1.2 \overline{4} 2,1 \overline{2} 24 \overline{4}, 1.252,1.244,1.282)$
Forward_Along_Scan_DO_B3 $=(1.252,1.256,1.267,1.225,1.240,1.261,1.236,1.297,1.203$,
$1.222,1.21 \overline{4}, 1.1 \overline{9} 3,1 \overline{2} 21 \overline{8}, 1.210,1.269,1.221)$
Reverse_Along_Scan_DO_B3 $=(1.242,1.237,1.260,1.207,1.231,1.244,1.235,1.287,1.213$,
$1.218,1.22 \overline{9}, 1.1 \overline{9} 5,1.23 \overline{8}, 1.214,1.294,1.237)$
Forward_Along_Scan_DO_B4 $=(1.263,1.259,1.286,1.268,1.265,1.269,1.257,1.300,1.281$,
$1.265,1.23 \overline{4}, 1.2 \overline{5} 3,1.23 \overline{2}, 1.226,1.256,1.301)$ Reverse_Along_Scan_DO_B4 $=(1.253,1.238,1.278,1.246,1.256,1.251,1.257,1.291,1.292$,
$1.263,1.249,1.259,1.250,1.233,1.281,1.317)$

Forward_Along_Scan_DO_B5 $=(1.163,1.165,1.144,1.137,1.150,1.120,1.109,1.109,1.100$, $1.095,1.06 \overline{7}, 1.0 \overline{6} 9,1.05 \overline{8}, 1.053,1.058,1.027)$

Reverse_Along_Scan_DO_B5 $=(1.047,1.037,1.045,1.068,1.078,1.077,1.075,1.103,1.108$, $1.125,1.10 \overline{7}, 1.1 \overline{3} 3,1.13 \overline{3}, 1.151,1.168,1.166)$

Forward_Along_Scan_DO_B6 $=(1.904,2.058,1.890,2.055,1.899,1.946,1.820,1.924)$
Reverse Along Scan DO B6 = (1.952, 1.899, 1.951, 1.924, 1.964, 1.907, 1.974, 1.924)
Forward_Along_Scan_DO_B7 $=(1.202,1.190,1.217,1.165,1.185,1.116,1.168,1.117,1.121$, $1.092,1.11 \overline{0}, 1.0 \overline{9} 1,1 \overline{0} 07 \overline{9}, 1.058,1.076,1.042)$

Reverse_Along_Scan_DO_B7 = (1.034, 1.064, 1.098, 1.074, 1.104, 1.064, 1.135, 1.113, 1.133, $1.133,1.16 \overline{3}, 1.1 \overline{6} 8,1.17 \overline{0}, 1.171,1.206,1.199)$

Forward_Along_Scan_DO_B8 $=(0.511,0.508,0.505,0.514,0.513,0.523,0.521,0.511,0.509$, $0.499,0.51 \overline{7}, 0.513,0.50 \overline{8}, 0.508,0.516,0.512,0.507,0.523,0.522,0.541,0.499,0.527,0.510$, $0.528,0.518,0.519,0.515,0.518,0.514,0.521,0.499,0.523)$

Reverse_Along_Scan_DO_B8 $=(0.511,0.508,0.505,0.514,0.513,0.523,0.521,0.511,0.509$,
$0.499,0.51 \overline{7}, 0.5 \overline{1} 3,0.50 \overline{7}, 0.508,0.516,0.512,0.514,0.489,0.525,0.504,0.515,0.497,0.522$, $0.505,0.535,0.497,0.539,0.505,0.544,0.516,0.537,0.523)$

Forward_Across_Scan_DO_B1 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \bar{\prime}, 0.000,0.000,0.000)$ Reverse_Across_Scan_DO_B1 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.000,0.000,0.000,0.000,0.000,0.000)$

Forward_Across_Scan_DO_B2 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \bar{\prime}, 0.000,0.000,0.000)$ Reverse_Across_Scan_DO_B2 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \bar{\prime}, 0.000,0.000,0.000)$ Forward_Across_Scan_DO_B3 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00,0.000,0.000,0.000)$ Reverse_Across_Scan_DO_B3 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \bar{\prime}, 0.000,0.000,0.000)$ Forward_Ácross_Scan_DO_B4 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00,0.000,0.000,0.000)$

Reverse Across Scan DO_B4 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \bar{\prime}, 0.000,0.000,0.000)$ Forward_Across_Scan_DO_B5 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00,0.000,0.000,0.000)$

Reverse_Across_Scan_DO_B5 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \bar{\prime}, 0.000,0.000,0.000)$ Forward_Across_Scan_DO_B6 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000)$ Reverse_Across_Scan_DO_B6 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000)$ Forward_Across_Scan_DO_B7 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00 \overline{-} 0.000,0.000,0.000)$ Reverse_Across_Scan_DO_B7 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00,0.000,0.000,0.000)$ Forward_Across_Scan_DO_B8 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000)$ Reverse_Across_Scan_DO_B8 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.00 \overline{0}, 0.00 \overline{0}, 0 . \overline{0} 00-0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000)$

END GROUP = DETECTOR OFFSETS
GROUP = ODD_EVEN_OFFSETS Forward_Even Dētector Shift $=(31.0,56.0,81.0,106.0,177.0,101.0,151.0,14.0)$ Forward_Odd_Detector_Shift $=(33.0,58.0,83.0,108.0,179.0,104.0,153.0,18.0)$ Reverse_Even_Detector_Shift $=(27.0,52.0,77.0,102.0,173.0,105.0,147.0,4.0)$ Reverse_Odd_Detector_S̄hift $=(30.0,55.0,80.0,105.0,176.0,107.0,150.0,8.0)$
END GROUP = ODD_EVEN OFFSETS
END G $\bar{R} O U P=$ FOCAL ${ }^{-}$PLAN \bar{E} PARAMETERS
GROŪP = ATTITUDE_̄ㄹARAMETERS
Gyro_To_Attitū̄e_Matrix $=(9.99999900 \mathrm{E}-01,-3.68543600 \mathrm{E}-04,2.43062700 \mathrm{E}-05,2.43207600 \mathrm{E}-05$, -
$2.22997000 \mathrm{E}-04,-1.00000000 \mathrm{E}+00,3.68785400 \mathrm{E}-04,9.99999900 \mathrm{E}-01,-2.22941100 \mathrm{E}-04$)
ADSA_To_ETM_Matrix $=(9.99999800 \mathrm{E}-01,1.65108100 \mathrm{E}-04,6.51893000 \mathrm{E}-04,6.78739000 \mathrm{E}-05$,
$9.3965 \overline{9} 80 \overline{0} \mathrm{E}-0 \overline{1},-3.42110300 \mathrm{E}-01,-6.69042800 \mathrm{E}-04,3.42110300 \mathrm{E}-01,9.39659600 \mathrm{E}-01$)
Attitude To_ETM Matrix $=(9.99999845 \mathrm{E}-01,1.18363752 \mathrm{E}-04,5.43986578 \mathrm{E}-04,-1.18213574 \mathrm{E}-04$,
$9.99999955 \overline{\mathrm{E}}-0 \overline{1},-\overline{2} .76092898 \mathrm{E}-04,-5.44019232 \mathrm{E}-04,2.76028548 \mathrm{E}-04,9.99999814 \mathrm{E}-01$)
Spacecraft_Roll_Bias $=0.00000000 \mathrm{E}+00$
Spacecraft_Pitch_Bias $=0.00000000 \mathrm{E}+00$
Spacecraft Yaw Bias $=0.00000000 \mathrm{E}+00$
IMU_Drift_Bias_XA $=-2.23500000 \mathrm{E}-06$
IMU_Drift_Bias_YA $=-2.23500000 \mathrm{E}-06$
IMU_Drift_Bias_ZA $=1.68230000 \mathrm{E}-06$
IMU Drift Bias_XB $=1.86665000 \mathrm{E}-06$
IMU_Drift_Bias_YB $=-6.35100000 \mathrm{E}-07$
IMU_Drift_Bias_ZB $=4.84810000 \mathrm{E}-08$
END Gर्ROUP $={ }^{-}$ATTITMDE PARAMETERS
GROŪP = TIME_PARAMETERS
Scan_Time =60743.0
Forwārd_First_Half_Time $=30371.4$
Forward Second Half Time $=30371.6$
Reverse_First_̄̄alf_Time $=30371.6$
Reverse_Second_Hal̄_Time $=30371.4$
END GROUP ${ }^{-}=$TIME $^{-}$PARAMETERS
GROŪ $=$ TRANSFER_FUNCTION

GROUP $=$ IMU
Fn = 3.3113091
Zeta $=0.66882924$
Tau $=-1.6086176 \mathrm{E}-2$
$\mathrm{P}=-4.1138195 \mathrm{E}-3$
$\mathrm{Ak}=1.0103061$
END_GROUP = IMU
GROŪP = ADS
ADS num =
($0.0,0 . \overline{0}, 0.0,+1.1381628 \mathrm{E} 3,+2.0062211 \mathrm{E} 2,+1.00000 \mathrm{E} 0,0.0,0.0,0.0,1.1381628 \mathrm{E} 3,+2.0062211 \mathrm{E} 2,+1.00000 \mathrm{E} 0$ $, 0.0,0.0,0.0,+9.2111049 \mathrm{E} 2,+1.9766902 \mathrm{E} 2,+1.00000 \mathrm{EO})$

ADS den =
(+1.4195461E5,+1.6961111E5,+4.7877303E4,+4.8108434E3,+2.3739131E2,+1.0000000E0,+1.4168390E5,+1.83 $26650 \mathrm{E} 5,+5.2674623 \mathrm{E} 4,+5.1999651 \mathrm{E} 3,+2.3909029 \mathrm{E} 2,+1.0000000 \mathrm{E} 0,+1.1459413 \mathrm{E} 5,+1.4727717 \mathrm{E} 5,+4.7786443 \mathrm{E}$ $4,+4.3224093 \mathrm{E} 3,+2.3570742 \mathrm{E} 2,+1.0000000 \mathrm{EO})$

ADS_num_temp $=(0.0,0.0,0.0,+6.4416984 \mathrm{E} 1,-1.3578067 \mathrm{E} 0,-5.0789831 \mathrm{E}-$
$3,0.0,0.0,0.0,+2.0618135 \mathrm{E} 2,+4.7466808 \mathrm{E} 0,-2.9005228 \mathrm{E}-$
$3,0.0,0.0,0.0,+9.1603744 \mathrm{E} 1,+2.0285055 \mathrm{E},+4.0783070 \mathrm{E}-2)$
ADS_den_temp $=(+7.6388956 \mathrm{E} 3,+8.7276441 \mathrm{E} 3,+7.5038775 \mathrm{E} 2,+3.2855210 \mathrm{E} 0,-2.1966002 \mathrm{E} 0,-4.635559 \mathrm{E}-$ $3,+1.9779418 \mathrm{E} 4,+3.3575148 \mathrm{E} 4,+4.6478372 \mathrm{E} 3,+2.6281609 \mathrm{E} 2,+4.3279161 \mathrm{E} 0,-2.7584826 \mathrm{E}-$
$3,+9.9464208 \mathrm{E} 3,+1.3229420 \mathrm{E} 4,+1.8093952 \mathrm{E} 3,+9.2350092 \mathrm{E} 1,+2.9068940 \mathrm{EO},+4.2219584 \mathrm{E}-2$)
END_GROUP = ADS
GROŪP = PREFILTER
ADSPre_W $=(0.000670695,0.000427279,0.000667499,0.000946530,0.001221428)$
ADSPre- $\mathrm{H}=(-0.0748,0.0133,0.7994,0.1824,1.00157)$
ADSPre ${ }^{-}{ }_{T}=(0.0010191,0.000015,0.0,0.0,0.0)$
END GROUP = PREFILTER
END_GROUP = TRANSFER_FUNCTION
GROŪ = UT1_TIME_PARAMETERS
UT1 Year =
(2006, 2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2 006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,2006,200 6,2006,2006,2006,2006,2006,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007, 2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,20 07,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007 ,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2 007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,200 7,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007, 2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,2007,20 07,2007,2007,2007,2007,2007)

UT1 Month =
("Nov", "Nov", "Dec", "Dec", "Dec", "Dec", "Dec", "Dec","Dec","Dec", "Dec","Dec","Dec","Dec","Dec","Dec","Dec","Dec","Dec","Dec","Dec",' Dec", "Dec", "Jan", "Jan", "Jan", "Jan", "J an", "Jan", "Ja n", "Jan", "Feb", "Feb", "Feb", "Feb", "Feb", "Feb ", "Feb", "Feb" , "Feb", "Feb", "Feb", "Feb", "Feb", "Feb", "Mar", " Mar", "Mar", "Mar", "Mar", "Mar", "Apr", "A pr", "Apr", "Ap r", "Apr", "Apr", "May", "May ", "May", "May")

UT1_Day =
$(18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22$ $23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2$ $7,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,1,2,3,4$, $5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10$, $11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1$ 6)

UT1_Modified_Julian =
$(54057,54058,54059,54060,54061,54062,54063,54064,54065,54066,54067,54068,54069,54070,54071,54072$, $54073,54074,54075,54076,54077,54078,54079,54080,54081,54082,54083,54084,54085,54086,54087,54088,5$ $4089,54090,54091,54092,54093,54094,54095,54096,54097,54098,54099,54100,54101,54102,54103,54104,54$ $105,54106,54107,54108,54109,54110,54111,54112,54113,54114,54115,54116,54117,54118,54119,54120,541$ $21,54122,54123,54124,54125,54126,54127,54128,54129,54130,54131,54132,54133,54134,54135,54136,5413$ $7,54138,54139,54140,54141,54142,54143,54144,54145,54146,54147,54148,54149,54150,54151,54152,54153$ $, 54154,54155,54156,54157,54158,54159,54160,54161,54162,54163,54164,54165,54166,54167,54168,54169$, $54170,54171,54172,54173,54174,54175,54176,54177,54178,54179,54180,54181,54182,54183,54184,54185,5$ $4186,54187,54188,54189,54190,54191,54192,54193,54194,54195,54196,54197,54198,54199,54200,54201,54$ $202,54203,54204,54205,54206,54207,54208,54209,54210,54211,54212,54213,54214,54215,54216,54217,542$ $18,54219,54220,54221,54222,54223,54224,54225,54226,54227,54228,54229,54230,54231,54232,54233,5423$ 4,54235,54236)

UT1 $X=(-0.02126,-0.02269,-0.02414,-0.02561,-0.02684,-0.02808,-0.02957,-0.03118,-0.03286,-$ $0.03446,-0.03572,-0.03663,-0.03742,-0.03814,-0.03848,-0.03856,-0.03863,-0.03876,-0.03921,-$ $0.04011,-0.04122,-0.04235,-0.04350,-0.04465,-0.04579,-0.04691,-0.04802,-0.04910,-0.05016,-$ $0.05120,-0.05220,-0.05318,-0.05413,-0.05504,-0.05593,-0.05679,-0.05761,-0.05840,-0.05917,-$ $0.05989,-0.06059,-0.06125,-0.06187,-0.06247,-0.06303,-0.06355,-0.06404,-0.06449,-0.06492,-$ $0.06530,-0.06564,-0.06595,-0.06623,-0.06646,-0.06666,-0.06681,-0.06693,-0.06702,-0.06706,-$ $0.06706,-0.06703,-0.06696,-0.06684,-0.06669,-0.06650,-0.06626,-0.06599,-0.06568,-0.06532,-$ $0.06493,-0.06450,-0.06402,-0.06351,-0.06295,-0.06235,-0.06171,-0.06104,-0.06032,-0.05956,-$
$0.05876,-0.05792,-0.05704,-0.05612,-0.05516,-0.05416,-0.05312,-0.05204,-0.05093,-0.04977,-$ $0.04858,-0.04734,-0.04607,-0.04476,-0.04342,-0.04203,-0.04061,-0.03916,-0.03767,-0.03614,-$ $0.03458,-0.03298,-0.03134,-0.02968,-0.02798,-0.02625,-0.02448,-0.02269,-0.02086,-0.01900,-$ $0.01711,-0.01519,-0.01324,-0.01126,-0.00926,-0.00723,-0.00517,-0.00308$,
$0.00097,0.00117,0.00333,0.00551,0.00772,0.00995,0.01220,0.01447,0.01676,0.01907,0.02140,0.02375,0$ $.02612,0.02850,0.03090,0.03331,0.03574,0.03818,0.04063,0.04310,0.04558,0.04807,0.05057,0.05308,0$ $05559,0.05812,0.06065,0.06318,0.06573,0.06827,0.07082,0.07338,0.07594,0.07849,0.08105,0.08361,0.0$ $8617,0.08873,0.09128,0.09383,0.09638,0.09892,0.10146,0.10400,0.10652,0.10904,0.11155,0.11406,0.11$ $655,0.11903,0.12151,0.12397,0.12642,0.12885,0.13128,0.13369,0.13608,0.13846,0.14083,0.14317,0.145$ 50,0.14782,0.15011)

UT1_Y =
($0.29018,0.29078,0.29127,0.29199,0.29307,0.29435,0.29579,0.29730,0.29881,0.30016,0.30114,0.30189$, $0.30287,0.30385,0.30490,0.30642,0.30828,0.31009,0.31195,0.31392,0.31583,0.31768,0.31948,0.32125,0$ $.32298,0.32470,0.32640,0.32810,0.32979,0.33147,0.33316,0.33486,0.33656,0.33827,0.33998,0.34171,0$. $34345,0.34520,0.34696,0.34873,0.35051,0.35230,0.35410,0.35591,0.35774,0.35957,0.36141,0.36326,0.3$ $6512,0.36699,0.36886,0.37074,0.37263,0.37453,0.37643,0.37833,0.38024,0.38216,0.38407,0.38599,0.38$ $792,0.38984,0.39176,0.39369,0.39562,0.39754,0.39947,0.40139,0.40331,0.40523,0.40711,0.40903,0.410$ $94,0.41284,0.41474,0.41664,0.41852,0.42040,0.42228,0.42414,0.42600,0.42784,0.42968,0.43150,0.4333$ $2,0.43512,0.43691,0.43868,0.44045,0.44220,0.44393,0.44565,0.44735,0.44904,0.45071,0.45236,0.45400$ $, 0.45561,0.45721,0.45879,0.46035,0.46188,0.46340,0.46489,0.46636,0.46780,0.46923,0.47063,0.47200$, $0.47335,0.47467,0.47596,0.47723,0.47847,0.47969,0.48087,0.48203,0.48315,0.48425,0.48531,0.48635,0$ $.48735,0.48832,0.48926,0.49016,0.49103,0.49187,0.49268,0.49345,0.49418,0.49488,0.49554,0.49617,0$. $49676,0.49732,0.49783,0.49831,0.49875,0.49916,0.49952,0.49985,0.50013,0.50038,0.50059,0.50076,0.5$ $0089,0.50098,0.50103,0.50104,0.50101,0.50093,0.50082,0.50066,0.50047,0.50023,0.49995,0.49963,0.49$ $927,0.49887,0.49843,0.49794,0.49741,0.49685,0.49624,0.49559,0.49489,0.49416,0.49339,0.49257,0.491$ $72,0.49082,0.48988,0.48890,0.48789,0.48683,0.48573,0.48459,0.48342,0.48220,0.48095)$

UT1 UTC =
$(0.08 \overline{5} 66,0.08458,0.08362,0.08277,0.08206,0.08147,0.08094,0.08033,0.07952,0.07842,0.07703,0.07539$, $0.07361,0.07180,0.07013,0.06875,0.06767,0.06679,0.06607,0.06538,0.06459,0.06360,0.06245,0.06121,0$ $.05987,0.05846,0.05700,0.05561,0.05436,0.05331,0.05246,0.05181,0.05130,0.05087,0.05039,0.04977,0$. $04891,0.04781,0.04648,0.04502,0.04354,0.04218,0.04106,0.04022,0.03963,0.03924,0.03893,0.03857,0.0$ $3807,0.03738,0.03650,0.03547,0.03435,0.03321,0.03209,0.03105,0.03013,0.02936,0.02873,0.02824,0.02$ $780,0.02733,0.02670,0.02583,0.02465,0.02318,0.02153,0.01983,0.01825,0.01690,0.01583,0.01504,0.014$ 45,0.01395,0.01343,0.01279,0.01198,0.01098,0.00980,0.00850,0.00714,0.00580,0.00453,0.00338,0.0023 $9,0.00155,0.00086,0.00025,-0.00036,-0.00109,-0.00205,-0.00334,-0.00497,-0.00686,-0.00888,-$ $0.01085,-0.01260,-0.01405,-0.01520,-0.01613,-0.01693,-0.01773,-0.01863,-0.01971,-0.02099,-$ $0.02246,-0.02409,-0.02581,-0.02754,-0.02921,-0.03076,-0.03216,-0.03339,-0.03446,-0.03542,-$ $0.03632,-0.03728,-0.03840,-0.03980,-0.04154,-0.04360,-0.04588,-0.04818,-0.05033,-0.05218,-$ $0.05366,-0.05484,-0.05583,-0.05677,-0.05778,-0.05893,-0.06025,-0.06174,-0.06337,-0.06510,-$ $0.06684,-0.06854,-0.07012,-0.07155,-0.07281,-0.07389,-0.07485,-0.07573,-0.07663,-0.07764,-$ $0.07886,-0.08038,-0.08223,-0.08434,-0.08658,-0.08875,-0.09069,-0.09229,-0.09355,-0.09454,-$ $0.09542,-0.09631,-0.09732,-0.09848,-0.09980,-0.10124,-0.10277,-0.10431,-0.10580,-0.10718,-$ $0.10840,-0.10943,-0.11028,-0.11096,-0.11155,-0.11211,-0.11274,-0.11353,-0.11455,-0.11584,-$ $0.11739,-0.11911,-0.12083,-0.12241,-0.12368$)
END GROUP = UT1 TIME PARAMETERS
GROŪP = DETECTOR_STATUS
Status_Band1 =
("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000")

Status_Band2 =
("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000")

Status_Band3 =
 "00000", "00000", "00000", "00000")

Status Band4 =

"00000", "00000", "00000", "00000")
Status Band5 =

"00000", "00000", "00000", "00000")
Status_Band6 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000")
Status ${ }^{-}$Band7 $=$

Status Band8 =
("00000", " 00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000")
END GROUP = DETECTOR STATUS
GROŪP = DETECTOR_GAIN S
GROUP = DETECTŌR_GAINS_LOW
B1L Prelaunch =
($0.8153 \overline{9}, 0.81569,0.80851,0.81656,0.80959,0.81726,0.81510,0.81726,0.81972,0.82364,0.81647,0.81569$, $0.81558,0.81421,0.81637,0.82413$) B1L_Postlaunch =
($0.8182 \overline{3}, 0.81783,0.80966,0.81754,0.81015,0.81693,0.81472,0.81488,0.81880,0.82097,0.81406,0.81251$,
$0.81488,0.81594,0.81815,0.82591)$ B1L_Current =
$(0.8179 \overline{9}, 0.81750,0.80957,0.81749,0.81003,0.81677,0.81467,0.81498,0.81855,0.82083,0.81422,0.81251$, $0.81532,0.81641,0.81808,0.82585)$

B2L Prelaunch =
($0.79631,0.79482,0.78627,0.79980,0.79164,0.79352,0.79342,0.78984,0.78915,0.80556,0.79114,0.79323$, $0.79721,0.79393,0.79909,0.78627)$ B2L_Postlaunch =
($0.7977 \overline{6}, 0.79609,0.78776,0.80101,0.79164,0.79403,0.79284,0.78974,0.78839,0.80499,0.79077,0.79244$, $0.79657,0.79395,0.79720,0.78602$) B2L_Current =
($0.7974 \overline{6}, 0.78745,0.78744,0.79996,0.79186,0.79381,0.79329,0.78996,0.78878,0.80521,0.79057,0.79210$, $0.79651,0.79394,0.79806,0.78682$)

B3L_Prelaunch =
(1.0274 $\overline{6}, 1.02044,1.02350,1.02469,1.02370,1.03171,1.03417,1.02360,1.01866,1.02785,1.01728,1.02884$, 1.02192,1.02578,1.01966,1.02212) B3L Postlaunch =
(1.02799,1.02041,1.02390,1.02421,1.02328,1.03097,1.03486,1.02379,1.01888,1.02687,1.01693,1.02830, 1.02298,1.02656,1.01940,1.02205) B3L_Current =
(1.02779,1.02074,1.02399,1.02526,1.02314,1.03146,1.03397,1.02363,1.01817,1.02742,1.01668,1.02899, 1.02203,1.02624,1.01991,1.02282) B4L Prelaunch =
(1.0015 $\overline{5}, 0.99885,1.00308,0.98557,1.00135,1.00001,0.99761,1.00491,0.99087,0.99626,0.98750,0.99693$, $0.99405,0.99751,0.98913,1.00578)$ B4L_Postlaunch =
(1.0020 $\overline{0}, 0.99891,1.00320,0.98575,1.00160,0.99990,0.99711,1.00359,0.99203,0.99691,0.98724,0.99661$, $0.99402,0.99761,0.98844,1.00608)$ B4L Current $=$
(1.00257, 0.99977,1.00358, 0.98599,1.00195,1.00017,0.99770,1.00433,0.99132,0.99636,0.98717,0.99667, 0.99341,0.99711,0.98861,1.00640) B5L_Prelaunch =
$(5.0339 \overline{8}, 5.06663,5.07855,5.05421,5.08496,5.02657,5.04109,5.08426,5.06803,5.08837,5.04810,5.04560$, 5.03738,5.05932,5.03949,5.09518) B5L Postlaunch =
$(5.0390 \overline{3}, 5.07388,5.07588,5.05826,5.09772,5.02991,5.04964,5.07949,5.07899,5.10122,5.04353,5.03692$, $5.02130,5.04453,5.03642,5.08500$) B5L_Current =
(5.04091, 5.07587,5.07901,5.05802,5.09723,5.03077,5.05160,5.08235,5.07142,5.09768,5.04620,5.03239, $5.02648,5.05153,5.03273,5.07932)$ B6L Prelaunch $=(12.283,12.474,13.150,12.511,12.805,12.646,13.108,12.794)$ B6L_Postlaunch $=(12.426,12.614,13.270,12.625,12.899,12.893,13.217,12.969)$ B6L_Current $=(12.435,12.620,13.276,12.628,12.898,12.758,13.211,12.951)$ B7L_Prelaunch =
(14.54238,14.52680,14.58439,14.51162,14.55705,14.59233,14.60841,14.48228,14.52429,14.53584,14.622 07,14.51916,14.21294,14.68861,14.51303,14.49303) B7L_Postlaunch =
$(14.510 \overline{6} 3,14.46411,14.60801,14.52661,14.55857,14.57595,14.62399,14.52219,14.53385,14.53676,14.653$ 03,14.54550,14.19237,14.68207,14.50772,14.47285) B7L_Current =
(14.50706,14.48280,14.61788,14.53490,14.54235,14.58111,14.59652,14.50995,14.53182,14.54217,14.643 89,14.52400,14.21692,14.69388,14.51501,14.47046) B8L_Prelaunch =
($0.9828 \overline{7}, 0.99414,0.98206,0.99334,0.99072,0.99545,0.98679,0.99656,0.98277,0.98146,0.98821,0.98096$, $0.98861,0.98468,0.98438,0.99464,0.99344,0.97783,0.99504,0.98428,0.99122,0.98589,0.99092,0.98166,0$
$.99636,0.98719,0.98780,0.98337,0.99313,0.99575,0.99344,0.98831)$ B8L_Postlaunch =
($0.9840 \overline{0}, 0.99576,0.98222,0.99448,0.99022,0.99586,0.98529,0.99645,0.98271,0.98083,0.98657,0.98103$, $0.99092,0.98558,0.98400,0.99389,0.99448,0.98004,0.99418,0.98479,0.99122,0.98251,0.99122,0.98044,0$ $.99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914)$ B8L_Current $=$
($0.9840 \overline{0}, 0.99576,0.98222,0.99448,0.99022,0.99586,0.98529,0.99645,0.98271,0.98083,0.98657,0.98103$, $0.99092,0.98558,0.98400,0.99389,0.99448,0.98004,0.99418,0.98479,0.99122,0.98251,0.99122,0.98044,0$
$.99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914)$
END_GROUP = DETECTOR_GAINS_LOW
GROUP = DETECTOR_GAI $\bar{N} S _H I G \bar{H}$ B1H Prelaunch =
(1.2240 $\overline{5}, 1.22336,1.21383,1.22582,1.21451,1.22641,1.22287,1.22630,1.23112,1.23643,1.22523,1.22365$, 1.22483,1.22306,1.22473,1.23711) B1H Postlaunch =
(1.22807,1.22746,1.21521,1.22703,1.21594,1.22611,1.22281,1.22304,1.22892,1.23218,1.22182,1.21949, 1.22304,1.22464,1.22795,1.23959) B1H Current =
(1.2280 $\overline{3}, 1.22712,1.21536,1.22724,1.21611,1.22630,1.22281,1.22306,1.22901,1.23215,1.22207,1.21956$, 1.22259,1.22435,1.22788,1.23963) B2H_Prelaunch =
(1.19510 $1.1 .19271,1.18036,1.20027,1.18664,1.18942,1.18893,1.18444,1.18424,1.20845,1.18723,1.18992$,
1.19510,1.19092,1.19779,1.17906) $\mathrm{B} 2 \mathrm{H}-P o s t l a u n c h=$
(1.19657,1.19406,1.18157,1.20144,1.18739,1.19097,1.18918,1.18453,1.18252,1.20740,1.18608,1.18858, 1.19478,1.19085,1.19573,1.17895) B2H_Current $=$
(1.19665, 1.18166,1.18154,1.20040,1.18714,1.19041,1.18950,1.18471,1.18307,1.20780,1.18624,1.18886, 1.19419,1.19057,1.19641,1.17941)

```
    B3H_Prelaunch =
(1.54197,1.53259,1.53429,1.53718,1.53629,1.54845,1.55294,1.53678,1.52820,1.54297,1.52711,1.54436,
1.53459,1.54107,1.52980,1.53289)
        B3H_Postlaunch =
(1.5428\overline{9},1.53152,1.53674,1.53721,1.53582,1.54736,1.55319,1.53659,1.52922,1.54121,1.52629,1.54336,
1.53537,1.54075,1.52999,1.53398)
        B3H_Current =
(1.5433\overline{3},1.53257,1.53633,1.53773,1.53541,1.54789,1.55255,1.53701,1.52843,1.54193,1.52569,1.54413,
1.53439,1.54101,1.53007,1.53442)
        B4H Prelaunch =
(1.5017\overline{4},1.49785,1.50437,1.47818,1.50252,1.49989,1.49531,1.50642,1.48850,1.49610,1.48227,1.49668,
1.49259,1.49785,1.48461,1.50963)
    B4H Postlaunch =
(1.5035\overline{1},1.49886,1.50530,1.47912,1.50290,1.50036,1.49616,1.50589,1.48854,1.49587,1.48136,1.49542,
1.49153,1.49692,1.48315,1.50963)
    B4H Current =
(1.5036\overline{7,1.49969,1.50557,1.47950,1.50283,1.50040,1.49576,1.50606,1.48807,1.49590,1.48144,1.49577,}
1.49192,1.49748,1.48375,1.51046)
        B5H Prelaunch =
(7.55469,7.59878,7.62118,7.58419,7.63018,7.54119,7.55799,7.61848,7.59718,7.63598,7.57749,7.57069,
7.54699,7.58149,7.56809,7.64298)
        B5H_Postlaunch =
(7.55854,7.61082,7.61382,7.58738,7.64657,7.54487,7.57446,7.61923,7.61848,7.65183,7.56530,7.55538,
7.53195,7.56680,7.55463,7.62749)
        B5H_Current =
(7.5594\overline{4},7.61343,7.61647,7.58572,7.64538,7.54615,7.57231,7.61890,7.61047,7.64933,7.56928,7.55076,
7.53328,7.57133,7.55801,7.62922)
        B6H_Prelaunch = (23.953,24.325,25.642,24.397,24.969,24.659,25.561,24.949)
        B6H_Postlaunch = (24.231,24.597,25.876,24.618,25.153,25.142,25.774,25.289)
        B6H_Current = (24.257,24.700,26.097,24.783,25.211,24.980,25.851,25.424)
        B7H-Prelaunch =
(21.825\overline{6}3,21.80364,21.87966,21.77120,21.83747,21.89717,21.93090,21.74115,21.78742,21.79995,21.957
57,21.78373,21.30363,22.02712,21.76921,21.74891)
        B7H_Postlaunch =
(21.771\overline{7}5,21.70194,21.91786,21.79573,21.84368,21.86976,21.94183,21.78909,21.80658,21.81096,21.985
41,21.82407,21.29424,22.02898,21.76738,21.71506)
        B7H Current =
(21.75815,21.72167,21.93070,21.80577,21.81935,21.86660,21.92634,21.79395,21.80156,21.81776,21.989
36,21.81000,21.31337,22.03100,21.77424,21.70837)
        B8H_Prelaunch =
(1.47469,1.49009,1.47114,1.49009,1.48593,1.49231,1.48026,1.49565,1.47530,1.47246,1.48420,1.47226,
1.48269,1.47732,1.47610,1.49231,1.49130,1.46730,1.49423,1.47550,1.48715,1.47803,1.48735,1.47459,1
.49697,1.48127,1.48300,1.47630,1.48958,1.49423,1.49049,1.48249)
        B8H_Postlaunch =
(1.47639,1.49404,1.47373,1.49212,1.48573,1.49419,1.47833,1.49508,1.47446,1.47164,1.48025,1.47194,
1.48677,1.47876,1.47639,1.49123,1.49212,1.47045,1.49167,1.47757,1.48722,1.47416,1.48722,1.47105,1
.49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411)
        B8H Current =
(1.47639,1.49404,1.47373,1.49212,1.48573,1.49419,1.47833,1.49508,1.47446,1.47164,1.48025,1.47194,
1.48677,1.47876,1.47639,1.49123,1.49212,1.47045,1.49167,1.47757,1.48722,1.47416,1.48722,1.47105,1
    .49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411)
    END GROUP = DETECTOR GAINS HIGH
END_G\overline{ROUP = DETECTOR G\overline{A}INS}
GRO\overline{UP}= BIAS LOCATION
    Forward Biās Location 30= = 143
    Forward Bias Length 3}\overline{0}=50
    Forward_IC_Region_3\overline{0}=814
    Reverse_Biās_Location_30=780
    Reverse Bias Length 30 = 500
    Reverse_IC_Region_3\overline{0}=780
    Forward_Biās_Location_60=85
    Forward_Bias_Length_6\overline{0}=275
    Forward_IC_Region 60 = 380
    Reverse_Biās_Loca\overline{tion_60 = 380}
    Reverse_Bias_Length 6\overline{0}=275
    Reverse IC Region 60 = 380
    Forward_Biās_Loca\overline{tion_15 = 286}
    Forward_Bias_Length_15}=100
    Forward_IC_Region_15 = 1635
    Reverse Bias Location 15 = 1580
    Reverse_Bias_Length_1\overline{5}=1000
    Reverse_IC_Region_1\overline{5}=1580
END GROUP }\mp@subsup{}{}{-}=\overline{B}IAS LO\overline{CATIONS
GRO\overline{UP}= DETECTOR BIASES B6
    GROUP = DETECTOR_BIASES_B6_LOW
        B6L_Bias_Prelaunch = (31.51,30.12,25.27,29.86,27.84,28.91,25.65,27.87)
        B6L_Bias_Postlaunch = (25.96,24.86,20.14,24.76,22.76,22.93,20.57,22.43)
        B6L_Bias_Current = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463)
    END_G\overline{ROUP = DETECTOR_BIASES_B6_LOW}
    GRO\overline{UP}= DETECTOR_BIA\overline{SES_B6_\overline{HIG}\overline{H}}\mathbf{}=\overline{L}
        B6H_Bias_Prelaūnch = `}-6\overline{6}.23,-68.95,-78.39,-69.44,-73.38,-71.30,-77.66,-73.33
```

```
        B6H Bias Postlaunch = (-77.10,-79.26,-88.45,-79.44,-83.35,-83.01,-87.62,-83.98)
        B6H Bias Current = (-69.566,-72.634,-82.61,-73.2228,-76.1918,-76.3519,-80.6467,-77.7089)
    END_G\overline{ROUP = DETECTOR_BIASES_B6_HIGH}
END_G\overline{ROUP = DETECTOR_B\overline{I}ASES_B\overline{6}}\overline{\prime}
GROŪP = ACCA BIASES
    GROUP = ACCA_BIASES_LOW
        B1L_ACCA_Bīas =
(9.91,9.87,10.11,10.02,10.06,10.02,10.12,10.03,10.00,9.97,10.08,10.09,10.02,10.07,9.96,10.03)
        B2L ACCA Bias =
(9.95,10.12, \overline{9.95,10.09,9.87,10.05,9.98,10.11,9.90,10.14,9.87,10.13,9.83,10.11,9.88,10.16)}
        B3L_ACCA_Bias =
(10.20,9.79,\overline{10.18,9.70,10.08,9.66,10.20,9.84,10.23,9.84,10.24,9.83,10.13,9.72,10.11,9.74)}
        B4L ACCA Bias =
(10.06,9.99,9.97,9.88,10.00,9.90,10.03,9.92,10.00,9.94,9.77,9.74,9.81,9.78,9.99,9.95)
        B5L_ACCA_Bias =
(10.02,10.03,10.00,9.98,10.06,10.07,10.01,10.07,10.09,10.09,9.90,9.97,10.10,10.08,10.07,10.06)
        B6L_ACCA_Bias = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463)
        B7L_ACCA_Bias =
(10.23,10.16,10.08,10.08,10.14,10.16,10.20,10.09,10.00,10.02,10.12,10.11,10.04,10.17,9.96,10.10)
        B8L ACCA Bias =
(10.49,9.40,\overline{10.62,9.48,10.25,9.75,10.26,9.64,9.90,10.37,10.02,10.26,9.10,10.37,9.49,9.90,9.28,9.4}
5,9.05,9.02,8.60,10.19,8.53,10.02,8.29,8.82,7.99,9.02,7.34,8.98,7.45,8.95)
    END GROUP = ACCA BIASES LOW
    GRO\overline{UP}= ACCA_BIA\overline{SES_HIG\overline{H}}\mathbf{}=\mathrm{ - }
        B1H_ACCA_Bias =
(14.86,14.80,15.13,15.00,15.14,15.08,15.23,15.09,14.94,14.93,15.07,15.09,15.08,15.15,14.99,15.08)
        B2H ACCA Bias =
(14.92,\overline{15.19,14.90,15.13,14.70,15.00,14.93,15.13,14.82,15.18,14.79,15.17,14.71,15.13,14.76,15.18)}
        B3H_ACCA_Bias =
(15.19,14.58,15.33,14.61,15.07,14.46,15.32,14.80,15.23,14.64,15.24,14.63,15.18,14.55,15.22,14.66)
        B4H ACCA Bias =
(14.97,14.84,14.88,14.72,15.03,14.84,15.10,14.88,15.08,14.95,14.64,14.57,14.70,14.66,14.92,14.85)
        B5H_ACCA_Bias =
(14.98,\overline{15.00,15.05,15.02,15.02,15.04,15.01,15.10,15.18,15.19,14.81,14.93,15.04,15.01,15.04,15.03)}
        B6H_ACCA_Bias = (-69.566,-72.634,-82.61,-73.2228,-76.1918,-76.3519,-80.6467,-77.7089)
        B7H_ACCA_Bias =
(15.32,\overline{15.15,15.13,15.11,15.14,15.16,15.31,15.12,15.03,15.04,15.11,15.10,15.02,15.22,14.91,15.13)}
        B8H ACCA Bias =
(15.85,\overline{14}.28,16.29,14.39,15.51,14.87,15.49,14.54,14.99,15.60,15.12,15.25,13.80,15.59,14.27,14.82,
14.06,14.18,13.46,13.52,12.70,15.49,12.56,15.21,12.21,13.14,11.91,13.21,10.91,13.12,11.16,13.00)
    END GROUP = ACCA BIASES HIGH
END G\overline{ROUP = ACCA BİASES}
GRO\overline{UP}= ACCA_THRE\overline{E}HOLDS
    Thresh_B3 = 0.0800
    Thresh_B3 Lower = 0.07
    Thresh_B5\overline{6}_High = 225.000
    Thresh_B56_Low = 210.000
    Thresh B6 = 300.000
    Thresh-B45 Ratio = 1.0000
    Thresh_B42_Ratio = 2.16248
    Thresh_B43_Ratio = 2.3500
    Thresh NDSI Max = 0.7000
    Thresh_NDSI_Min = -0.2500
    Thresh_NDSI_Snow = 0.8000
    Cloud_Percent_Min = 0.4000
    Deser\overline{t}}\mathrm{ Index = 0.500
    Thresh_Snow_Percent = 1.0000
    Therma\overline{l}_Effect_High = 35.0000
    Thermal Effect Low = 25.000
    B6Max_Mäxthres\overline{h}}\mathrm{ Diff = 2.000
END_GRO\overline{UP = ACCA_\overline{THRESHOLDS}}\mathbf{T}=\mp@code{M}
GROU\overline{P = SOLAR_SP\overline{ECTRAL_IRRADIANCES}}\mathbf{T}=1
    B1 Solar_Irradiance = 1969.000
    B2_Solar_Irradiance = 1840.000
    B3_Solar_Irradiance = 1551.000
    B4-Solar Irradiance = 1044.000
    B5_Solar_Irradiance = 225.7
    B7_Solar_Irradiance = 82.07
    B8_Solar_Irradiance = 1368.000
END GROUP = SOLAR SPECTRAL IRRADIANCES
GRO\overline{UP = THERMAL_CO}NSTANTS
    K1_Constant =-666.09
    K2-Constant = 1282.71
END \overline{GROUP = THERMAL CONSTANTS}
GRO\overline{UP = SCALING_PARAMMETERS}
    GROUP = SCALING_PARAMETERS_LOW
        B1L Lmin Lmax = (-6.2,293.7)
        B2L_Lmin_Lmax = (-6.4,300.9)
        B3L_Lmin_Lmax = (-5.0,234.4)
        B4L_Lmin_Lmax = (-5.1,241.1)
        B5L_Lmin__Lmax = (-1.0,47.57)
```

```
        B6L_Lmin_Lmax = (0.0,17.04)
        B7L Lmin Lmax = (-0.35,16.54)
        B8L-Lmin_Lmax = (-4.7,243.1)
    END_G\overline{ROUP = SCALING_PARAMETERS_LOW}
    GRO\overline{UP}= SCALING_PAR\overline{A}METERS_HIG\overline{H}
    B1H Lmin Lmax = (-6.2,191.6)
    B2H_Lmin_Lmax = (-6.4,196.5)
    B3H_Lmin_Lmax = (-5.0,152.9)
    B4H Lmin Lmax = (-5.1,157.4)
    B5H_Lmin_Lmax = (-1.0,31.06)
    B6H_Lmin_Lmax = (3.2,12.65)
    B7H_Lmin_Lmax = (-0.35,10.80)
    B8H Lmin Lmax = (-4.7,158.3)
    END_G\overline{ROUP = SCALING_PARAMETERS_HIGH}
END_G\overline{ROUP = SCALING PARAMETERS}
GRO\overline{UP = MTF COMPENSĀTION}
    B1_weight\overline{s}_along = (1.56766583,0.00000000,-1.56766583,-0.01966520,-0.01966520)
    B1_weights__across = (1.45063128,0.00000000,-1.45063128,0.00257381,0.00257381)
    B2_weights_along = (1.61050310,0.00000000,-1.61050310,-0.02774139,-0.02774139)
    B2 weights across = (1.49221631,0.00000000,-1.49221631,-0.00535953,-0.00535953)
    B3_weights_along = (1.65047774,0.00000000,-1.65047774,-0.03525043,-0.03525043)
    B3_weights_across = (1.52298447,0.00000000,-1.52298447,-0.01120648,-0.01120648)
    B4 weights along = (1.73786071,0.00000000,-1.73786071,-0.05158080,-0.05158080)
    B4_weights_across = (1.55814152,0.00000000,-1.55814152,-0.01786521,-0.01786521)
    B5_weights_along = (1.54118459,0.00000000,-1.54118459,-0.01465645,-0.01465645)
    B5 weights-across = (1.43789226,0.00000000,-1.43789226,0.00501156,0.00501156)
    B6 weights along = (1.74511478,0.00000000,-1.74511478,-0.05293163,-0.05293163)
    B6_weights_across = (1.24858736,0.00000000,-1.24858736,0.04172298,0.04172298)
    B7_weights_along = (1.47951767,0.00000000,-1.47951767,-0.00294082,-0.00294082)
    B7_weights_across = (1.42261190,0.00000000,-1.42261190,0.00794044,0.00794044)
    B8-weights_along = (1.94052085,0.00000000,-1.94052085,-0.08907866,-0.08907866)
    B8_weights_across = (2.11745387,0.00000000,-2.11745387,-0.12147250,-0.12147250)
END_\overline{GROUP = MTF_COMPENSATION}
GRO\overline{UP}= MEMORY \overline{EFFECT}
    GROUP = ME MA
        B1_ME_Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B2_ME_Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B3 ME Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B4_ME_Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B5_ME_Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B6 ME Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B7_ME_Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B8-ME-Magnitude =
(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
    END_GROUP = ME_MAGNITUDES
    GRO\overline{UP}= ME_TIME__CONSTANTS
        B1 ME Time Constant =
(1100.\overline{0},1\overline{1}00.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.
0,1100.0,1100.0)
    B2 ME Time Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100
0,1100.0,1100.0)
        B3 ME Time_Constant =
(1100.0,1\overline{100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100}
0,1100.0,1100.0)
        B4_ME_Time_Constant =
(1100.\overline{0},1\overline{1}00.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.
0,1100.0,1100.0)
        B5_ME_Time_Constant =
(1100.\overline{0},1\overline{100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.}
0,1100.0,1100.0)
    B6 ME Time Constant = (1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0)
    B7_ME_Time_Constant =
(1100.\overline{0},1\overline{100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.}
0,1100.0,1100.0)
        B8 ME Time Constant =
(1100.\overline{0},1\overline{100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.}
0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100
.0,1100.0,1100.0,1100.0,1100.0)
    END_GROUP = ME_TIME_CONSTANTS
END_G\overline{ROUP = MEMO\overline{RY_EF\overline{FECT}}\mathbf{T}}\mathbf{T}=\mp@code{M}
GRO\overline{UP}= GHOST PULS\overline{E}
    Ghost_Pulse_Endpoints = (0.00,0.00)
END_GROUP = GHOST_PULSE
GRO\overline{UP}= SCAN CORR\overline{E}LATED SHIFT
    SCS_Refereñce_Detector
    GROUिP = SCS_LO}\textrm{W
        B1L_SCS_Mägnitudes =(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B2L_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B3L_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
```

```
        B4L_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B5L SCS Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B7L_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B8L_SCS_Magnitudes =
(0.0,0.\overline{0},0.\overline{0},0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
    END GROUP = SCS LOW
    GRO\overline{UP}= SCS HIG\overline{H}
        B1H_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B2H_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B3H_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B4H_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B5H SCS Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B7H_SCS_Magnitudes = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
        B8H-SCS-Magnitudes =
(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
    END_GROUP = SCS_HIGH
END_G\overline{ROUP = SCAN_\overline{CORRELATED_SHIFT}}\mathbf{T}=\mp@code{S}
GROÜP = STRIPING
    GROUP = STRIPING_FLAG_LOW
        Correction_Refērenc\overline{e_B1_Low = 2}
        Correction Reference B2 Low = 2
        Correction_Reference-B3 Low = 2
        Correction_Reference_B4_Low = 2
        Correction_Reference_B5_Low = 2
        Correction Reference B6 Low = 0
        Correction_Reference_B7_Low = 2
        Correction_Reference_B8_Low = 2
    END GROUP = \overline{STRIPING FLAG LOW}
    GRO\overline{UP}= STRIPING FLA\overline{G}}HIG\overline{H
            Correction_Reference__B1_High = 2
            Correction_Reference_B2_High = 2
            Correction_Reference_B3_High = 2
            Correction_Reference_B4_High = 2
            Correction_Reference_B5_High = 2
            Correction_Reference_B6_High = 0
            Correction_Reference_B7_High = 2
            Correction_Reference_B8_High = 2
    END_GROUP = \overline{STRIPING_F\overline{LAG_HIGH}}\mathbf{N}=\mp@code{-}
END GR\overline{OUP = STRIPING}
GROŪP = HISTOGRAM
    GROUP = DETECTOR_NOISE
            GROUP = DETECTO\R_NOISE_LOW
            Detector Noise Level B1 Low =
(0.779460,0.77\overline{2}285,0.72867\overline{1},0.763302,0.786943,0.776291,0.770672,0.739825,0.804123,0.737660,0.7495
92,0.794155,0.765984,0.780631,0.743702,0.759316)
            Detector Noise Level B2 Low =
(0.601029,0.57\overline{6}235,0.57869\overline{6},0.572740,0.587501,0.591210,0.577901,0.596892,0.612274,0.599762,0.6019
85,0.572298,0.605657,0.588833,0.586422,0.574523)
            Detector Noise_Level_B3_Low =
(0.814260,0.79\overline{7001,0.80625\overline{3},0.825438,0.805607,0.835023,0.802352,0.759353,0.814861,0.804235,0.8303}
29,0.835847,0.795850,0.819125,0.760094,0.808781)
            Detector_Noise_Level_B4_Low =
(0.373855,0.357412,0.410801,0.401166,0.386735,0.385534,0.351177,0.388469,0.298362,0.346134,0.4544
76,0.467169,0.430189,0.458503,0.309542,0.349836)
            Detector_Noise_Level_B5_Low =
(0.541758,0.53\overline{8}805,0.56404\overline{0},0.528059,0.567236,0.564582,0.557496,0.559557,0.576319,0.563746,0.5487
35,0.554186,0.578348,0.541598,0.546643,0.543750)
            Detector_Noise_Level_B6_Low =
(0.38498,0.403\overline{0}7,0.3\overline{9}786,0.37\overline{9}27,0.38451,0.38594,0.37989,0.37353)
            Detector Noise Level B7 Low =
(0.882830,0.84\overline{1}372,0.84080\overline{1},0.836801,0.918675,0.888781,0.868970,0.833833,0.889666,0.816621,0.8723
48,0.823312,0.844422,0.839332,0.818657,0.838030)
                Detector_Noise_Level_B8_Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976, 1.455102,
1.447059, 1.445895, 1.428523, 1.518779, 1.410482, 1.546677, 1.412992, 1.568844, 1.432523,
1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786, 1.435104,
1.447014, 1.411219, 1.420777, 1.483956, 1.469533, 1.473144, 1.436488, 1.435460)
            END GROUP = DETECTOR NOISE LOW
            GROÜP = DETECTOR NOISE HIG\overline{H}
                Detector_Noise_Level_B1_High =
(1.115767,1.105730,1.03449\overline{2,1.088057,1.122772,1.109671,1.093771,1.045665,1.135931,1.051208,1.0683}
69,1.137889,1.088930,1.113233,1.060574,1.083090)
                Detector_Noise_Level_B2_High =
(0.840525,0.80\overline{2}531,0.81189\overline{4},0.802952,0.821014,0.828448,0.799075,0.826498,0.848278,0.828466,0.8339
49,0.787364,0.842703,0.814721,0.810008,0.789331)
            Detector Noise Level B3 High =
(1.171068,1.14\overline{5}406,1.15402\overline{0},1.185309,1.152540,1.197513,1.145797,1.079392,1.168113,1.152881,1.1973
19,1.204024,1.142140,1.177719,1.081946,1.158203)
```

Detector_Noise_Level_B4_High =
($0.571712,0.56 \overline{8} 938,0.60179 \overline{0}, 0.577678,0.585365,0.570769,0.564726,0.575154,0.523646,0.549596,0.5781$ $82,0.564183,0.560860,0.580182,0.528458,0.559510)$

Detector_Noise_Level_B5_High =
($0.758784,0.75 \overline{3} 994,0.79116 \overline{5}, 0.746657,0.796592,0.791935,0.769362,0.774648,0.810945,0.794850,0.7724$ $70,0.783913,0.811670,0.761202,0.770891,0.766004)$

Detector_Noise_Level_B6_High =
$(0.63424,0.647 \overline{6} 6,0.6 \overline{3} 594,0.62 \overline{4} 51,0.62835,0.64975,0.62390,0.60717)$ Detector Noise Level B7 High =
(1.292273,1.22 $\overline{6} 330,1.21593 \overline{3}, 1.208056,1.337354,1.291756,1.261227,1.208343,1.296625,1.183313,1.2693$ 91,1.193715,1.221458,1.216385,1.179451,1.211407) Detector Noise Level_B8 High =
$(2.01844,2.033 \overline{9} 2,2.1 \overline{0} 339,1.99 \overline{7} 54,2.63946,2.07794,2.46647,2.03946,2.51454,2.12575,2.02078,2.16917$, $1.98090,2.18632,2.01149,1.98286,2.07499,2.11379,2.10509,2.14305,2.00573,2.09848,2.03111,2.08271,2$ $.06095,2.01814,1.98271,2.17801,2.44790,2.15665,2.25689,2.24758)$

END_GROUP = DETECTOR_NOISE_HIGH
END_GROUP = DETECTOR_NŌISE
GROŪP = DET_SHUTTER_NOISE
GROUP $=$ D $\bar{E} T$ SHUTTER NOISE LOW Det Shuttēr Noise ${ }^{-}$Level ${ }^{-1}$ Low $=$
$(0.779460,0.77228 \overline{5}, 0.72 \overline{8} 671,0.76 \overline{3} 302,0.786943,0.776291,0.770672,0.739825,0.804123,0.737660,0.7495$ $92,0.794155,0.765984,0.780631,0.743702,0.759316)$ Det Shutter Noise Level B2 Low =
($0.601029,0.57623 \overline{5}, 0.57 \overline{8} 696,0.57 \overline{2} 740,0.587501,0.591210,0.577901,0.596892,0.612274,0.599762,0.6019$ $85,0.572298,0.605657,0.588833,0.586422,0.574523)$ Det_Shutter Noise Level_B3 Low =
($0.814260,0.79700 \overline{1}, 0.80 \overline{6} 253,0.82 \overline{5} 438,0.805607,0.835023,0.802352,0.759353,0.814861,0.804235,0.8303$ $29,0.835847,0.795850,0.819125,0.760094,0.808781)$ Det_Shutter_Noise_Level_B4_Low =
($0.373855,0.35741 \overline{2}, 0.41 \overline{0} 801,0.40 \overline{1} 166,0.386735,0.385534,0.351177,0.388469,0.298362,0.346134,0.4544$ $76,0.467169,0.430189,0.458503,0.309542,0.349836)$ Det_Shutter_Noise_Level_B5 Low =
$(0.541758,0.53880 \overline{5}, 0.56 \overline{4} 040,0.52 \overline{8} 059,0.567236,0.564582,0.557496,0.559557,0.576319,0.563746,0.5487$ 35,0.554186,0.578348, 0.541598, 0.546643,0.543750) Det_Shutter_Noise_Level_B6_Low =
$(0.38498, \overline{0} .40307, \overline{0} .3978 \overline{6}, 0.37 \overline{9} 27,0.38451,0.38594,0.37989,0.37353)$ Det Shutter Noise Level B7 Low =
$(0.882830,0.84137 \overline{2}, 0.84 \overline{0} 801,0.83 \overline{6} 801,0.918675,0.888781,0.868970,0.833833,0.889666,0.816621,0.8723$ $48,0.823312,0.844422,0.839332,0.818657,0.838030)$

Det_Shutter_Noise_Level_B8_Low $=(1.411792,1.429218,1.475390,1.417629,1.426976$,
$1.455102,1.447059,1.445895,1.428523,1.518779,1.410482,1.546677,1.412992,1.568844$,
$1.432523,1.406441,1.466322,1.523012,1.488277,1.538726,1.419587,1.438650,1.437786$,
$1.435104,1.447014,1.411219,1.420777,1.483956,1.469533,1.473144,1.436488,1.435460)$
END_GROUP = DET_SHUTTER NOISE_LOW
GROŪP = DET_SHUTTTER_NOI $\bar{S} E _H I G \bar{H}$ Det_Shuttēr_Noise_Level_B1_High =
($1.115767,1.10573 \overline{0}, 1.03 \overline{4} 492,1.08 \overline{8} 057,1.122772,1.109671,1.093771,1.045665,1.135931,1.051208,1.0683$ 69,1.137889,1.088930,1.113233,1.060574,1.083090) Det_Shutter_Noise_Level_B2_High =
$(0.840525,0.80253 \overline{1}, 0.81 \overline{1} 894,0.80 \overline{2} 952,0.821014,0.828448,0.799075,0.826498,0.848278,0.828466,0.8339$ 49, 0.787364,0.842703,0.814721,0.810008,0.789331) Det Shutter Noise Level B3 High =
(1.171068,1.14540 $\overline{6}, 1.15 \overline{4} 020,1.18 \overline{5} 309,1.152540,1.197513,1.145797,1.079392,1.168113,1.152881,1.1973$

19,1.204024,1.142140,1.177719,1.081946,1.158203) Det_Shutter Noise Level_B4 High =
($0.571712,0.56893 \overline{8}, 0.60 \overline{1} 790,0.57 \overline{7} 678,0.585365,0.570769,0.564726,0.575154,0.523646,0.549596,0.5781$ $82,0.564183,0.560860,0.580182,0.528458,0.559510)$ Det_Shutter_Noise_Level_B5_High =
$(0.758784,0.75399 \overline{4}, 0.79 \overline{1} 165,0.74 \overline{6} 657,0.796592,0.791935,0.769362,0.774648,0.810945,0.794850,0.7724$ $70,0.783913,0.811670,0.761202,0.770891,0.766004)$ Det_Shutter_Noise_Level_B6_High =
$(0.63424, \overline{0} .64766, \overline{0} .6359 \overline{4}, 0.62 \overline{4} 51,0.62835,0.64975,0.62390,0.60717)$ Det Shutter Noise Level B7 High =
(1.292273, 1. $22633 \overline{0}, 1.21 \overline{5} 933,1.20 \overline{8} 056,1.337354,1.291756,1.261227,1.208343,1.296625,1.183313,1.2693$ 91,1.193715,1.221458,1.216385,1.179451,1.211407)

Det_Shutter_Noise_Level_B8_High =
$(2.01844, \overline{2} .03392, \overline{2} .1033 \overline{9}, 1.99 \overline{7} 54,2.63946,2.07794,2.46647,2.03946,2.51454,2.12575,2.02078,2.16917$, $1.98090,2.18632,2.01149,1.98286,2.07499,2.11379,2.10509,2.14305,2.00573,2.09848,2.03111,2.08271,2$. 06095,2.01814,1.98271,2.17801,2.44790,2.15665,2.25689,2.24758)

END_GROUP = DET_SHUTTER_NOISE_HIGH
END_Gर्ROUP = DET_S
GROŪP = REFEREN $\bar{C} E$ DETECTORS
Reference Detector B1 = 15
Reference-Detector B2 = 12
Reference_Detector_B3 $=08$
Reference_Detector_B4 = 07
Reference Detector B5 = 14
Reference_Detector_B6 = 01
Reference_Detector_B7 $=10$
Reference_Detector_B8 = 27
END_GROUP = REFERENCE_DETECTORS

```
    GROUP = SATURATION_THRESHOLDS
    Saturation Bin Threshold B1 = 1000
    Saturation Bin -Threshold}\mp@subsup{}{}{-}\mathrm{ B2 = 1000
    Saturation_Bin_Threshold_B3 = 1000
    Saturation Bin_Threshold B4 = 1000
    Saturation Bin Threshold B5 = 1000
    Saturation_Bin_Threshold_B6 = 1000
    Saturation_Bin_Threshold_B7 = 1000
    Saturation_Bin_Threshold_B8 = 1000
    END_GROUP = \overline{SATURATIION_THR\overline{E}SHOLDS}
    GRO\overline{UPP = ADJACENT_BINS}
    GROUP = BIN_NUMBER
        Adjacent Bin Number B1 = 2
        Adjacent_Bin_Number_B2 = 2
        Adjacent_Bin_Number_B3 = 2
        Adjacent_Bin_Number_B4 = 2
        Adjacent_Bin_Number_B5 = 2
        Adjacent_Bin_Number_B6 = 2
        Adjacent_Bin_Number B7 = 2
        Adjacent Bin Number B8 = 2
    END GROUP = BI\overline{N}}\mathrm{ NUMBE/
    GRO\overline{UP = BIN_THRESHOLD}
        Adjacent Bin Threshold B1 = 10
        Adjacent 'Bin }\mp@subsup{}{}{-}\mathrm{ Threshold B2 = 10
        Adjacent_Bin_Threshold_B3 = 10
        Adjacent_Bin_Threshold_B4 = 10
        Adjacent Bin Threshold B5 = 10
        Adjacent 'Bin-Threshold'B6 = 10
        Adjacent_Bin_Threshold_B7 = 10
        Adjacent_Bin_Threshold_B8 = 10
    END GROUP = BIN THRESHOLD
    END G\overline{ROUP = ADJACENNT BINS}
    GRO\overline{UP}= STARTING_PIX\overline{EL}
        Start pixel B1 = 243
        Start_pixel-B2 = 218
        Start_pixel_B3 = 193
        Start pixel B4 = 168
        Start pixel B5 = 97
        Start_pixel_B6 = 31
        Start_pixel_B7 = 123
        Start pixel B8 = 536
    END_GROÜP = S\overline{TARTING_PIXEL}
    GROUPP = WINDOW_WIDTH
        Window_Samples_B1 = 5874
        Window Samples B2 = 5874
        Window_Samples_B3 = 5874
        Window_Samples_B4 = 5874
        Window Samples B5 = 5874
        Window Samples_B6 = 2937
        Window_Samples_B7 = 5874
        Window_Samples_B8 = 11748
    END GROUP = WINDOW WIDTH
    GRO\overline{UP}= WINDOW LEN\overline{G}TH
        Window_Scans_B1 = 375
        Window_Scans_B2 = 375
        Window_Scans_B3 = 375
        Window_Scans_B4 = 375
        Window_Scans_B5 = 375
        Window Scans B6 = 375
        Window-Scans-B7 = 375
        Window_Scans_B8 = 375
    END_GROUP = WINDOW_LENGTH
    GROU\overline{P = OVERLAPPING SCANS}
        Overlap_Scans_B1 `0
        Overlap_Scans_B2 = 0
        Overlap_Scans_B3 = 0
        Overlap_Scans_B4 = 0
    Overlap_Scans_B5 = 0
    Overlap_Scans_B6 = 0
    Overlap_Scans_B7 = 0
    Overlap_Scans_B8 = 0
    END_GROUP = OVE\overline{RLAPPING_SCANS}
END GROUP = HISTOGRAM
GRO\overline{UP = IMPULSE NOISE}
    Median_Filter_Width = 3
    GROUP = IN TH\overline{RESHOLD}
    B1L Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
    B2L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
```

B3L_Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33$, 10.33, $\overline{10} 0.33,10.33,10.33,10.33)$

B4L_Threshold $=(20.67,20.67,20.67,20.67,20.67,20.67,20.67,20.67,20.67,20.67,20.67$, 20.67, $20.67,20.67,20.67,20.67$)

B5L_Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33$, 10.33, $\overline{1} 0.33,10.33,10.33,10.33)$

B6L_Threshold $=(20.67,20.67,20.67,20.67,20.67,20.67,20.67,20.67)$
B7L_Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33$, 10.33, 10.33, 10.33, 10.33, 10.33)

B8L_Threshold $=$ (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17, $6.89,5.17,6.89,6.89,6.89,5.17,6.89,5.17,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89$, 6.89, 6.89, 6.89, 6.89)

B1H_Threshold $=$ (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, $6.89,6.89,6.89,6.89)$

B2H_Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33$, 10.33, $\overline{1} 0.33,10.33,10.33,10.33)$

B3H_Threshold $=16.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89$, 6.89, 6.89, 6.89, 6.89)

B4H_Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33$, 10.33, 10.33, 10.33, 10.33, 10.33)

B5H Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33$, $10.33, \overline{1} 0.33,10.33,10.33,10.33$)

B6H_Threshold $=(10.33,10.33,10.33,10.33,10.33,10.33,10.33,10.33)$
B7H Threshold $=(6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89,6.89$, $6.89,6.89,6.89,6.89)$

B8H_Threshold $=(4.13,4.13,4.13,5.17,3.44,4.13,4.13,4.13,3.44,4.13,4.13,4.13$, $5.17,4.13,4.13,5.17,4.13,4.13,4.13,4.13,4.13,4.13,4.13,4.13,4.13,4.13,5.17,4.13$, $4.13,4.13,4.13,4.13$)

END_GROUP = IN_THRESHOLD
GROŪP = IN_SIGM̄A_THRESHOLD
B1L_Sigmā_Threşhold $=(13.26,13.38,14.18,13.54,13.13,13.31,13.41,13.97,12.85,14.01$, $\left.13.78, \overline{1} 3.01,{ }^{-} 13.49,13.24,13.89,13.61\right)$ B2L_Sigma_Threshold $=(17.19,17.93,17.86,18.04,17.59,17.48,17.88,17.31,16.88,17.23$, 17.16, $18.06,-17.06,17.55,17.62,17.99)$

B3L_Sigma_Threshold $=(12.69,12.96,12.82,12.52,12.83,12.37,12.88,13.61,12.68,12.85$, 12.44, $\overline{1} 2.36,-12.98,12.61,13.59,12.78)$ B4L_Sigma_Threshold = (27.64, 28.91, 25.15, 25.76, 26.72, 26.80, 29.42, 26.60, 34.63, 29.85, $22.74,22.12,-24.02,22.54,33.38,29.54)$ B5L_Sigma_Threshold $=(19.07,19.18,18.32,19.57,18.22,18.30,18.53,18.47,17.93,18.33$, 18.83, $18.65,-17.87,19.08,18.90,19.00)$ B6L_Sigma_Threshold $=(26.84,25.64,25.97,27.24,26.87,26.77,27.20,27.66)$
B7L_Sigma_Threshold $=(11.70,12.28,12.29,12.35,11.25,11.63,11.89,12.39,11.61,12.65$, $11.85, \overline{12.55},-12.24,12.31,12.62,12.33$)

B8L_Sigma_Threshold $=(7.32,7.23,7.00,7.29,7.24,7.10,7.14,7.15,7.23,6.80,7.33$, $6.68,7.31,6.59,7.21,7.35,7.05,6.78,6.94,6.72,7.28,7.18,7.19,7.20,7.14,7.32,7.27$, $6.96,7.03,7.01,7.19,7.20)$

B1H_Sigma_Threshold $=(9.26,9.34,9.99,9.50,9.20,9.31,9.45,9.88,9.10,9.83,9.67$, 9.08, 9.49, 9.28, 9.74, 9.54)

B2H_Sigma_Threshold $=(12.29,12.88,12.73,12.87,12.59,12.47,12.93,12.50,12.18,12.47$, 12.39, $\overline{1} 3.12,-12.26,12.68,12.76,13.09)$

B3H_Sigma_Threshold $=(8.82,9.02,8.95,8.72,8.97,8.63,9.02,9.57,8.85,8.96,8.63$, 8.58, 9.05, 8.77, 9.55, 8.92)

B4H_Sigma_Threshold $=(18.07,18.16,17.17,17.89,17.65,18.10,18.30,17.97,19.73,18.80$, 17.87, $\overline{18} .31,-18.42,17.81,19.55,18.47)$

B5H Sigma Threshold $=(13.62,13.70,13.06,13.84,12.97,13.05,13.43,13.34,12.74,13.00$, $13.38,13.18,12.73,13.57,13.40,13.49)$ B6H_Sigma_Threshold $=(16.29,15.95,16.25,16.55,16.44,15.90,16.56,17.02)$ B7H_Sigma_Threshold $=(8.00,8.43,8.50,8.55,7.73,8.00,8.19,8.55,7.97,8.73,8.14$, 8.66, 8.46, 8.49, 8.76, 8.53)

B8H_Sigma_Threshold $=(5.12,5.08,4.91,5.17,3.91,4.97,4.19,5.07,4.11,4.86,5.11$, $4.76,5.22,4.73,5.14,5.21,4.98,4.89,4.91,4.82,5.15,4.92,5.09,4.96,5.01,5.12,5.21$, 4.74, 4.22, 4.79, 4.58, 4.60)

END GROUP = IN SIGMA THRESHOLD END_GĒOUP = IMPUZ̄SE_NOĪSE GROŪP = COHERENT_NOITSE

Frequency_Components = 10
GROUP $=$ CN FREQUENCY_PARAMETERS GROUP = $\bar{F} R E Q U E N C Y$ MEANS

B1_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B2_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B3_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B4_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B5_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B6_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B7_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B8_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
END_̄ $\operatorname{GROUP}=$ FREQUENCY_MEANS
GROŪP = FREQUENCY_SIGMAS
B1_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B2_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
B3_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$

```
    B4_Frequency_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5 Frequency Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
    B6_FrequenCy_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7_Frequency_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B8_Frequency_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = FREQUENCY SIGMAS
    GRO\overline{UP}= FREQUENCY_MIN\overline{IMUMS}
    B1_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B2_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B3_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6 Frequency Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B8_Frequency_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = FREQUENCY MINIMUMS
    GRO\overline{UP = FREQUENCY MAXIMUMS}
    B1_Frequency_Ma\overline{x}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B2 Frequency Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B3 Frequency Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4_Frequency_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5_Frequency_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6 Frequency Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7_Frequency_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B8_Frequency_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = FREQQUENCY MAXIMUMS
END GROUP = CN FREQUENCY PARAMETERS
GRO\overline{UPP = CN PHA\overline{SE PARAMETERS}}\mathbf{T}=\overline{E}
    GROUP = \overline{PHASE__MEANS}
        B1_Phase_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B2-Phase-Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B3_Phase_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B4_Phase_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B5 Phase Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B6_Phase_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B7_Phase_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B8_Phase_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END G
    GRO\overline{UP}= PHASE_SIG\overline{M}AS
    B1_Phase_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B2_Phase_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B3_Phase_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4_Phase_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B5_Phase_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B6 Phase Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B7_Phase_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B8_Phase__Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = PHASE SIGMAS
    GROU\overline{P = PHASE MIN\overline{IMUMS}}\mathbf{O}=\mp@code{S}
            B1_Phase_Mi\overline{n}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B2_Phase_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B3 Phase Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B4_Phase_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B5_Phase_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B6 Phase Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B7-Phase-Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B8_Phase_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = PHASE MINIMUMS
    GROUP = PHASE MAXIMUMS
            B1_Phase_Ma\overline{x}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B2_Phase_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B3_Phase_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B4 Phase Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B5_Phase_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B6_Phase__Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B7_Phase Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B8_Phase_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END_\overline{GROUP = PHASE_MAXIMUMS}
END_G\overline{ROUP = CN_PHASE}_PARAMETERS
GRO\overline{UP = CN MAGNIITUDE PARAMETERS}
    GROUP = \overline{MAGNITUDE M}\mathrm{ MEANS}
            B1_Magnitude_Me\overline{an}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B2_Magnitude_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B3_Magnitude_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B4_Magnitude_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B5_Magnitude_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B6 Magnitude Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B7_Magnitude_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
            B8_Magnitude_Mean = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
END GROUP = MAGNITUDE MEANS
GRO\overline{UP = MAGNITUDE_SIGMAS}
```

```
    B1_Magnitude_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
    B2 Magnitude Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
    B3_Magnitude_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4_Magnitude_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5 Magnitude_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6 Magnitude Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7_Magnitude_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B8_Magnitude_Sigma = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = MAGNITUDE SIGMAS
    GROUPP = MAGNITUDE MINIMMUMS
    B1_Magnitude_Min}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00
    B2_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B3 Magnitude Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6 Magnitude Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7 Magnitude Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B8_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END_GROUP = MAGNITUDE MINIMUMS
    GRO\overline{UP = MAGNITUDE MAXIMUMS}
    B1_Magnitude_Ma\overline{x}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B2_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B3 Magnitude Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4-Magnitude-Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7 Magnitude Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
        B8_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END_\overline{GROUP = MA\overline{GNNITUDE_MAXIMUMS}}\mathbf{N}=\mp@code{M}
    END GROUP = CN MAGNITUDE PARAMETERS
END GROUP = COHERENT NOISE
GRO\overline{UP}= DETECTOR_SATU\overline{RATION}
    GROUP = AD CONV\overline{ERTER SATURATION}
    GROUP = \overline{AD CONVERTER SATURATION LOW}
            High AD Level B1 low = (255, 2\overline{5}5,255, 255, 255, 255, 255, 255, 255,255, 255, 255, 255, 255, 255,255)
            High_AD_Level_B2_low = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
            High AD Level B3 low = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
            High AD Level B4 low = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
            High_AD_Level_B5_low = ( 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
            High_AD_Level__B6_low = ( 255,255,255,255,255,255,255,255)
            High_AD Level B7 low = (255,255, 255,255,255,255,255,255,255,255,255,255,255,255,255,255)
            High 'AD Level }\mp@subsup{}{}{-}\mp@subsup{\textrm{B}}{}{-}\mp@subsup{}{}{-}\mathrm{ low =
(255,255,2\overline{5},\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255)
            Low AD Level B1 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
            LOW_AD_Level_B2_low = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
            LOW_AD_Level_B3_low = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
            Low AD Level B4 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
            Low_AD_Level_B5_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
            Low_AD_Level_B6_low = ( 0,0,0,0,0,0,0,0)
            Low_AD_Level_B7_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
            Low AD Level B8 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    END G\overline{ROU䴔 = AD '}
    GRO\overline{UP = AD_CONV̄ERTER_SATURATION_HIG\overline{H}}\mathbf{}=\mathrm{ - }
        High_AD \overline{Level B1 hígh = (255, 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)}
        High AD Level-B2 high = (255, 255, 255,255, 255,255,255,255,255,255,255,255,255,255,255,255)
        High_AD_Level_B3_high = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
        High_AD_Level_B4_high = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
        High AD Level B5 high = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
        High_AD_Level_B6_high = (255,255,255,255,255,255,255,255)
        High_AD_Level_B7_high = (255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
        High AD Level B8 high =
(255,255,2\overline{5},\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255
255,255,255,255,255,255,255,255)
    Low_AD_Level_B1_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low AD Level B2 high = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low AD Level B3 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low_AD_Level_B4_high = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low AD Level B5 high = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low AD Level B6 high = (0,0,0,0,0,0,0,0)
    Low_AD_Level_B7_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low_AD_Level_B8_high = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    END GROUP = AD CONVERTER SATURATION HIGH
END G\overline{ROUP = AD CŌNVERTER S\overline{A}TURATION}
GROU\overline{P = ANALOG }\mp@subsup{}{}{-}\mathrm{ SIGNAL SATUURATION}
    GROUP = ANALOG_SIGNAL_SATURATION LOW
    High Analog Level B1 low =
(255,255,2\overline{5}5,255,\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
    High_Analog_Level_B2_low =
(255,255,2\overline{5}5,255, 255,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
```

```
    High_Analog_Level_B3_low =
(255,255,2\overline{5}5,255,\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
    High_Analog_Level_B4_low =
(255,255,2\overline{5}5,255, \overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
    High Analog Level B5 low =
(255,255,2\overline{5}5,255,\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
        High_Analog_Level_B6_low = (255,255,255,255,255,255,255,255)
        High_Analog_Level B7-low =
(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
    High_Analog_Level_B8_low =
(255,255,255,255, 255,255,255, 255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255)
    Low Analog Level B1 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low_Analog_Level_B2_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low_Analog_Level_B3_low = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low-Analog_Level_B4-low = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low_Analog_Level_B5_low = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    Low_Analog_Level__B6_low = ( 0,0,0,0,0,0,0,0)
        Low_Analog_Level_B7_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low Analog Level B8 low = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
    END_G\overline{ROUP = \overline{A}NALOG_SI\overline{G}NAL_SATURATION_LOW}
    GROŪP = ANALOG_SIGNNAL_SATURATION_HIG\overline{H}
        High_Analog_Level_B1_high =
(255,255,2\overline{5}5,255,\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
        High_Analog_Level_B2_high =
(255,255,2\overline{5},255, 255,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
    High Analog Level B3 high =
(255,255,2\overline{5}5,255,\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
        High_Analog_Level_B4_high =
(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)
        High_Analog_Level_B5_high =
(255,255,2\overline{5}5,255,\overline{2}55,25\overline{5},2\overline{5}5,255,255,255,255,255,255,255,255,255)
        High_Analog_Level_B6_high = (255,255,255,255,255,255,255,255)
        High_Analog_Level_B7_high =
(255,255,255, 255, 255,25立,255, 255,255,255,255,255,255,255,255,255)
    High_Analog_Level_B8_high =
(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,
255,255,255,255,255,255,255,255)
        Low_Analog_Level_B1_high = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low_Analog_Level_B2_high = ( 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low Analog Level_B3 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low_Analog_Level_B4_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low_Analog_Level_B5_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low_Analog_Level_B6__high = (0,0,0,0,0,0,0,0)
        Low_Analog_Level_B7_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
        Low_-Analog_Level_B8_high =
```



```
    END_GROUP = ANALOG_SIGNAL_SATURATION_HIGH
    END GROUP = ANALOG SİGNAL SA
END_G\overline{ROUP = DETECTOR_SATURATION}
GRO\overline{UP}= REFERENCE TEMPERATURES
    GROUP = REFERENCE LOW
    B1L_RTemp_Prelaūnch = 25.00
    B1L_RTemp_Postlaunch = 25.00
    B1L RTemp Current = 25.00
    B2L-RTemp-Prelaunch = 25.00
    B2L__RTemp_Postlaunch = 25.00
    B2L_RTemp_Current = 25.00
    B3L RTemp Prelaunch = 25.00
    B3L_RTemp_Postlaunch = 25.00
    B3L_RTemp_Current = 25.00
    B4L_RTemp_Prelaunch = 25.00
    B4L_RTemp_Postlaunch = 25.00
    B4L_RTemp_Current = 25.00
    B5L_RTemp_Prelaunch = -182.1
    B5L RTemp Postlaunch = -182.1
    B5L_RTemp_Current = -182.1
    B6L_RTemp_Prelaunch = -182.2
    B6L RTemp Postlaunch = -182.1
    B6L RTemp Current = -182.2
    B7L_RTemp_Prelaunch = -182.1
    B7L_RTemp_Postlaunch = -182.1
    B7L_RTemp_Current = -182.1
    B8L_RTemp_Prelaunch = 25.00
    B8L_RTemp_Postlaunch = 25.00
    B8L-RTemp-Current = 25.00
END G\overline{ROUP = REFERENCE LOW}
```



```
    B1H_RTemp_Prelaunch = 25.00
    B1H_RTemp_Postlaunch = 25.00
    B1H_RTemp_Current = 25.00
```

```
    B2H_RTemp_Prelaunch = 25.00
    B2H RTemp Postlaunch = 25.00
    B2H_RTemp_Current = 25.00
    B3H_RTemp_Prelaunch = 25.00
    B3H_RTemp_Postlaunch = 25.00
    B3H_RTemp_Current = 25.00
    B4H_RTemp_Prelaunch = 25.00
    B4H_RTemp_Postlaunch = 25.00
    B4H_RTemp Current = 25.00
    B5H_RTemp_Prelaunch = -182.1
    B5H_RTemp_Postlaunch = -182.1
    B5H_RTemp Current = -182.1
    B6H RTemp Prelaunch = -182.2
    B6H_RTemp_Postlaunch =-182.1
    B6H_RTemp_Current = -182.2
    B7H-}\mathrm{ RTemp Prelaunch = -182.1
    B7H_RTemp_Postlaunch = -182.1
    B7H_RTemp_Current = -182.1
    B8H_RTemp_Prelaunch = 25.00
    B8H-RTemp Postlaunch = 25.00
    B8H_RTemp_Current = 25.00
    END_G\overline{ROUP = REFERENCE_HIGH}
END G\overline{ROUP = REFERENCE TEMPERATURES}
GROÜP = SENSITIVITY_TEMPERATURES
    GROUP = SENSITIVITY_LOW
    B1L_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0 )
    B1L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0}, 0.0 \overline{)}
    B1L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0 )
    B2L_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0}, 0.0 )
    B2L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0}, 0.0 )
    B2L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0})
    B3L_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0}, 0.0 )
    B3L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0 )
    B3L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0 )
    B4L_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0 )
    B4L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0},0.0 )
    B4L_SCoeff Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0 )
    B5L_SCoeff_Prelaunch =( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0},0.0 )
    B5L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0},0.0 )
    B5L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0 )
    B6L_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    B6L_SCoeff_Postlaunch =( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B6L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    B6L-SCoeffŌff Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    B6L_SCoeffOff_Postlaunch =( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B6L_SCoeffOff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    B7L_SCoeff_Prēlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0}, 0.0 )
    B7L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0},0.0 )
    B7L_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0})
    B8L_SCoeff_Prelaunch =( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    B8L_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0},0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    B8L_SCoeff_Current = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 )
    END_GROUP = SENSITIVITY_LOW
    GRO\overline{UP}= SENSITIVITY_HIG\overline{H}
        B1H_SCoeff_Prelaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0}, 0.0 )
            B1H_SCoeff_Postlaunch = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0},0.0 )
    B1H_SCoeff_Current = ( 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.\overline{0})
```

B2H_SCoeff_Prelaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0$)

B2H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0 \overline{)}$

B2H_SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0$)

B3H_SCoeff_Prelaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0 \overline{)}$

B3H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0)$

B3H_SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}$)

B4H_SCoeff_Prelaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0$)

B4H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0$)

B 4 H _SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}$)

B5H_SCoeff_Prelaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0$)

B5H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0$ T

B5H_SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0})$

B6H_SCoeff_Prelaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B6H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B6H_SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
$\mathrm{B6H}$ SCoeffōffPrelaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
$\mathrm{B} 6 \mathrm{H}^{-}$SCoeffoff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B6H_SCoeffoff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B7H_SCoeff_Prēlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$,
$0.0,0 . \overline{0}, 0.0 \overline{)}$
B7H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0$)

B7H_SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0})$

 B8H_SCoeff_Postlaunch $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.01)$ B8H_SCoeff_Current $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,-0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1$

END_GROUP = SENSITIVITY_HIGH
END_GROUP = SENSITIVITY_TEMPERATURES
GROŪP $=$ LAMP_RADIANCE
GROUP $=$ TRENDING_COEFFS Lamp1_Coeffs $=-(+0.0,+0.0)$ Lamp2_Coeffs $=(+0.0,+0.0)$
END_GROUP = TRENDING_COEFFS
GROŪP = LAMP_RADIANCE_LOW B1L_Rad_Stāte1_Prelāunch =
(45.787, 45. $377,46.026,45.784,46.332,45.894,46.752,45.929,46.900,46.087,46.742,45.694,46.361,45.56$ 1,46.177,45.732) B1L_Rad_State1_Postlaunch =
$(50.0,5 \overline{0} .0, \overline{5} 0.0,50 \overline{-} 0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0)$ B1L_Rad_statel_Current $=$
(45.787, $45 . \overline{3} 77,46 . \overline{0} 26,45.784,46.332,45.894,46.752,45.929,46.900,46.087,46.742,45.694,46.361,45.56$ 1,46.177,45.732) B1L Rad State2 Prelaunch =
$(45.803,45 . \overline{3} 65,45.935,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33$ 5,45.981,45.577) B1L_Rad_State2_Postlaunch =
$(50.0,5 \overline{0} \cdot 0, \overline{5} 0.0,50 \cdot 0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0)$ B1L_Rad_state2 Current $=$
$(45.803,45 . \overline{3} 65,45.935,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33$ 5,45.981,45.577)

B1L_Rad_State3_Prelaunch =
$(81.684,80 . \overline{8} 10,81.903,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83$ 9, 82.374, 81.345) B1L_Rad_State3_Postlaunch =
$(100.0, \overline{100 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) ~}$ B1L_Rad_State3_Current =
$(81.684,80 . \overline{8} 10,81 . \overline{9} 03,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83$ 9, 82.374, 81.345) B2L_Rad_State1_Prelaunch $=$
(92.855, $86.584,93.161,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82$ 6,93.658, 85.806) B2L_Rad_State1_Postlaunch =
$(100.0, \overline{100.0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$

B2L_Rad_State1 Current =
(92.855, $86.584,93 . \overline{1} 61,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82$ 6,93.658,85.806)

B2L_Rad_State2_Prelaunch $=$
($100.78 \overline{7}, 95.042,10 \overline{1} .110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41$ 3,95.003,101.319,93.884)

B2L_Rad_State2_Postlaunch =
$(100.0, \overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B2L_Rad_State2_Current =
(100.787 $, 95.042,10 \overline{1} .110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41$ 3,95.003,101.319,93.884) B2L_Rad_State3_Prelaunch =
(183.71可,171.503,1要4.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468, $186.974,171.568,185.010,169.558$) B2L_Rad_State3_Postlaunch =
 B2L_Rad_State3_Current =
($183.71 \overline{0}, 17 \overline{1} .503,1 \overline{8} 4.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468$, 186.974,171.568,185.010,169.558)

B3L_Rad_State1_Prelaunch =
($74.771,68 . \overline{6} 94,75 . \overline{6} 03,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87$ 4,74.268,68.658) B3L_Rad_State1_Postlaunch $=$
$(60.0,6 \overline{0} \cdot 0, \overline{6} 0.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60 \cdot 0,60.0,60.0,60.0,60.0)$ B3L_Rad_State1_Current =
(74.771, $68 . \overline{6} 94,75 . \overline{6} 03,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87$ 4,74.268,68.658) B3L_Rad_State2_Prelaunch $=$
($83.835,78 . \overline{1} 03,84 . \overline{8} 06,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17$ 7,83.013,77.903)

B3L_Rad_State2_Postlaunch =
$(60.0,6 \overline{0} .0, \overline{60} \cdot 0,60 \cdot 0,60.0,60.0,60.0,60.0,60.0,60.0,60 \cdot 0,60 \cdot 0,60.0,60.0,60.0,60.0)$ B3L_Rad_State2_Current =
($83.835,78 . \overline{1} 03,84 . \overline{8} 06,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17$ 7,83.013,77.903) B3L_Rad_State3_Prelaunch $=$
($148.35 \overline{8}, 13 \overline{6} .935,1 \overline{5} 0.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203$, 149.181,137.271,147.210,136.848) B3L_Rad_State3_Postlaunch =
$(120.0, \overline{1} 20 . \overline{0}, 120.0,120.0,120 \cdot 0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0)$ B3L_Rad_State3_Current =
$(148.35 \overline{8}, 13 \overline{6} .935,1 \overline{5} 0.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203$, 149.181,137.271,147.210,136.848) B4L_Rad_State1_Prelaunch =
($90.684,-86 . \overline{8} 13,91 . \overline{6} 48,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79$ 4, 89.926, 87.610) B4L_Rad_State1_Postlaunch $=$
(100.0, $\overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B4L_Rad_State1_Current =
$(90.684,86 . \overline{8} 13,91 . \overline{6} 48,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79$ 4,89.926,87.610) B4L_Rad_State2_Prelaunch =
(99.545, $97 . \overline{7} 81,100-581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97$.661,98.474,98.477) B4L Rad State2 Postlaunch $=$
(100.0, $100 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B4L_Rad_State2_Current =
(99.545, $97 . \overline{7} 81,100.581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97$.661,98.474,98.477) B4L_Rad_State3_Prelaunch =
($180.29 \overline{7}, 17 \overline{4} .745,1 \overline{8} 2.339,171.777,182.794,174.990,182.165,176.045,180.939,174.523,179.635,174.865$, 180.368,174.777,178.348,176.381) B4L_Rad_State3_Postlaunch =
 B4L_Rad_State3_Current =
($180.29 \overline{7}, 17 \overline{4} .745,1 \overline{8} 2.339,171.777,182.794,174.990,182.165,176.045,180.939,174.523,179.635,174.865$, 180.368,174.777,178.348,176.381) B5L_Rad_State1_Prelaunch =
(22.307,21. $\overline{7} 10,22 . \overline{1} 66,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53$ 3,22.030,21.432) B5L_Rad_State1_Postlaunch =
$(20.0,2 \overline{0} \cdot 0, \overline{2} 0.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0)$ B5L_Rad_State1_Current =
$(22.307,21 . \overline{7} 10,22 . \overline{1} 66,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53$
3,22.030,21.432) B5L_Rad_State2_Prelaunch =
$(23.397,23 . \overline{4} 05,23 . \overline{2} 70,23.231,23.191,23.271,23.182,23.288,23.190,23.108,23.053,22.976,23.089,23.20$ 4,23.054,23.045) B5L_Rad_State2_Postlaunch $=$
$(20.0,2 \overline{0} .0, \overline{2} 0.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0)$

B5L Rad State2 Current $=$
(23.397, $23 . \overline{4} 05,23 . \overline{2} 70,23.231,23.191,23.271,23.182,23.288,23.190,23.108,23.053,22.976,23.089,23.20$ 4,23.054,23.045)

B5L_Rad_State3_Prelaunch =
(43.679, $43 . \overline{1} 13,43 . \overline{4} 29,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83$ 9,43.069,42.487)

B5L_Rad_State3_Postlaunch =
$(50.0,5 \overline{0} \cdot 0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50 \cdot 0,50.0,50.0,50.0,50.0)$ B5L_Rad_State3_Current =
(43.679-43. $\overline{1} 13,43 . \overline{4} 29,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83$ 9,43.069,42.487) B7L Rad State1 Prelaunch $=$
(12.224,11. $\overline{0} 10,12 . \overline{1} 22,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95$ 3,12.035,10.990) B7L_Rad_State1_Postlaunch =
$(10.0,1 \overline{0} .0, \overline{10} 0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0)$
B7L_Rad_State1_Current =
$(12.224,11 . \overline{0} 10,12 . \overline{1} 22,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95$ 3,12.035,10.990)

B7L_Rad_State2 Prelaunch =
(12.661,11. $\overline{9} 45,12 . \overline{5} 29,11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80$ 1,12.390,11.835) B7L Rad State2 Postlaunch =
$(10.0,1 \overline{0} .0, \overline{1} 0.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0)$ B7L_Rad State2 Current $=$
$(12.661,11.945,12.529,11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80$ 1,12.390,11.835) B7L_Rad_State3_Prelaunch =
$(24.885,22 . \overline{9} 55,24 . \overline{6} 51,22.925,24.702,22.848,24.685,22.938,24.678,22.807,24.601,22.863,24.632,22.75$ 4,24.425,22.825) B7L_Rad_State3_Postlaunch =
$(30.0,3 \overline{0} \cdot 0, \overline{3} 0.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0)$ B7L_Rad_State3_Current =
$(24.885,22 . \overline{9} 55,24 . \overline{6} 51,22.925,24.702,22.848,24.685,22.938,24.678,22.807,24.601,22.863,24.632,22.75$ 4,24.425,22.825) B8L_Rad_State1_Prelaunch =
(99.913, $88 . \overline{8} 76,102.090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540$, 91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8L_Rad_State1_Postiaunch =
(110.0, $\overline{1} 10 . \overline{0}, 110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0$, $110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0)$ B8L_Rad_State1_Current =
(99.913, $88 . \overline{8} 76,102-090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540$, $91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168$,103.097,90.113,102.637,90.968,101.805,89.732) B8L_Rad_State2_Prelaunch =
(93.948, $84 . \overline{4} 23,96 . \overline{0} 89,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73$ $9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2$ $76,96.015,86.142,95.205,85.060)$ B8L_Rad_State2_Postlaunch =
(110.0, $\overline{1} 10 . \overline{0}, 110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0$, $110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0)$ B8L_Rad_State2_Current =
(93.948, $84 . \overline{4} 23,96 . \overline{0} 89,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73$ $9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2$ $76,96.015,86.142,95.205,85.060)$ B8L_Rad_State3_Prelaunch =
(182.440,163.589,186.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231, $192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1$ 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) B8L_Rad_State3_Postlaunch =
(220.0, $\overline{2} 20 . \overline{0}, 220.0,220.0,220.0,220.0,220.0,220.0,220 \cdot 0,220.0,220 \cdot 0,220.0,220 \cdot 0,220.0,220.0,220.0$, $220.0,220.0,220.0,220.0,220.0,220.0,220 \cdot 0,220.0,220.0,220.0,220 \cdot 0,220.0,220.0,220.0,220.0,220.0)$ B8L_Rad_State3 Current =
($182.44 \overline{0}, 16 \overline{3} .589,1 \overline{8} 6.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231$, $192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1$ $93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442)$

END_GROUP = LAMP_RADIANCE_LOW
GROŪP = LAMP_RADIANCE_HIGH B1H_Rad_Stāte1_Prelaunch $=$
(45.787, 45. $\overline{3} 77,46 . \overline{0} 26,45.784,46.332,45.894,46.752,45.929,46.900,46.087,46.742,45.694,46.361,45.56$ 1,46.177,45.732)

B1H_Rad_State1_Postlaunch $=$
$(50.0,5 \overline{0} .0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0)$ B1H_Rad_State1_Current =
(45.787, $45 . \overline{3} 77,46 . \overline{0} 26,45.784,46.332,45.894,46.752,45.929,46.900,46.087,46.742,45.694,46.361,45.56$ 1,46.177,45.732) B1H_Rad_State2_Prelaunch $=$
($45.803,45 . \overline{3} 65,45 . \overline{9} 35,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33$ 5,45.981,45.577)

B1H Rad State2 Postlaunch $=$
$(50.0,5 \overline{0} .0, \overline{5} 0.0,50-0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0)$
B1H_Rad_State2_Current =
$(45.803,45 . \overline{3} 65,45 . \overline{9} 35,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33$ 5,45.981,45.577) B1H_Rad State3 Prelaunch $=$
($81.684,80 . \overline{8} 10,81 . \overline{9} 03,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83$ 9, 82.374, 81.345)

B1H Rad State3 Postlaunch $=$
(100.0, $\overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B1H_Rad_State3_Current =
($81.684,80 . \overline{8} 10,81 . \overline{9} 03,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83$ 9, 82.374,81.345) B2H_Rad_State1_Prelaunch =
($92.855,86 . \overline{5} 84,93 . \overline{1} 61,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82$ 6,93.658,85.806) B2H_Rad_State1_Postlaunch =
(100.0, $\overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B2H_Rad_State1_Current =
($92.855,86 . \overline{5} 84,93 . \overline{1} 61,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82$ 6,93.658, 85.806) B2H_Rad_State2_Prelaunch =
(100.78 $\overline{7}, 95.042,10 \overline{1} .110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41$ 3,95.003,101.319,93.884) B2H_Rad_State2_Postlaunch =
(100.0, $\overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B2H_Rad_State2_Current =
($100.78 \overline{7}, 95.042,10 \overline{1} .110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41$ 3,95.003,101.319,93.884) B2H Rad_State3 Prelaunch $=$
(183.71 $\overline{0}, 17 \overline{1} .503,1 \overline{8} 4.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468$, 186.974,171.568,185.010,169.558) B2H_Rad_State3_Postlaunch $=$
 B2H_Rad_State3_Current =
(183.71" $17 \overline{1} \overline{1} .503,1 \overline{8} 4.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468$, 186.974,171.568,185.010,169.558) B3H_Rad_State1 Prelaunch =
($74.771 \overline{-} 68 . \overline{6} 94,75 . \overline{6} 03,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87$ 4,74.268,68.658) B3H Rad Statel Postlaunch =
$(60.0,6 \overline{0} .0, \overline{6} 0.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0)$ B3H_Rad_State1_Current =
(74.771, $68 . \overline{6} 94,75 . \overline{6} 03,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87$ 4,74.268,68.658) B3H_Rad_State2_Prelaunch $=$
($83.835,78 . \overline{1} 03,84 . \overline{8} 06,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17$ 7,83.013,77.903) B3H_Rad_State2_Postlaunch =
$(60.0,6 \overline{0} \cdot 0, \overline{6} 0.0,60 \cdot 0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0,60.0)$ B3H_Rad_State2_Current $=$
($83.835 \overline{\text { h }} 78 . \overline{1} 03,84 . \overline{8} 06,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17$ 7,83.013,77.903) B3H_Rad_State3_Prelaunch =
$(148.35 \overline{8}, 13 \overline{6} .935,1 \overline{5} 0.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203$, 149.181,137.271,147.210,136.848) B3H_Rad_State3_Postlaunch =
$(120.0, \overline{1} 20 . \overline{0}, 120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0)$ B3H_Rad_State3_Current =
$(148.35 \overline{8}, 13 \overline{6} .935,1 \overline{5} 0.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203$, 149.181,137.271,147.210,136.848) B4H_Rad_State1_Prelaunch =
($90.684 \overline{-} 86 . \overline{8} 13,91 . \overline{6} 48,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79$ 4, 89.926,87.610) B4H_Rad_State1_Postlaunch =
$(100.0, \overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B4H_Rad_State1_Current =
$(90.684,86 . \overline{8} 13,91 . \overline{6} 48,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79$ 4, 89.926, 87.610) B4H_Rad_State2_Prelaunch =
(99.545,97.781, 100.581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97 . 661,98.474,98.477) B4H Rad State2 Postlaunch =
(100.0, $\overline{1} 00 . \overline{0}, 100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B4H_Rad_State2_Current =
(99.545,97.781,100.581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97 .661,98.474,98.477) B4H_Rad_State3_Prelaunch $=$
(180.29구, 17 $\overline{4} .745,1 \overline{8} 2.339,171.777,182.794,174.990,182.165,176.045,180.939,174.523,179.635,174.865$, 180.368,174.777,178.348,176.381)

B4H Rad State3 Postlaunch $=$
 B4H_Rad_State3_Current =
$(180.29 \overline{7}, 17 \overline{4} .745,1 \overline{8} 2.339,171.777,182.794,174.990,182.165,176.045,180.939,174.523,179.635,174.865$, 180.368,174.777,178.348,176.381)

B5H Rad Statel Prelaunch =
$(22.307,21 . \overline{7} 10,22 . \overline{1} 66,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53$ 3,22.030,21.432)

B5H Rad State1 Postlaunch $=$
$(20.0,2 \overline{0} \cdot 0, \overline{2} 0.0,20 \cdot 0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0)$ B5H_Rad_State1_Current =
$(22.307,21 . \overline{7} 10,22 . \overline{1} 66,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53$ 3,22.030,21.432)

B5H_Rad_State2_Prelaunch =
(23.397,23. $\overline{4} 05,23 . \overline{2} 70,23.231,23.191,23.271,23.182,23.288,23.190,23.108,23.053,22.976,23.089,23.20$ 4,23.054,23.045)

B5H_Rad_State2_Postlaunch =
$(20.0,2 \overline{0} \cdot 0, \overline{2} 0.0,20 \cdot 0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0,20.0)$ B5H_Rad_State2_Current =
(23.397, $23 . \overline{4} 05,23 . \overline{2} 70,23.231,23.191,23.271,23.182,23.288,23.190,23.108,23.053,22.976,23.089,23.20$ 4,23.054,23.045) B5H_Rad_State3_Prelaunch =
(43.679-43. $\overline{1} 13,43 . \overline{4} 29,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83$ 9,43.069,42.487) B5H_Rad_State3_Postlaunch =
$(50.0,5 \overline{0} .0, \overline{5} 0.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0,50.0)$ B5H_Rad_State3_Current =
$(43.679,43 . \overline{1} 13,43 . \overline{4} 29,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83$ 9,43.069,42.487) B7H_Rad_State1_Prelaunch =
(12.224, 11. $\overline{0} 10,12 . \overline{1} 22,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95$ 3,12.035,10.990) B7H_Rad_State1_Postlaunch =
$(10.0,1 \overline{0} .0, \overline{10} 0.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0)$ B7H_Rad_State1_Current =
(12.224,11. $\overline{0} 10,12 . \overline{1} 22,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95$ 3,12.035,10.990) B7H_Rad_State2_Prelaunch =
(12.661,11. $945,12 . \overline{5} 29,11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80$ 1,12.390,11.835) B7H_Rad_State2_Postlaunch =
(10.0,10.0, $\overline{10} 0.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0,10.0) ~$ B7H_Rad_State2_Current $=$
$(12.661,11 . \overline{9} 45,12 . \overline{5} 29,11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80$ 1,12.390,11.835) B7H_Rad_State3_Prelaunch $=$
$(24.885,22 . \overline{9} 55,24 . \overline{6} 51,22.925,24.702,22.848,24.685,22.938,24.678,22.807,24.601,22.863,24.632,22.75$ 4,24.425,22.825) B7H_Rad_State3_Postlaunch =
$(30.0,3 \overline{0} \cdot 0, \overline{3} 0.0,30 \cdot 0,30 \cdot 0,30 \cdot 0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0,30.0)$ B7H_Rad_State3_Current =
$(24.885,22 . \overline{9} 55,24 . \overline{6} 51,22.925,24.702,22.848,24.685,22.938,24.678,22.807,24.601,22.863,24.632,22.75$ 4, 24.425,22.825) B8H_Rad_State1_Prelaunch =
(99.913, 88. $\overline{8} 76,102$. $090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540$, 91.315,104.027,90.476,105.156, 89.298,105.865, 89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805, 89.732) B8H Rad_Statel_Postlaunch =
(110.0, $\overline{1} 10 . \overline{0}, 110.0 \overline{1} 110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0$, $110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0)$ B8H_Rad_State1_Current =
(99.913, 88. $\overline{8} 76,102$ - $090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540$, 91.315,104.027,90.476,105.156, 89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805, 89.732) B8H_Rad_State2_Prelaunch =
($93.948,84 . \overline{4} 23,96 . \overline{0} 89,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73$ $9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2$ 76 ,96.015, 86.142,95.205, 85.060) B8H_Rad_State2_Postlaunch =
$(110.0, \overline{1} 10 . \overline{0}, 110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0$, $110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0)$ B8H_Rad_State2_Current =
($93.948,84 . \overline{4} 23,96 . \overline{0} 89,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73$ $9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2$ $76,96.015,86.142,95.205,85.060)$ B8H_Rad_State3_Prelaunch $=$
(182.44 $\overline{0}, 16 \overline{3} .589,1 \overline{8} 6.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231$, $192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1$ $93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442$)

B8H_Rad_State3_Postlaunch =
(220.0, $220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0$, $220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0,220.0)$ B8H_Rad_State3_Current =
(182.44 $\overline{0}, 16 \overline{3} .589,1 \overline{8} 6.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231$, $192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1$ $93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442$)

END_GROUP = LAMP_RADIANCE_HIGH
END G $\bar{R} O U P=$ LAMP R $\bar{A} D I A N C E$
GROUP = LAMP_REFERENCE
Lmp_Rtemp_PreLaunch $=(+25.76,+25.76,+25.80,-168.6,+25.09,+25.50,+25.41$,
$+28.9 \overline{8},+28 . \overline{9} 8,+24.45,+27.35,+24.45,+23.81,+28.65)$
Lmp_Rtemp_Postlaunch $=(+25.0,+25.00,+25.00,-168.6,+25.00,+25.00,+25.00$,
$+25.0 \overline{0},+25 . \overline{0} 0,+25.00,+25.00,+25.00,+25.00,+25.00)$
Lmp_Rtemp_Current $=(+25.76,+25.76,+25.80,-168.6,+25.09,+25.50,+25.41$,
$+28.98,+28.98,+24.45,+27.35,+24.45,+23.81,+28.65)$
END GROUP = LAMP REFERENCE
GROŪP = REFLECTIVE_IC_COEFFS
GROUP = REFLECT $\bar{I} C \bar{C} O E F F S$ LOW
B1L_Coefficients ${ }^{-}$Detectōr1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B1L_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B1L_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$,
$0.0,0.0,0.0,0.0,0.0,0.0)$
B1L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detectorl0 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B1L_Coefficients_Detectorl2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B1L_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B1L_Coefficients_Detectorl $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1L_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B1L_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$

B2L_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B2L_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2L_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B2L_Coefficients_Detector $5=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0, ~ 0.0)$

B2L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B2L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B2L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B2L_Coefficients_Detectorl0 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2L_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B2L_Coefficients_Detectorl2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2L_Coefficients_Detectorl3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$ B2L_Coefficients_Detectorl4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B2L_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B2L_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B3L_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, ~ 0.0,0.0)$

B3L_Coefficients_Detector $3=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B3L_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B3L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B3L_Coefficients_Detectorl0 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0, ~ 0.0)$

B3L_Coeffícients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3L_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0, ~ 0.0)$

B3L_Coefficients_Detectorl $6=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B4L_Coefficients_Detectorl $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, ~ \overline{0.0, ~ 0.0)}$

B4L_Coefficients_Detector $3=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B4L_Coefficients_Detector4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0, ~ 0.0)$

B4L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B4L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B4L_Coefficients_Detectorlo $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coefficients_Detector11 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, \quad 0.0, ~ 0.0, ~ \overline{0} .0,0.0)$

B4L_Coefficients_Detectorl2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, ~ 0.0)$

B4L_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coeffícients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4L_Coeffícients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B5L_Coefficients_Detectorl $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$
$0.0,0 . \overline{0}, 0.0,0.0, ~ \overline{0.0, ~ 0.0)}$
B5L_Coefficients_Detector $3=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B5L_Coefficients_Detector4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B5L_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, ~ \overline{0} 0,0.0)$

B5L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B5L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B5L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B5L_Coefficients_Detectorll $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detectorl3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5L_Coefficients_Detectorl5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B5L_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B7L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, ~ 0.0)$

B7L_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0,0.0)$

B7L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0, ~ 0.0)$

B7L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B7L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B7L_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B7L_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, \quad 0.0,0.0, \overline{0} .0,0.0)$

B7L_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, ~ \overline{0.0, ~ 0.0)}$

B8L_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B8L_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, ~ \overline{0} .0,0.0)$

B8L_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0,0.0)$

B8L_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detectorl3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, ~ \overline{0} 0,0.0)$

B8L_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detector17 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector18 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, ~ 0.0,0.0)$

B8L_Coefficients_Detectorl9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector20 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detector $21=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector22 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector23 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detector2 $24=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector25 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8L_Coefficients_Detector26 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector27 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector28 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector29 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coeffícients_Detector $30=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector $31=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8L_Coefficients_Detector $32=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

END_GROUP = REFLECT_IC_COEFFS_LOW
GROŪP = REFLECT_IC_ $\bar{C} O E \overline{F F S}$ _HIG \bar{H}
B1H_Coefficients_Detectōr1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$
$0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$
B1H_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B1H_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, ~ 0.0, ~ 0.0, ~ \overline{0} 0, ~ 0.0)$

B1H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1H_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B1H_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1H_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$,
$0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$
B1H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1H_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, \quad 0 . \overline{0}, \quad 0.0,0.0, \overline{0} .0,0.0)$ B1H_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1H_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, ~ 0.0, ~ 0.0, ~ \overline{0} .0, ~ 0.0)$ B1H_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B1H_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B1H_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B1H_Coefficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2H_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$ $\mathrm{B} 2 \mathrm{H}_{-}$Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$

B2H_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B 2 H Coefficients_Detector $5=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$,
$0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B2H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B2H_Coefficients_Detector $7=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B2H_Coefficients_Detector $8=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B2H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, ~ 0.0, ~ 0.0, ~ 0.0, ~ 0.0)$

B 2 H Coefficients_Detectorlo $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B2H_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} 0,0.0)$

B2H_Coefficients_Detectorl2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B 2 H Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B2H_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B 2 H Coefficients_Detectorlis $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B 2 H Coefficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B3H_Coefficients_Detectorl $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3H_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$ B3H_Coefficients_Detector $3=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, ~ \overline{0} 0,0.0)$ B3H_Coefficients_Detector $5=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B3H_Coefficients_Detector $7=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B3H_Coefficients_Detector $8=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B3H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0, ~ 0.0, ~ 0.0, ~ 0.0, ~ 0.0)$ B3H_Coefficients_Detectorlo $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, \quad 0.0,0.0, \overline{0} .0,0.0)$

B3H_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B3H_Coefficients_Detectorl2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B3H_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B3H_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B3H_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B3H_Coefficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$ B 4 H Coefficients_Detector $1=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4H_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$ B4H_Coefficients_Detector $3=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ $\mathrm{B} 4 \mathrm{H}_{-}$Coefficients_Detector $5=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$,
$0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$
B4H_Coefficients_Detector $7=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B4H_Coefficients_Detector $8=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B4H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$ B 4 H Coefficients_Detectorlo $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B4H_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B 4 H _Cofficients_Detector $12=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B 4 H Coefficients_Detectorl3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \quad 0.0,0.0)$ B4H_Coefficients_Detectorl4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B4H_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B 4 H Coefficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5H_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B5H_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B5H_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, ~ \overline{0} .0, ~ 0.0)$ 'B5H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5H_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B5H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, ~ 0.0,0.0)$

B5H_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$ B5H_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, ~ \overline{0} .0,0.0)$ B5H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5H_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, ~ 0.0, ~ 0.0)$ B5H_Coefficients_Detectorl1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B5H_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ ${ }^{\prime} \mathrm{B} 5 \mathrm{H}$ _Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0} .0,0.0)$

B5H_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0, ~ 0.0)$ B5H_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B5H_Coefficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B7H_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$ B7H_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, ~ \overline{0.0}, 0.0)$

B7H_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B7H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7H_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B7H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B7H_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B7H_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$ B7H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7H_Coefficients_Detectorl0 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B7H_Coefficients_Detectorll $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7H_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B7H_Coeffícients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B7H_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, ~ 0 . \overline{0}, ~ 0.0, ~ 0.0, ~ \overline{0} .0, ~ 0.0)$ B7H_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$ B7H_Coefficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$ $0.0, \quad 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, ~ 0 . \overline{0}, 0.0, ~ 0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector $4=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, ~$
$0.0, ~ 0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8H_Coefficients_Detector $7=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8H_Coefficients_Detector $8=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B 8 H Coefficients_Detectorlo $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detector11 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \quad 0.0,0.0)$ B8H_Coefficients_Detectorl2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detectorl4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \quad 0.0,0.0)$

B 8 H Coefficients_Detector $15=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B 8 H _Cofficients_Detectorl6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0,0.0,0.0)$

B 8 H Coefficients_Detectorl7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detectorl8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B 8 H Coefficients_Detectorlig $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detector20 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B 8 H Coefficients_Detector21 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8H_Coefficients_Detector22 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector23 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B8H_Coefficients_Detector $24=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector25 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, \quad 0.0,0.0, \overline{0} .0,0.0)$ B8H Coefficients_Detector26 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0, \quad 0 . \overline{0}, \quad 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detector27 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \quad 0.0,0.0)$ B 8 H _Cofficients_Detector $28=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$

B8H_Coefficients_Detector29 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B8H_Coefficients_Detector $30=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0.0,0.0,0.0,0.0,0.0)$

B 8 H Coefficients_Detector $31=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} .0,0.0)$ B 8 H Coefficients_Detector $32=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0$, $0.0,0 . \overline{0}, 0.0,0.0, \overline{0} 0,0.0)$

END_GROUP = REFLECT_IC_COEFFS_HIGH
END_G $\bar{R} O U P=$ REFLECTIVE_IC_COEFF \bar{S}
GROŪP = B6 VIEW COEFFS
B6 View $\overline{C o e f f i ̄ i e n t s ~ D e t e c t o r l ~=~}$
$(0.2 \overline{0} 55,0.1770,0.0220, \overline{0} .0220,0.0066,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.708862512,+1.0,+0.986347162)$ B6_View_Coefficients_Detector2 =
$(0.2 \overline{1} 20,0.1775,0.0256, \overline{0} .0256,0.0077,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.711234307,+1.0,+1.000250279)$ B6_View_Coefficients_Detector3 =
$(0.1 \overline{9} 90,0.1780,0.0252, \overline{0} .0252,0.0075,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.709157515,+1.0,+0.988932392)$ B6_View_Coefficients_Detector4 =
$(0.2070,0.1805,0.0253,0.0253,0.0076,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.711378831,+1.0,+0.998771185)$ B6_View_Coefficients_Detector5 =
$(0.1 \overline{8} 75,0.1810,0.0242, \overline{0} .0242,0.0072,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.710184278,+1.0,+0.98391741)$
B6 View_Coefficients_Detector6 =
$(0.2 \overline{0} 75,0.1815,0.0242, \overline{0} .0242,0.0072,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.710184278,+1.0,+0.995997411)$ B6_View_Coefficients_Detector7 =
$(0.1 \overline{9} 55,0.1785,0.0232, \overline{0} .0232,0.0069,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.710531517,+1.0,+0.98538612)$
B6 View_Coefficients_Detector8 =
$(0.2 \overline{2} 30,0.1815,0.0226, \overline{0} .0226,0.0068,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.706144426,+1.0,+0.997189057)$
END_GROUP = B6_VIEW_COEFFS
GROŪP = B6 TEM \bar{P} MOD $\bar{E} L$ COEFFS
B6_Temp_Model_Parm $=(+1.0178,+0.0,+0.0,+0.0,+0.0,+0.0)$
END_- ${ }^{\text {GROUP }}=$ B6_TEMP_MODEL_COEFFS
GROUP $=$ THERMI $\bar{S} T O R ~ \overline{C O E F F S}$
Black_Body_Isolated_Temp $=(16.778000,0.092912,0.00011322,0,0,0)$
Black_Body_Control_Temp $=(51.724000,-0.16368,0.000071646,0,0,0)$
Cold_FP_Coñtrol_Temp $=(110.350500,-0.10204,0,0,0,0)$
Cold ${ }^{-} \mathrm{FP}^{-}$Monitor ${ }^{-}$Temp $=(109.718500,-0.10177,0,0,0,0)$
Cal_Shūter_Flağ_Temp $=(37.23,-0.16878,3.8161 \mathrm{E}-05,0.0,0.0,0.0)$

```
    Backup_Shutter_Flag_Temp = (37.230000,-0.16878,0.000038161,0,0,0)
    Baffle_Heater_Temp = (-2.999300,0.093187,0.00026150,0,0,0)
    Silicon FP Array Temp = (5.139200,0.086259,0.00020767,0,0,0)
    Primary_Mī̄ror_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Secondary_Mirrōr_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Scan Line Corrector Temp = (109.650000,-2.3891,0.029481,-1.9470E-04,6.2209E-07,-7.5546E-10)
    Baff\overline{le3_Tube_Temp =- (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)}
    Baffle2_Support_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Cal_Lamp_Housing_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Cal_Shut\overline{ter_Hub_\overline{Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)}}\mathbf{C}=1,
    Ambïent_Preamp_\overline{H}ighCh_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Ambient_Preamp_LowCh_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Postamp Temp B4 = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Cold_Prēamp_\overline{B}7_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Pan_\overline{Band_Postamp_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)}
```



```
    Primary_Mirror_Mask_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Secondary_Mirror_Mask_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Telescope-Baseplāte Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)
    Mem Heat Sink Power Supply1 Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-
5.251\overline{2}\textrm{E}-10)
    Mem_Heat_Sink_Power_Supply2_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-
5.2512E-10)
    Mux1_Power_Supply_Temp = (109.484000,-2.42279,0.0286100,-1.9000E-04,6.1400E-07,-7.7500E-10)
```



```
GRO\overline{UP}= LAMP CURRENTS
    Tec_Lamp_i\overline{1}=(95.449,-0.041194)
    Tec_Lamp_i2 = (95.449,-0.041194)
END GROUP = LAMP_CURRENTS
GRO\overline{UP}= FILL PATT\overline{TERNS}
    Band_Fill_Pattern = (0,255)
END_GRO\overline{UP = FILL_PATTERNS}
END
```


References

Please see http://landsat.usgs.gov/resources/acronyms.php for a list of acronyms.
A useful ODL document is the Jet Propulsion Laboratory (JPL), California Institute of Technology's Planetary Data System Standards Reference, Version 3.2, Chapter 12. Object Description Language Specification and Usage, July 24, 1995.
This document is online at http://pds.jpl.nasa.gov .

