Department of the Interior U.S. Geological Survey

LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION

Version 6.0

May 2007

LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION

May 2007

Prepared By:		Approve	ed By:	
E. Micijevic Calibration Analyst SAIC	Date	R. Haye CalVal SAIC	es Task Lead	Date
Reviewed By:		Approve	ed By:	
D. Strande IAS Systems Engineer SAIC	Date	C. Torb Landsa SAIC	ert t Ground Segment	Date Manager
Reviewed By:		Approve	ed By:	
R. Lamb CalVal Systems Engineer SAIC	Date	J. Laca Mission USGS	sse Management Offi	Date cer
Reviewed By:				
C. Engebretson Software Project Lead SAIC	Date			

Executive Summary

This document describes the contents of the Calibration Parameter File (CPF) generated by the Enhanced Thematic Mapper Plus (ETM+) functionality of the Image Assessment System (IAS). The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with applicability dates and is sent to the Landsat Archive Manager (LAM) for storage and eventual bundling with outbound Level 0 Reformatted Products (LORp). The CPF is also sent to International Ground Stations (IGSs) via the Landsat 7 (L7) Mission Operations Center (MOC). The CPF supplies the radiometric and geometric correction parameters required during Level 1 (L1) processing to create superior products of uniform consistency across the L7 system.

Document History

Document Number	Document Version	Publication Date	Change Number
430-15-01-002-0	Version 1.0	February 1998	
430-15-01-002-2	Version 2.0	July 1998	IAS980070 IAS980071 IAS980078 IAS980080 IAS980098
430-15-01-002-3	Version 3.0	June 1999	GS CCR 60 GS CCR 106 GS CCR 110
IAS-207	Version 4.0	January 2000	DHF CCR 1171
IAS-207	Version 5.0	August 2005	CCR 1819 CCR 3921
IAS-207	Version 6.0	May 2007	CCR 4788

Contents

Executive Summaryiii				
ocument History	. iv			
ontents	v			
ist of Tables	. vi			
ection 1 Introduction	1			
1.1 Document Organization	1			
1.2 File Structure.	1			
1.3 Calibration Parameter File Updates	2			
1.3.1 Effective Dates	2			
1.3.2 File-Naming Conventions	2			
1.4 File Content Description	4			
ection 2 CPF Parameters	5			
ection 3 CPF ODL	92			
3.1 Introduction	92			
3.2 Sample ETM+ CPF ODL File	92			
eferences	25			

List of Tables

Table 1-1. Data Types in CPF	4
Table 2-1. Landsat 7 CPF Parameters	91

Section 1 Introduction

This document describes the contents of the Calibration Parameter File (CPF) generated by the Image Assessment System (IAS). The Landsat 7 (L7) functionality of the IAS is responsible for offline assessment of image quality to ensure compliance with the radiometric and geometric requirements of the L7 spacecraft and the Enhanced Thematic Mapper Plus (ETM+) sensor throughout the life of the mission.

In addition to its assessment functions, the IAS is responsible for the radiometric and geometric calibration of the L7 satellite and ETM+ sensor. The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with applicability dates and is archived at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) and eventually bundled with outbound Level Zero Reformatted Products (LORp). The CPF is also sent to the Landsat 7 Processing System (LPS), Level 1 (L1) production systems within EROS, and to International Ground Stations (IGSs) via the L7 Mission Operations Center (MOC). The CPF supplies the radiometric and geometric correction parameters required during L1 processing to create superior products of uniform consistency across the L7 system.

1.1 Document Organization

Section 1 introduces the CPF. It describes the CPF structure and language, the CPF updates, time stamps, and file-naming conventions, as well as the attributes used to characterize the calibration parameters.

Section 2 contains a table that lists and describes the CPF parameters. The actual prelaunch and postlaunch CPFs contain the most recent and accurate values available for these parameters.

Section 3 presents the syntax of the CPF Object Description Language (ODL) and provides a CPF example to illustrate the actual appearance of the file.

1.2 File Structure

All parameters are stored as American Standard Code for Information Interchange (ASCII) text using the ODL syntax developed by Jet Propulsion Laboratory (JPL). ODL is a tagged keyword language developed to provide a human-readable data structure to encode data for simplified interchange. The ODL interpreter developed by JPL may, in certain cases, provide for the handling of lexical elements (for example, building blocks) that are included in the Consultative Committee for Space Data Systems (CCSDS) specification of the Parameter Value Language (PVL). PVL is a superset of ODL. The IAS CPF is a pure ODL implementation without any PVL extensions.

The body of the file is composed of two statement types:

- 1. Attribute assignment statement used to assign values to parameters
- 2. Group statements used to aid in file organization and enhance parsing granularity of parameter sets

The Planetary Data System Standards Reference contains ODL details.

1.3 Calibration Parameter File Updates

The IAS regularly releases and distributes CPFs at the beginning of each calendar quarter. In addition to a new CPF for the coming calendar quarter, a CPF delivery also includes new versions of all CPFs for time periods affected by the most recent calibration update. Only the most recent available CPFs should be used in ETM+ data processing.

Prior to switching to bumper operational mode, CPFs needed to be released on a regular quarterly basis, primarily because of the Universal Time Code (UTC) corrected (UT1) time corrections and pole wander predictions included in the file. However, the CPFs could be updated at any given time, if needed, and released for the time periods shorter than a calendar quarter.

Following the ETM+ switch to bumper operational mode (April 1, 2007), multiple version updates can be expected during any given quarter due to a hardly predictive nature of the scanning mirror bumper parameters. The irregular (mid-quarter) updates do not affect the three-month CPF release schedule.

1.3.1 Effective Dates

Each CPF is time-stamped with an effective date range. The third and fourth parameters in the file—Effective_Date_Begin and Effective_Date_End—designate the range of valid acquisition dates and are in YYYY-MM-DD format. After the Effective_Date_End, the file is without applicable UT1 time predictions. EROS maintains a database of CPF names and their effective dates for associating product orders with the appropriate parameter files. The parameter file that accompanies an order has an effective date range that includes the acquisition date of the ordered image.

1.3.2 File-Naming Conventions

Through the course of the mission, a serial collection of CPFs is generated and sent to the Landsat Archive Manager (LAM) for distribution with LORp products. The probability exists that a CPF will be replaced due to improved calibration parameters for a given period, or perhaps due to file error. The need for unique file version numbers becomes necessary as file contents change. The unique 00 version number is reserved for the original CPF, created before the satellite's launch. Version numbers for all quarterly CPFs released after the launch begin with 01.

The IAS uses the following file-naming procedure to name the CPF:

 $L7CPFy_1y_1y_1y_1m_1m_1d_1d_1_y_2y_2y_2y_2m_2m_2d_2d_2.nn$

where L7 = constant for Landsat 7

CPF = 3-letter CPF designator

 $y_1y_1y_1y_1 = 4$ -digit effectivity starting year

 $m_1m_1 = 2$ -digit effectivity starting month

- $d_1d_1 = 2$ -digit effectivity starting day
 - _ = effectivity starting/ending date separator
- $y_2y_2y_2y_2 = 4$ -digit effectivity ending year
 - m_2m_2 = 2-digit effectivity ending month
 - d_2d_2 = 2-digit effectivity ending day
 - . = Ending day/version number separator
 - nn = version number for this file (starts with 01)

For example, if the IAS created four CPFs at three-month intervals, and then updated the first file twice and the second and third files once, the assigned file names would be as follows:

File 1	L7CPF20000101_20000331.01
	L7CPF20000101_20000331.02
	L7CPF20000101_20000331.03
File 2	L7CPF20000401_20000630.01
	L7CPF20000401_20000630.02
File 3	L7CPF20000701_20000930.01
	L7CPF20000701_20000930.02
File 4	L7CPF20001001 20001231.01

This example assumes that the effective date ranges do not change. The effective date range for a file can change, however, if a specific problem (e.g., detector outage) is discovered somewhere within the nominal effective range. Assuming this scenario, two CPFs with new names and effective date ranges are spawned for the period under consideration. The Effective_Date_End for a new pre-problem CPF would change to the day before the problem occurred and the Effective_Date_Begin remains unchanged. A post-problem CPF with a new file name would be created with the Effective_Date_Begin corresponding to the imaging date when the problem occurred and the Effective_Date_End for the period under consideration. Both new CPFs, although they appeared for the first time for given effective dates, would a have version number for one higher than the CPF for the quarter they originated from. New versions of all other CPFs affected by the updated parameters also would be created.

Suppose, for example, that it was discovered that a detector stopped responding on July 25, 2000. Two new CPFs need to be created that supersede the period represented by file number three, version 2, and a new version of file number four. The new file names and version numbers become:

File 3 L7CPF20000701_20000930.01 L7CPF20000701_20000930.02

L7CPF20000701_20000725.03 L7CPF20000726 20000930.03

File 4 L7CPF20001001_20001231.01 L7CPF20001001_20001231.02

1.4 File Content Description

Table 2-1**Error! Reference source not found.** lists all CPF parameters. Within this table, each parameter entry is characterized by five attributes:

- 1. Parameter Group—identifies a related set of parameters.
- 2. Parameter Name—uniquely identifies and describes the content of each parameter.
- 3. Value Type—describes the parameter as either static or dynamic. A static value generally remains unchanged over the life of the mission. A dynamic value changes or has the potential to change over the life of the mission. Significant changes to dynamic values trigger a CPF update.
- 4. Data Type—referred to using Hierarchical Data Format (HDF) number type nomenclature, type#, where type is either char (character), int (integer), or float (floating point), and # is a decimal count of the number of bits used to represent the data type. The type mnemonics int and char may be preceded by the letter u, indicating an unsigned value. For example, the data type uint32 refers to an unsigned 32-bit integer value. Table 1-1 shows the data types relevant to the CPF.

Data Type	HDF Nomenclature
8-bit character	char8
8-bit unsigned integer	uint8
16-bit signed integer	int16
32-bit signed integer	int32
32-bit floating point number	float32
64-bit floating point number	float64

Table 1-1. Data Types in CPF

5. Description—briefly describes the parameter, its format, and its nominal, expected, or sample value(s). The valid parameter format for numeric data is described using letters S, N, and E. S stands for the sign and can assume values "+" or "-"; if no sign is specified, the "+" sign is assumed. N stands for any digit between 0 and 9. The letter "E" is used in scientific (exponential) notation to represent the 'multiplication by 10 raised to the power' specified by the value following the letter E. For example, the valid format "SNNN.NNNNESNN" can assume any positive or negative value with a significant ranging from 0.0000 to 999.9999 multiplied by 10 raised to the power of any whole number between -99 and +99.

Parameter Group	Parameter Name	Value Type	Data Type	Description
FILE_ATTRIBUTES	Spacecraft_Name (available in all CPFs with effective dates of January 1, 2007 and thereafter)	Static	char8	Descriptor used to identify the spacecraft for which the calibration parameters are applicable. Valid format: Landsat_7
FILE_ATTRIBUTES	Sensor_Name (available in all CPFs with effective dates of January 1, 2007 and thereafter)	Static	char8	Descriptor used to identify the sensor for which the calibration parameters are applicable. Valid format: Enhanced_Thematic_Mapper_Plus
FILE_ATTRIBUTES	Effective_Date_Begin	Dynamic	char8	Effective start date for this file Valid format: yyyy-mm-dd, where yyyy = 1998-2050, mm = 01-12, and dd = 01-31
FILE_ATTRIBUTES	Effective_Date_End	Dynamic	char8	Effective end date for this file Valid format: yyyy-mm-dd, where yyyy = 1998-2050, mm = 01-12, and dd = 01-31
FILE_ATTRIBUTES	CPF_File_Name	Dynamic	char8	Original file name assigned by IAS Valid format: L7CPFyyyymmdd-yyyymmdd.nn where yyyymmdd = effective start date and effective end date, respectively, and nn = incrementing version for within a quarter (01-99)
EARTH_CONSTANTS	Ellipsoid_Name	Static	char8	Name of the ellipsoid used to represent the semi-major and semi-minor axes of the Earth Valid format: TTTTT, where TTTTT = WGS84
EARTH_CONSTANTS	Semi_Major_Axis	Static	float64	Earth semi-major axis; distance in meters from the center of the Earth to the equator Valid format: NNNNNNNNNN, where NNNNNNNNN = 6378137.000
EARTH_CONSTANTS	Semi_Minor_Axis	Static	float64	Earth semi-minor axis; distance in meters from the center of the Earth to the poles Valid format: NNNNNNNNNNN, where NNNNNNN.NNNN = 6356752.3142
EARTH_CONSTANTS	Ellipticity	Static	float64	Ratio describing polar flattening or Earth's deviation from an exact sphere (WGS84 standard) Valid format: N.NNNNNNNNNNNNN, where N.NNNNNNNNNNNNN = 0.00335281066474 = (1/298.257223563)
EARTH_CONSTANTS	Eccentricity	Static	float64	Number describing the Earth ellipsoid eccentricity squared (WGS84 standard) Valid format: N.NNNNNNNNNNNNN, where N.NNNNNNNNNNNN = 0.00669437999013
EARTH_CONSTANTS	Earth_Spin_Rate	Static	float64	Earth's diurnal spin rate in radians per second Valid format: NN.NNNNNNNESNN, where NN.NNNNNNNNESNN = 72.921158553E-06
EARTH_CONSTANTS	Gravity_Constant	Static	float64	Universal gravitational constant times the mass of the Earth. This parameter is given in units of meters cubed per second squared (m3/s2). Valid format: N.NNNNNENN, where N.NNNNNENN = 3.986005E14
EARTH_CONSTANTS	J2_Earth_Model_ Term	Static	float64	Term that describes Earth's spherical harmonic Valid format: NNNN.NNESNN, where NNNN.NNESNN = 1082.63E-06

Table 2-1 lists the L7 CPF parameters.

Parameter Group	Parameter Name	Value Type	Data Type	Description
ORBIT_PARAMETERS	WRS_Cycle_Days	Static	uint8	Time period, in days, required for the satellite to view Earth once
ORBIT_PARAMETERS	WRS_Cycle_Orbits	Static	uint8	Number of orbits or paths in a complete World Reference System (WRS) cycle Valid format: NNN, where NNN = 233
ORBIT_PARAMETERS	Scenes_Per_Orbit	Static	uint8	Number of scenes or row locations per orbit Valid format: NNN, where NNN = 248
ORBIT_PARAMETERS	Orbital_Period	Static	float64	Time required, in seconds, to complete one orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 5933.0472
ORBIT_PARAMETERS	Angular_Momentum	Static	float64	Angular momentum in orbit, specified in meters squared per second Valid format: NN.NNNNNEN, where NN.NNNNNEN = 53.136250E9
ORBIT_PARAMETERS	Orbit_Radius	Static	float64	Nominal distance in km from the Earth's center to the spacecraft track Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457
ORBIT_PARAMETERS	Orbit_Semimajor_Axis	Static	float64	Nominal semi-major axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457
ORBIT_PARAMETERS	Orbit_Semiminor_Axis	Static	float64	Nominal semi-minor axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4408
ORBIT_PARAMETERS	Orbit_Eccentricity	Static	float64	Nominal eccentricity of the satellite's orbit Valid format: N.NNNNNNN, where N.NNNNNNN = 0.00117604
ORBIT_PARAMETERS	Inclination_Angle	Static	float64	Angle in degrees formed by Earth's equatorial and satellite plane Valid format: NN.NNNN, where NN.NNNN = 98.2096
ORBIT_PARAMETERS	Argument_Of_Perigee	Static	float32	Nominal angle in degrees of point nearest Earth in orbit as measured from ascending node in the direction of satellite motion Valid format: NN.N, where NN.N = 90.0
ORBIT_PARAMETERS	Descending_Node_ Row	Static	uint8	Row corresponding to the Earth's equator Valid format: NN, where NN = 60
ORBIT_PARAMETERS	Long_Path1_Row60	Static	float32	Longitude in degrees west of the point at which path 1 crossed the equator (row 60) Valid format: SNN.N, where SNN.N = - 64.6
ORBIT_PARAMETERS	Descending_Node_ Time_Min	Static	char8	Minimum local solar time of descending node in a.m. hours and minutes Valid format: HH:MM, where HH:MM = 09:45
ORBIT_PARAMETERS	Descending_Node_ Time_Max	Static	char8	Maximum local solar time of descending node in a.m. hours and minutes Valid format: HH:MM, where HH:MM = 10:15
ORBIT_PARAMETERS	Nodal_Regression_ Rate	Static	float64	Rate in degrees per day that the orbital plane rotates with respect to the Earth Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.985647366
SCANNER_ PARAMETERS	Lines_Per_Scan_30	Static	uint8	Detectors per scan for Bands 1-5 and 7 Valid format: NN, where NN = 16
SCANNER_ PARAMETERS	Lines_Per_Scan_60	Static	uint8	Detectors per scan for Band 6 Valid format: N, where N = 8
SCANNER_ PARAMETERS	Lines_Per_Scan_15	Static	uint8	Detectors per scan for Band 8 Valid format: NN, where NN = 32

Parameter Group	Parameter Name	Value Type	Data Type	Description
SCANNER_ PARAMETERS	Scans_Per_Scene	Static	int16	Scans per nominal WRS scene Valid format: NNN, where NNN = 375
SCANNER_ PARAMETERS	Swath_Angle	Dynamic	float32	Object space angle in radians of scan mirror travel during active scan time Valid format: N.NNNNN, where N.NNNNN = 0.26868 (after measurement of as-built ETM+)
SCANNER_ PARAMETERS	Scan_Rate	Static	float32	Angular scan velocity in radians per second of scan mirror Valid format: N.NNNNN, where N.NNNNN = 2.21095
SCANNER_ PARAMETERS	Dwell_Time_30	Static	float64	Detector sample time in microseconds for Bands 1-5 and 7 Valid format: N.NNNNNN, where N.NNNNNN = 9.6110206
SCANNER_ PARAMETERS	Dwell_Time_60	Static	float64	Detector sample time in microseconds for Band 6 Valid format: N.NNNNN, where N.NNNNN = 19.222041
SCANNER_ PARAMETERS	Dwell_Time_15	Static	float64	Detector sample time in microseconds for Band 8 Valid format: N.NNNNNN, where N.NNNNNN = 4.8055103
SCANNER_ PARAMETERS	IC_Line_Length_30	Static	int16	Nominal number of detector samples for the Internal Calibrator (IC) for Bands 1-5 and 7 Valid format: NNNN, where NNNN = 1150
SCANNER_ PARAMETERS	IC_Line_Length_60	Static	int16	Nominal number of detector samples for the internal calibrator for Band 6 Valid format: NNN, where NNN = 575
SCANNER_ PARAMETERS	IC_Line_Length_15	Static	int16	Nominal number of detector samples for the internal calibrator for Band 8 Valid format: NNNN, where NNNN = 2300
SCANNER_ PARAMETERS	Scan_Line_Length_30	Static	int16	Nominal number of detector samples during active scan time for Bands 1-5 and 7 Valid format: NNNN, where NNNN = 6320
SCANNER_ PARAMETERS	Scan_Line_Length_60	Static	int16	Nominal number of detector samples during active scan time for Band 6 Valid format: NNNN, where NNNN = 3160
SCANNER_ PARAMETERS	Scan_Line_Length_15	Static	int16	Nominal number of detector samples during active scan time for Band 8 Valid format: NNNNN, where NNNNN = 12640
SCANNER_ PARAMETERS	Filter_Frequency_30	Static	float32	Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Bands 1-5 and 7 Valid format: NN.NN, where NN.NN = 52.02
SCANNER_ PARAMETERS	Filter_Frequency_60	Static	float32	Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Band 6 Valid format: NN.NN, where NN.NN = 26.01
SCANNER_ PARAMETERS	Filter_Frequency_15	Static	float32	Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Band 8 Valid format: NNN.NN, where NNN.NN = 115.00
SCANNER_ PARAMETERS	IFOV_B1234	Static	float32	Angle in µrad subtended by a detector in Bands 1, 2, 3, and 4 when the scanning motion is stopped Valid format: NN.N, where NN.N = 42.5
SCANNER_ PARAMETERS	IFOV_B57_along_ scan	Static	float32	Along-scan angle in µrad subtended by a detector in Bands 5 and 7 when the scanning motion is stopped Valid format: NN.N, where NN.N = 39.4

Parameter Group	Parameter Name	Value Type	Data Type	Description
SCANNER_ PARAMETERS	IFOV_B57_across_ scan	Static	float32	Across-scan angle in µrad subtended by a detector in Bands 5 and 7 when the scanning motion is stopped Valid format: NN.N, where NN.N = 42.5
SCANNER_ PARAMETERS	IFOV_B6	Static	float32	Angle in µrad subtended by a Band 6 detector when scanning motion is stopped Valid format: NN.N, where NN.N = 85.0
SCANNER_ PARAMETERS	IFOV_B8_along_scan	Static	float32	Along-scan angle in µrad subtended by a Band 8 detector when the scanning motion is stopped Valid format: NN.N, where NN.N = 18.5
SCANNER_ PARAMETERS	IFOV_B8_across_ scan	Static	float32	Across-scan angle in µrad subtended by a Band 8 detector when scanning motion is stopped Valid format: NN.NN, where NN.NN = 21.25
SCANNER_ PARAMETERS	Scan_Period	Static	float64	Time in milliseconds of a complete scan cycle, including forward and reverse scans Valid format: NNN.NN, where NNN.NN = 143.58
SCANNER_ PARAMETERS	Scan_Frequency	Static	float32	Number of scans in 1 second (Hz) Valid format: N.NNNNN, where N.NNNNN = 6.96476
SCANNER_ PARAMETERS	Active_Scan_Time	Static	float32	Time in µs required for the scan mirror to travel from its scan-line-start to End-Of-Line (EOL) Valid format: NNNNN.NNN, where NNNNN.NNN = 60743.346
SCANNER_ PARAMETERS	Turn_Around_Time	Static	float32	Time in milliseconds from EOL to next scan- line-start, during which scan mirror motion reverses direction Valid format: NN.NNN, where: NN.NNN = 11.055
SPACECRAFT_ PARAMETERS	ADS_Interval	Static	float32	Time in milliseconds between Attitude Displacement Sensors (ADS) samples Valid format: N.N, where N.N = 2.0
SPACECRAFT_ PARAMETERS	ADS_Roll_Offset	Static	float32	Amount of time in milliseconds from the start of a Payload Correction Data (PCD) cycle to roll axis measurement Valid format: N.NNN, where N.NNN = 0.375
SPACECRAFT_ PARAMETERS	ADS_Yaw_Offset	Static	float32	Amount of time in milliseconds from the start of a PCD cycle to the yaw axis measurement Valid format: N.NNN, where N.NNN = 0.875
SPACECRAFT_ PARAMETERS	ADS_Pitch_Offset	Static	float32	Amount of time in milliseconds from the start of a PCD cycle to the pitch axis measurement Valid format: N.NNN, where N.NNN = 1.375
SPACECRAFT_ PARAMETERS	Data_Rate	Static	float32	ETM+ output bit rate in Mbps Valid format: NN.NNN, where NN.NNN = 74.914
GROUP: MIRROR_PARAMETERS	Error_Conversion_ Factor	Static	float32	First half and second half scan mirror error measurement units in microseconds Valid format: N.NNNNNNN, where N.NNNNNNN = 0.18845139 (5.306437 MHz)
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Along_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the departure from linearity of forward along scan mirror motion; Scan Angle Monitor (SAM) mode with Scan Mirror Electronics (SME) number 1 Valid format for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Cross_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle1_ SME1_SAM	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in forward direction; SAM mode with SME number 1 Valid format: NNNNNN, where NNNNN.N = 67166.9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle2_ SME1_SAM	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 1 Valid format: NNNNNN, where NNNNN.N = 67145.9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Along_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Cross_ SME1_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Angle1_ SME1_SAM	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67142.8
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Angle2_ SME1_SAM	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67169.9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Along_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward along scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Cross_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle1_ SME2_SAM	Static	float32	Angle in µrad from the start of the scan to mid- scan point in forward direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.7
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle2_ SME2_SAM	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Along_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Cross_ SME2_SAM	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "L" or " " N = 0 to 0, and E = "E"
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Angle1_ SME2_SAM	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Angle2_ SME2_SAM	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.7
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_Along_ SME1_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward along scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: MIRROR_ PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_Cross_ SME1_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP:	Forward_Angle1_	For CPFs	with effective	ve dates prior to April 1, 2007
GROUP: ANGLES_SME1_BUMP	SME1_Bump	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 1. Valid format: NNNNN.N, where
		For CPFs	with effective	ve dates of April 1, 2007 and thereafter
		Dynamic	float32 array of flexible length	Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where $N = 0$ to 9.
GROUP:	Forward_Angle2_	For CPFs	with effective	ve dates prior to April 1, 2007
MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	SME1_Bump	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 1. Valid format: NNNNN.N, where NNNNN N = 67156 7
		For CPFs	with effectiv	ve dates of April 1, 2007 and thereafter
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9.
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_FHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the forward scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description		
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_SHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the forward scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9		
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Along_ SME1_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along the scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"		
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Cross_ SME1_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; Bumper mode with SME number 1 Valid format: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"		
GROUP:	Reverse_Angle1_	For CPFs	with effective	ve dates prior to April 1, 2007		
MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	SME1_Bump	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in reverse direction; Bumper mode with SME number 1. Valid format: NNNNN.N where NNNNN.N = 67156.7		
		For CPFs with effective dates of April 1. 2007 and thereafter				
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in reverse direction; Bumper mode with SME number 1. Array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9.		
GROUP:	Reverse_Angle2_	For CPFs	with effectiv	ve dates prior to April 1, 2007		
MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	SME1_Bump	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in reverse direction; Bumper mode with SME number 1. Valid format: NNNNN.N where NNNNN.N = 67156.3		
		For CPFs	with effective	ve dates of April 1, 2007 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in reverse direction; Bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9.		
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_FHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the reverse scan angle; Bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9		
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_SHSERR_SME1 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the reverse scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9		
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Along_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe deviation of forward along scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"		

Parameter Group	Parameter Name	Value Type	Data Type	Description	
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Cross_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of the forward cross scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"	
GROUP:	Forward_Angle1_	For CPFs	with effective	ve dates prior to April 1, 2007	
MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	SME2_Bump	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 2. Valid format: NNNNN.N where NNNNN.N = 67162.7	
		For CPFs	with effective	ve dates of April 1, 2007 and thereafter	
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9.	
GROUP:	Forward_Angle2_	For CPFs	with effective	ve dates prior to April 1, 2007	
MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	SME2_Bump	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 2. Valid format: NNNNN.N where NNNNN.N = 67162.8	
		For CPFs with effective dates of April 1, 2007 and thereafter			
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9.	
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_FHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the forward scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9	
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_SHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the forward scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9	
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Along_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; Bumper mode with SME number 2 Valid format: for each term: SN.NNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"	
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Cross_ SME2_Bump	Static	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; Bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"	

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP:	Reverse_Angle1_	For CPFs	with effective	ve dates prior to April 1, 2007
MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	SME2_Bump	Static	float32	Angle in µrad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2. Valid format is NNNNN.N where NNNNN.N = 67162.8
		For CPFs	with effectiv	ve dates of April 1, 2007 and thereafter
		Dynamic	float32 array of flexible length	Angle in µrad from the start of the scan to the mid-scan point in the reverse direction; Bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where $N = 0$ to 9.
GROUP:	Reverse_Angle2_	For CPFs	with effective	ve dates prior to April 1, 2007
MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	SME2_Bump	Static	float32	Angle in µrad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2. Valid format is NNNNN.N where NNNNN.N = 67162.7
		For CPFs	with effective	ve dates of April 1, 2007 and thereafter
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9.
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_FHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the reverse scan angle; Bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_SHSERR_SME2 _Bump (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the reverse scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the bumper A pickoff signal to the start of the reverse scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to the bumper A pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds. Valid format: NNNN.NN, where NNNNN.NN = 10110.00

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians. Valid format: SNNNNN.N, where SNNNNN.N = -68665.0
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to the bumper B pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds. Valid format: NNNN.NN, where NNNNN.NN = 10110.00
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians. Valid format: SNNNNN.N, where SNNNNN.N = 68607.0
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to bumper A pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds. Valid format: NNNN.NN, where NNNNN.NN = 10110.00
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians. Valid format: SNNNNN.N, where SNNNNN.N = -68665.0

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Dwell_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Pickoff_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to bumper B pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Offset_ Time (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds. Valid format: NNNN.NN, where NNNNN.NN = 10110.00
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians. Valid format: SNNNNN.N, where SNNNNN.N = 68607.0
GROUP: SCAN_LINE_CORRECTOR	Primary_Angular_ Velocity	Static	float32	Angular velocity in radians per second of the primary scan line corrector Valid format: N.NNNNN, where N.NNNNN = 0.00966
GROUP: SCAN_LINE_CORRECTOR	Secondary_Angular_ Velocity	Static	float32	Angular velocity in radians per second of the secondary scan line corrector Valid format: N.NNNNN, where N.NNNNN = 0.00960
GROUP: SCAN_LINE_CORRECTOR	Primary_Corrector_ Motion	Static	float32 array (6 values)	Fifth-order polynomial coefficients that describe the motion of the primary scan line corrector Valid format for each term: N.NNNNN, where N = 0 to 9
GROUP: SCAN_LINE_CORRECTOR	Secondary_Corrector_ Motion	Static	float32 array (6 values)	Fifth-order polynomial coefficients that describe the motion of the secondary scan line corrector Valid format for each term: N.NNNNN, where N = 0 to 9
GROUP: SCAN_LINE_CORRECTOR	Unpowered_Pointing_Bias (available in all CPFs with effective dates of July 14, 2003 and thereafter)	Dynamic	Float32	The best estimate of the pointing angle of the scan line corrector in its unpowered, "at-rest" pointing position Valid format: N.NNNNNN, where N.NNNNNN = 0.0000427
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Along_Scan_Band_ Offsets	Static	float32 array (8 values)	Nominal displacement in μ rad from the center of the focal plane to each band's optical axis Valid format: SNNNN.NNN, where S = "+" or "-" and N = 0 to 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Across_Scan_Band_ Offsets	Static	float32 array (8 values)	Nominal displacement in μ rad from the center of the focal plane to each band's scan motion axis Valid format: SNNNN.NNN, where S = "+" or "-" and N = 0 to 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Forward_Focal_ Plane_Offsets	Static	float32 array (8 values)	Offset in Instrument Fields of View (IFOVs) for focal plane forward scans Valid format: SNNN.N, where $S = "+"$ or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Reverse_Focal_ Plane_Offsets	Static	float32 array (8 values)	Offset in IFOVs for focal plane reverse scans Valid format: SNNN.N, where S = "+" or "-" and N = 0 to 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B1	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B1	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B2	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B2	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B3	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B3	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B4	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B4	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B5	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B5	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B6	Static	float32 array (8 values)	Forward along scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B6	Static	float32 array (8 values)	Reverse along scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where $N = 0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B7	Static	float32 array (16 values)	Forward along scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B7	Static	float32 array (16 values)	Reverse along scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B8	Static	float32 array (32 values)	Forward along scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B8	Static	float32 array (32 values)	Reverse along scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B1	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B1	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B2	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B2	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B3	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B3	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B4	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B4	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where $N = 0$ TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B5	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9
FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B5	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_Scan_ DO_B6	Static	float32 array (8 values)	Forward across scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B6	Static	float32 array (8 values)	Reverse across scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B7	Static	float32 array (16 values)	Forward across scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B7	Static	float32 array (16 values)	Reverse across scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across_ Scan_DO_B8	Static	float32 array (32 values)	Forward across scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR OFFSETS	Reverse_Across_ Scan_DO_B8	Static	float32 array (32 values)	Reverse across scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Forward_Even_ Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for forward band offsets, even detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Forward_Odd_ Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for forward band offsets, odd detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Reverse_Even_ Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for reverse band offsets, even detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Reverse_Odd_ Detector_Shift	Static	float32 array (8 values)	Adjustments in IFOVs to compensate for reverse band offsets, odd detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9
GROUP: ATTITUDE_PARAMETERS	Gyro_To_Attitude_ Matrix	Static	float32 array (9 values)	Matrix describing the relationship of the gyro axis to the attitude control reference axis Valid format: SN.NNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: ATTITUDE_PARAMETERS	ADSA_To_ETM_ Matrix	Static	float32 array (9 values)	Matrix describing the relationship of the Attitude Displacement Sensor Assembly (ADSA) to the ETM+ optical axis Valid format: SN.NNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: ATTITUDE_PARAMETERS	Attitude_To_ETM_ Matrix	Static	float32 array (9 values)	Matrix describing the relationship of the attitude control reference axis to the ETM+ optical axis Valid format: SN.NNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Roll_Bias	Static	float32	Spacecraft roll bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNESNN = 0.00000000E+00
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Pitch_ Bias	Static	float32	Spacecraft pitch bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNESNN = 0.00000000E+00
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Yaw_Bias	Static	float32	Spacecraft yaw bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNESNN = 0.00000000E+00
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_XA	Static	float32	Inertial Measurement Unit (IMU) XA axis drift bias in radians per second. Valid format: SN.NNNNNNNESNN, where SN.NNNNNNNESNN = -2.23500000E-06
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_YA	Static	float32	IMU YA axis drift bias in radians per second. Valid format: SN.NNNNNNNESNN, where SN.NNNNNNNESNN = -2.23500000E-06

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_ZA	Static	float32	IMU ZA axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNESNN = 1.68230000E-06
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_XB	Static	float32	IMU XB axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNESNN = 186665000E-06
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_YB	Static	float32	IMU YB axis drift bias in radians per second. Valid format: SN.NNNNNNNESNN, where SN.NNNNNNNESNN = -6.35100000E-07
GROUP: ATTITUDE_PARAMETERS	IMU_Drift_Bias_ZB	Static	float32	IMU ZB axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNESNN = 4.84810000E-08
GROUP: TIME_PARAMETERS	Scan_Time	Static	float32	Nominal scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 60743.0
GROUP: TIME_PARAMETERS	Forward_First_Half_ Time	Static	float32	Nominal forward first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4
GROUP: TIME_PARAMETERS	Forward_Second_ Half_Time	Static	float32	Nominal forward second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6
GROUP: TIME_PARAMETERS	Reverse_First_Half_ Time	Static	float32	Nominal reverse first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6
GROUP: TIME_PARAMETERS	Reverse_Second_ Half_Time	Static	float32	Nominal reverse second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4
GROUP: TRANSFER_FUNCTION GROUP: IMU	Fn	Static	float64	Inertial measurement unit transfer function resonant frequency (Hz) Valid format: N.NNNNNN, where N.NNNNNN = 3.3113091
GROUP: TRANSFER_FUNCTION GROUP: IMU	Zeta	Static	float64	Inertial measurement unit transfer function damping coefficient Valid format: N.NNNNNNN, where N.NNNNNNN = 0.66882924
GROUP: TRANSFER_FUNCTION GROUP: IMU	Tau	Static	float64	Inertial measurement unit transfer function denominator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNESN = -1.6086176E-2
GROUP: TRANSFER_FUNCTION GROUP: IMU	Ρ	Static	float64	Inertial measurement unit transfer function numerator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNESN = -4.1138195E-3
GROUP: TRANSFER_FUNCTION GROUP: IMU	Ak	Static	float64	Inertial measurement unit transfer function DC gain Valid format: N.NNNNNN, where N.NNNNNN = 1.0103061
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_num	Static	float64 array (18 values)	Transfer function numerator coefficients in order a0, a1, a2, a3, a4, a5; one set of six coefficients for each of the three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNEN, where S = "+" or "-", N = 0 to 9, and E = "E"

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_den	Static	float64 array (18 values)	Transfer function denominator coefficients in order b0, b1, b2, b3, b4, b5; one set of six coefficients for each of three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNEN, where S = "+" or "-", N = 0 to 9, and E = "E"
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_num_temp	Static	float64 array (18 values)	Temperature-dependent part of the ADS transfer function numerator coefficients in order da0, da1, da2, da3, da4, da5; one set of six coefficients for each of three ADS units; change per degree C Valid format: SN.NNNNNNESN, where $S = "+"$ or "-", $N = 0$ to 9, and $E = "E"$
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_den_temp	Static	float64 array (18 values)	Temperature-dependent part of the ADS transfer function denominator coefficients in order da0, da1, da2, da3, da4, da5. One set of six coefficients for each of three ADS units. Change per degree C Valid format: SN.NNNNNNESN, where $S = "+"$ or "-", $N = 0$ to 9, and $E = "E"$
GROUP: TRANSFER_FUNCTION GROUP: PREFILTER	ADSPre_W	Static	float64 array (5 values)	ADS prefilter transfer function quadratic term resonant periods (Note: Given as period instead of frequency so that the transfer function can be set to unity, if necessary, by setting all five values to zero.) Valid format: N.NNNNNNN, where N = 0 to 9
GROUP: TRANSFER_FUNCTION GROUP: PREFILTER	ADSPre_H	Static	float64 array (5 values)	ADS prefilter transfer function quadratic term damping coefficients Valid format: SN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: TRANSFER_FUNCTION GROUP: PREFILTER	ADSPre_T	Static	float64 array (5 values)	ADS prefilter transfer function linear term time constants Valid format: N.NNNNNN, where N = 0 to 9
GROUP: UT1_TIME_PARAMETERS	UT1_Year	Dynamic	int16 array (180 values)	Year of UT1 time correction prediction; values span 180 days Valid format: YYYY, where YYYY = 1998-2020
GROUP: UT1_TIME_PARAMETERS	UT1_Month	Dynamic	char8 array (180 values)	Month of UT1 time correction prediction; values span 180 days Valid format: MMM, where MMM = Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec
GROUP: UT1_TIME_PARAMETERS	UT1_Day	Dynamic	uint8 array (180 values)	Day of UT1 time correction prediction; values span 180 days Valid format: NN, where NN = 1-31
GROUP: UT1_TIME_PARAMETERS	UT1_Modified_Julian	Dynamic	int32 array (180 values)	Modified Julian day; values span 180 days; MJD = Julian day - 2 400 000.5; Julian date is a running day count starting 1 January 4713 B.C. Valid format: NNNNN, where NNNNN = e.g., 50234 (for May 31, 1996)
GROUP: UT1_TIME_PARAMETERS	UT1_X	Dynamic	float32 array (180 values)	X shift pole wander in arc seconds; values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g. 0.45431
GROUP: UT1_TIME_PARAMETERS	UT1_Y	Dynamic	float32 array (180 values)	Y shift pole wander in arc seconds; values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g., 0.13454
GROUP: UT1_TIME_PARAMETERS	UT1_UTC	Dynamic	float32 array (180 values)	UT1 - UTC time difference in seconds. Values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g., 0.44321

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_STATUS	Status_Band1	Dynamic	char8 array (16 values)	Health status of Band 1's 16 detectors Valid format: ABCDE, where A = 0 (live), 1 (dead), 2 (intermittent) B = 0 (noise in spec, low gain), 1 (noisy low signal), 2 (noisy high signal), 3 (noisy both signals), 4 (inoperable) C = 0 (noise in spec, high gain), 1 (noisy low signal), 2 (noisy high signal), 3 (noisy both signals), 4 (inoperable) D = 0 (dynamic range in spec, low gain) 1 (fail, high end), 2 (fail, low end), 3 (fail, both ends), 4 (inoperable) E = 0 (dynamic range in spec, high gain), 1 (fail, low end), 2 (fail, low end), 3 (fail, both ends), 4 (inoperable)
GROUP: DETECTOR_STATUS	Status_Band2	Dynamic	char8 array (16 values)	Health status of Band 2's 16 detectors Valid format: as above
GROUP: DETECTOR_STATUS	Status_Band3	Dynamic	char8 array (16 values)	Health status of Band 3's 16 detectors Valid format: as above.
GROUP: DETECTOR_STATUS	Status_Band4	Dynamic	char8 array (16 values)	Health status of Band 4's 16 detectors Valid format: as above
GROUP: DETECTOR_STATUS	Status_Band5	Dynamic	char8 array (16 values)	Health status of Band 5's 16 detectors Valid format: as above
GROUP: DETECTOR_STATUS	Status_Band6	Dynamic	char8 array (8 values)	Health status of Band 6's 8 detectors Valid format: as above
GROUP: DETECTOR_STATUS	Status_Band7	Dynamic	char8 array (16 values)	Health status of Band 7's 16 detectors Valid format: as above
GROUP: DETECTOR_STATUS	Status_Band8	Dynamic	char8 array (32 values)	Health status of Band 8's 32 detectors Valid format: as above
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B1L_Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch low gain in counts/W/m^2- ster-µm Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B1L_Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch low gain in counts/W/m^2- ster-µm Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B1L_Current	Dynamic	float32 array (16 values)	Band 1 current low gain in counts/W/m^2-ster- μm Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B2L_Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch low gain in counts/W/m^2- ster- μ m Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B2L_Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch low gain in counts/W/m^2- ster-µm Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B2L_Current	Dynamic	float32 array (16 values)	Band 2 current low gain in counts/W/m^2-ster- μ m Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B3L_Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch low gain in counts/W/m^2- ster-µm Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW	B3L_Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch low gain in counts/W/m^2- ster-µm Valid format: NN.NNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR GAINS	B3L Current	Dynamic	float32	Band 3 current low gain in counts/W/m^2-ster-
GROUP:	-	,	array	μm
DETECTOR_GAINS_LOW			(16 values)	Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B4L_Prelaunch	Static	float32	Band 4 prelaunch low gain in counts/W/m^2-
DETECTOR GAINS LOW			(16 values)	Valid format: NN.NNNNN, where $N = 0$ to 9
GROUP: DETECTOR GAINS	B4L Postlaunch	Static	float32	Band 4 postlaunch low gain in counts/W/m^2-
GROUP:		Claric	array	ster-µm
DETECTOR_GAINS_LOW			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B4L_Current	Dynamic	float32	Band 4 current low gain in counts/W/m^2-ster-
DETECTOR GAINS LOW			(16 values)	Valid format: NN NNNNN, where N = 0 to 9
GROUP DETECTOR GAINS	B5I Prelaunch	Static	float32	Band 5 prelaunch low gain in counts/W/m^2-
GROUP:		Clallo	array	ster-µm
DETECTOR_GAINS_LOW			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B5L_Postlaunch	Static	float32	Band 5 postlaunch low gain in counts/W/m^2-
GROUP:			array (16 values)	ster-µm Valid format: NN NNNNN, where N = 0 to 9
GROUP DETECTOR GAINS	B5L Current	Dynamic	float32	Band 5 current low gain in counts/W/mA2-ster-
GROUP:	Dot_Ourient	Dynamic	array	µm
DETECTOR_GAINS_LOW			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B6L_Prelaunch	Static	float32	Band 6 prelaunch low gain in counts/W/m^2-
GROUP:			array (8 values)	ster-µm
GROUP DETECTOR CAINS	B6L Postlaunch	Static	float32	Band 6 postlaunch low gain in counts/ $W/mA2_{-}$
GROUP:	DOL_FOSIIduitoit	Static	array	ster-µm
DETECTOR_GAINS_LOW			(8 values)	Valid format: NN.NNNNN, where $N = 0$ to 9
GROUP: DETECTOR_GAINS	B6L_Current	Dynamic	float32	Band 6 current low gain in counts/W/m^2-ster-
GROUP:			array (8 values)	µm Volid format: NN NNNNN whara N – 0 to 0
DETECTOR_GAINS_LOW	RZI Droloupoh	Statia	(0 values)	Valid format: NN. NNNNNN, where $N = 0.009$
GROUP: DETECTOR_GAINS		Static	array	ster-µm
DETECTOR_GAINS_LOW			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B7L_Postlaunch	Static	float32	Band 7 postlaunch low gain in counts/W/m^2-
GROUP:			array (16 values)	ster-µm
	R7L Current	Dynamic	float22	Pand 7 current low gain in counts/ M/m^2 stor
GROUP:	B/L_Current	Dynamic	array	µm
DETECTOR_GAINS_LOW			(16 values)	Valid format: NN.NNNNN, where $N = 0$ to 9
GROUP: DETECTOR_GAINS	B8L_Prelaunch	Static	float32	Band 8 prelaunch low gain in counts/W/m^2-
GROUP:			array (32 values)	ster-µm
GROUP DETECTOR CAINS	B&I Postlaunch	Static	float32	Band 8 postlaunch low gain in counts/W/mA2-
GROUP:	DOL_FOSIIduitoit	Static	array	ster-µm
DETECTOR_GAINS_LOW			(32 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B8L_Current	Dynamic	float32	Band 8 current low gain in counts/W/m^2-ster-
GROUP:			array (32 values)	µm Valid format: NN NNNNN whore N = 0 to 9
	B1H Prelaunch	Static	float32	Band 1 prelaunch high gain in counts/W/mA2-
GROUP:		Otatio	array	ster-µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B1H_Postlaunch	Static	float32	Band 1 postlaunch high gain in counts/W/m^2-
GROUP:			array (16 values)	ster-µm
GROUP DETECTOR CAINS	B1H Current	Dynamic	float32	Band 1 current high gain in counte/M//mA2 ctor
GROUP:		Dynamic	array	μm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS	B2H_Prelaunch	Static	float32	Band 2 prelaunch high gain in counts/W/m^2-
GROUP:			array	ster-µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B2H_Postlaunch	Static	float32	Band 2 postlaunch high gain in counts/W/m^2-
DETECTOR GAINS HIGH			(16 values)	Valid format: NN NNNNN, where $N = 0$ to 9
	B2H Current	Dynamic	float32	Band 2 current high gain in counts/W/m^2-ster-
GROUP:	D2H_OUNCIR	Dynamio	array	µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B3H_Prelaunch	Static	float32	Band 3 prelaunch high gain in counts/W/m^2-
GROUP:			array (16 values)	ster-µm
	R2H Postlaunch	Statio	(10 values)	Pand 2 postloungh high gain in countr/ M/m
GROUP:	DSI1_FOStiduitori	Static	array	ster-µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B3H_Current	Dynamic	float32	Band 3 current high gain in counts/W/m^2-ster-
GROUP:			array	µm
DETECTOR_GAINS_HIGH		0	(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B4H_Prelaunch	Static	float32 arrav	Band 4 prelaunch high gain in counts/W/m^2-
DETECTOR GAINS HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B4H_Postlaunch	Static	float32	Band 4 postlaunch high gain in counts/W/m^2-
GROUP:	_		array	ster-µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B4H_Current	Dynamic	float32	Band 4 current high gain in counts/W/m^2-ster-
DETECTOR GAINS HIGH			(16 values)	Valid format: NN NNNNN, where N = 0 to 9
GROUP: DETECTOR GAINS	B5H Prelaunch	Static	float32	Band 5 prelaunch high gain in counts/W/m^2-
GROUP:		Claric	array	ster-µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B5H_Postlaunch	Static	float32	Band 5 postlaunch high gain in counts/W/m^2-
GROUP:			array (16 values)	ster-µm Valid format: NN NNNNN, where N = 0 to 9
	B5H Current	Dynamic	float32	Band 5 current high gain in counts/W/mA2-ster-
GROUP:	Bon_ounch	Dynamic	array	µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B6H_Prelaunch	Static	float32	Band 6 prelaunch high gain in counts/W/m^2-
GROUP:			array	ster-µm
	DCI I. Dootlouroh	Statia	(0 values)	Valid format. NN.NNNNN, where $N = 0.009$
GROUP		Static	arrav	ster-um
DETECTOR_GAINS_HIGH			(8 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B6H_Current	Dynamic	float32	Band 6 current high gain in counts/W/m^2-ster-
GROUP:			array	µm
DETECTOR_GAINS_HIGH		0	(8 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B7H_Prelaunch	Static	float32 arrav	Band 7 prelaunch high gain in counts/W/m^2-
DETECTOR GAINS HIGH			(16 values)	Valid format: NN.NNNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B7H_Postlaunch	Static	float32	Band 7 postlaunch high gain in counts/W/m^2-
GROUP:			array	ster-µm
DETECTOR_GAINS_HIGH			(16 values)	Valid format: NN.NNNN, where N = 0 to 9
GROUP: DETECTOR_GAINS	B7H_Current	Dynamic	float32	Band 7 current high gain in counts/W/m ² -ster-
DETECTOR GAINS HIGH			(16 values)	Valid format: NN.NNNNN. where N = 0 to 9
GROUP: DETECTOR GAINS	B8H Prelaunch	Static	float32	Band 8 prelaunch high gain in counts/W/m^2-
GROUP:			array	ster-µm
DETECTOR_GAINS_HIGH			(32 values)	Valid format: NN.NNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP:	B8H_Postlaunch	Static	float32 array	Band 8 postlaunch high gain in counts/W/m^2- ster-µm
DETECTOR_GAINS_HIGH	Red Current	Dynamic	(SZ Values)	Valid format: NN.NNNNN, where $N = 0$ to 9 Rand 8 surrout high gain in sounts/W/mA2 stor
GROUP: DETECTOR GAINS HIGH		Dynamic	array (32 values)	μ m Valid format: NN.NNNNN. where N = 0 to 9
GROUP: BIAS_LOCATIONS	Forward_Bias_ Location_30	Dynamic	int16	Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Bands 1– 5 and 7 Valid format: NNN, where NNN = 143
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_30	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Bands 1-5 and 7 Valid format: NNN, where NNN = 500
GROUP: BIAS_LOCATIONS	Forward_IC_ Region_30	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and 7
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_30	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Bands 1– 5 and 7 Valid format: NNN, where NNN = 810
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Length_30	Dynamic	int16	Number of pixels to use per line, in calculating bias for Bands 1-5 and 7 Valid format: NNN, where NNN = 500
GROUP: BIAS_LOCATIONS	Reverse_IC_ Region_30	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and 7
GROUP: BIAS_LOCATIONS	Forward_Bias_ Location_60	Dynamic	int16	Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 85
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_60	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275
GROUP: BIAS_LOCATIONS	Forward_IC_ Region_60	Dynamic	int16	Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 380
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_60	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 400
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Length_60	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275
GROUP: BIAS_LOCATIONS	Reverse_IC_ Region_60	Dynamic	int16	Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 410
GROUP: BIAS_LOCATIONS	Forward_Bias_ Location_15	Dynamic	int16	Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNN, where NNN = 286
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_15	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: BIAS_LOCATIONS	Forward_IC_ Region_15	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1635
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_15	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNNN, where NNNN = 1610
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Length_15	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000
GROUP: BIAS_LOCATIONS	Reverse_IC_ Region_15	Dynamic	int16	Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1646
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW	B6L_Bias_Prelaunch	Static	float32 array (8 values)	Band 6 prelaunch low gain bias in digital counts Valid format: NN.NN, where N = 0 to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW	B6L_Bias_Postlaunch	Static	float32 array (8 values)	Band 6 postlaunch low gain bias in digital counts Valid format: NN.NN, where N = 0 to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW	B6L_Bias_Current	Dynamic	float32 array (8 values)	Band 6 current low gain bias in digital counts Valid format: NN.NNN, where N = 0 to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH	B6H_Bias_Prelaunch	Static	float32 array (8 values)	Band 6 prelaunch high gain bias in digital counts Valid format: SNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH	B6H_Bias_Postlaunch	Static	float32 array (8 values)	Band 6 postlaunch high gain bias in digital counts Valid format: SNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH	B6H_Bias_Current	Dynamic	float32 array (8 values)	Band 6 current high gain bias in digital counts Valid format: SNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW	B1L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 1 low-gain Automated Cloud Cover Assessment (ACCA) bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW	B2L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 2 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW	B3L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 3 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW	B4L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 4 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW	B5L_ACCA_Bias	Dynamic	float32 array (16 values)	Band 5 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW	B6L_ACCA_Bias	Dynamic	float32 array (8 values)	Band 6 low-gain ACCA bias in digital counts for detectors 1-8 Valid format: NN.NNN, where N = 0 to 9

GROUP: ACCA_BIASES B7L_ACCA_Bias Dynamic Band 7 low-gain ACCA bias in digital counts for detectors 1-15 ACCA_BIASES_LOW Band 8 low-gain ACCA bias in digital counts for detectors 1-32 Band 8 low-gain ACCA bias in digital counts for detectors 1-32 ACCA_BIASES_LOW Carabiase Dynamic float32 Band 8 low-gain ACCA bias in digital counts for detectors 1-32 ACCA_BIASES_HIGH Carabiase Dynamic float32 Band 4 low-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Carabiases Band 7 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NNNN, where N = 0 to 9 CROUP: ACCA_BIASES B3H_ACCA_Biase Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Carabiases Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Carabiases Dynamic float32 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Carabiases Dynamic float32 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Carabiases Dynamic float32 <th>Parameter Group</th> <th>Parameter Name</th> <th>Value Type</th> <th>Data Type</th> <th>Description</th>	Parameter Group	Parameter Name	Value Type	Data Type	Description
ACCL_BUXES_LOW BBL_ACCA_Bias Dynamic Total Support Stand 3 ton-gains ACCA bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES B1H_ACCA_Bias Dynamic Band 3 ton-gains Acca bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES_HIGH Dynamic Band 2 ton-gains ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH Dynamic float32 Band 2 ton-gains ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES B3H_ACCA_Bias Dynamic float32 Band 2 ton-gains ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES B3H_ACCA_Bias Dynamic float32 Band 3 ton-gains ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES B4H_ACCA_Bias Dynamic float32 Band 4 ton-gains ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Dynamic float32 Band 5 ton-gains ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Dynamic float32 Band 5 ton-gains ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Dynamic float32 Band 5 hon-gain	GROUP: ACCA_BIASES GROUP:	B7L_ACCA_Bias	Dynamic	float32 array	Band 7 low-gain ACCA bias in digital counts for detectors 1-16
GROUP. ACCA_BIASES Difference Differenc Differenc </td <td>ACCA_BIASES_LOW</td> <td></td> <td>Dunamia</td> <td>(10 values)</td> <td>Valid format: NN.NN, where $N = 0$ to 9</td>	ACCA_BIASES_LOW		Dunamia	(10 values)	Valid format: NN.NN, where $N = 0$ to 9
ACCA_BIASES_LOW GROUP: ACCA_BIASES_HIGH B1H_ACCA_Bias Dynamic many (16 value) Band 1 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B2H_ACCA_Bias Dynamic many (16 value) Band 1 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B3H_ACCA_Bias Dynamic many (16 value) Band 2 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B3H_ACCA_Bias Dynamic many (16 value) Total22 many (16 value) Band 3 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B4H_ACCA_Bias Dynamic (16 value) Total22 many (16 value) Band 4 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B4H_ACCA_Bias Dynamic (16 value) Total2 many (16 value) Band 5 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic (16 value) Total2 many (16 value) Band 6 high-pain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES HIGH B6H_ACCA_Bias Dynamic (16 value) Total2 many (16 value) Band 6 high-pain ACCA bias in digital counts for detectors 1-18 GROUP: ACCA_BIASES_HIGH B7H_ACCA_BiaS Dynamic (16 value)	GROUP: ACCA_BIASES	DOL_ACCA_DIdS	Dynamic	array	detectors 1-32
GROUP: ACCA_BIASES BIH_ACCA_Bias Dynamic Incat32 array (16 values) Band 1 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES B2H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 2 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B2H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 3 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B3H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 3 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B4H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B5H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic Incat32 inray (16 values) Band 5 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH Dynamic Incat32 inray (16 values) Band 5 high-gain ACC	ACCA_BIASES_LOW			(32 values)	Valid format: NN.NN, where N = 0 to 9
GROUP: array array <t< td=""><td>GROUP: ACCA_BIASES</td><td>B1H_ACCA_Bias</td><td>Dynamic</td><td>float32</td><td>Band 1 high-gain ACCA bias in digital counts for</td></t<>	GROUP: ACCA_BIASES	B1H_ACCA_Bias	Dynamic	float32	Band 1 high-gain ACCA bias in digital counts for
ACCA_BIASES_HIGH B2H_ACCA_BIASES B2H_ACCA_BIASE B2H_ACCA_BIASE B2H_ACCA_BIASE B2H_ACCA_BIASE B3H_ACCA_BIASE B3H_ACCA_BIASE B3H_ACCA_BIASE Band 3 high-gain ACCA bias in digital counts for array detectors 1-16 GROUP: ACCA_BIASES B3H_ACCA_BIASE B3H_ACCA_BIASE Band 3 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH Ifoat32 Band 3 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B4H_ACCA_BIASE Dynamic fitoat32 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B4H_ACCA_BIASE Dynamic fitoat32 Band 6 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH CACA_BIASES B5H_ACCA_BIASE Dynamic fitoat32 Band 6 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH CACA_BIASES BFI_ACCA_BIASE Dynamic fitoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-8 GROUP: ACCA_BIASES BFI_ACCA_BIASE Dynamic fitoat32 Band 3 high-gain ACCA bias in digital counts for detectors 1-8 GROUP: ACCA_BIASES	GROUP:			array	detectors 1-16
GROUP: ACCA_BIASES_HIGH D2H_ACCA_Bias Dynamic array Indel22 (16 values) Waild format. NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES_HIGH Dynamic GROUP: Indel24 Band 2 ingih-gain ACCA bias in digital counts for array GROUP: ACCA_BIASES B3H_ACCA_Bias Dynamic GROUP: float 22 Band 3 ingh-gain ACCA bias in digital counts for array GROUP: ACCA_BIASES_HIGH Dynamic GROUP: float 22 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 GCCA_BIASES_HIGH B5H_ACCA_Bias Dynamic GROUP: float 22 Band 6 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES HIGH B6H_ACCA_Bias Dynamic (16 values) float 22 Band 6 high-gain ACCA bias in digital counts for array GROUP: ACCA_BIASES HIGH B6H_ACCA_Bias Dynamic (18 values) float 22 Band 7 high-gain ACCA bias in digital counts for array GROUP: ACCA_BIASES HIGH B7H_ACCA_Bias Dynamic (18 values) float 22 Band 7 high-gain ACCA bias in digital counts for array GROUP: ACCA_BIASES_HIGH Dynamic (16 values) float 22 Band 7 high-gain ACCA bias in digital counts for array			Dunamia	(10 values)	Valid format: NN.NN, where $N = 0$ to 9
ÂCCÂ, BIASES, HIGH (15 values) Valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES B3H_ACCA_Bias Dynamic float32 Band 3 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Convertex-CA_BIASES B4H_ACCA_Bias Dynamic float32 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Convertex-CA_BIASES B5H_ACCA_Bias Dynamic float32 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH Convertex-CA_BIASES B5H_ACCA_Bias Dynamic float32 Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 Band 5 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-32 ACOL_BIASES_HIGH B	GROUP	DZH_ACCA_DIdS	Dynamic	arrav	detectors 1-16
GROUP: ACCA_BIASES B3H_ACCA_Bias Dynamic float32 array (16 values) Band 3 high-gain ACCA bias in digital counts for directors 1-16 Valid format: NN.NN. where N = 0 to 9 GROUP: ACCA_BIASES_HIGH B4H_ACCA_Bias Dynamic (16 values) Band 4 high-gain ACCA bias in digital counts for directors 1-16 Valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES_HIGH B5H_ACCA_Bias Dynamic (16 values) Band 6 high-gain ACCA bias in digital counts for detectors 1-16 (16 values) ACCA_BIASES_HIGH B5H_ACCA_Bias Dynamic (16 values) Inota32 array (16 values) Band 6 high-gain ACCA bias in digital counts for detectors 1-8 (Values) ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic (16 values) Inota32 array (16 values) Band 6 high-gain ACCA bias in digital counts for detectors 1-18 (Values) GROUP: ACCA_BIASES_HIGH DYnamic (16 values) Inota32 array (16 values) Band 6 high-gain ACCA bias in digital counts for detectors 1-18 (Values) GROUP: ACCA_BIASES B7H_ACCA_Bias Dynamic (16 values) Inota32 array (21 values) Band 6 high-gain ACCA bias in digital counts for detectors 1-18 (Values) GROUP: ACCA_BIASES_HIGH Dynamic (16 values) Inota32 (21 values) Band 7 high-gain ACCA bias in digital counts for detectors 1-8 (Values)<	ACCA_BIASES_HIGH			(16 values)	Valid format: NN.NN, where $N = 0$ to 9
GROUP: ACCA_BIASES_HIGH array (16 values) detectors 1-16 (16 values) Galaxies (16 values) Band 4 high-gain ACCA bias in digital counts for detectors 1-16 (16 values) GROUP: ACCA_BIASES_HIGH B5H_ACCA_Bias Dynamic (16 values) Band 4 high-gain ACCA bias in digital counts for detectors 1-16 (16 values) Band 5 high-gain ACCA bias in digital counts for detectors 1-16 (16 values) GROUP: ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic (16 values) Band 6 high-gain ACCA bias in digital counts for array detectors 1-18 (16 values) GROUP: ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic (16 values) Band 6 high-gain ACCA bias in digital counts for array detectors 1-18 (16 values) GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic (16 values) Band 7 high-gain ACCA bias in digital counts for array detectors 1-16 (16 values) GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic (16 values) Band 8 high-gain ACCA bias in digital counts for array detectors 1-32 (32 values) Band 8 high-gain ACCA bias in digital counts for array detectors 1-16 (16 values) GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic (16 values) Band 3 high-gain ACCA bias in digital counts for array detectors 1-16 (16 values) Band 3 high-gain ACCA bias in digital counts for array detectors 1-18 (20 valid format: NN.NN, where N.N.NN + 0 to 9 GROUP: ACCA_THRESHOLDS Thresh_B3_Lower <t< td=""><td>GROUP: ACCA_BIASES</td><td>B3H_ACCA_Bias</td><td>Dynamic</td><td>float32</td><td>Band 3 high-gain ACCA bias in digital counts for</td></t<>	GROUP: ACCA_BIASES	B3H_ACCA_Bias	Dynamic	float32	Band 3 high-gain ACCA bias in digital counts for
ACCA_BIASES_INGM B4H_ACCA_Bias Dynamic Total23 and 4 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES B5H_ACCA_Bias Dynamic Total23 Band 4 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH CACA_BIASES_HIGH B5H_ACCA_Bias Dynamic Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH CACA_BIASES_HIGH B6H_ACCA_Bias Dynamic Band 6 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES B6H_ACCA_Bias Dynamic Ifoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH DYnamic Ifoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH DYnamic Ifoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH Dynamic Ifoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-18 GROUP: ACCA_BIASES_HIGH Dynamic Ifoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES_HIGH Dynamic Ifoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-32	GROUP:			array	detectors 1-16
GROUP: ACCA_BIASES Definition of the stands in the stands in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 array detectors 1-16 GROUP: ACCA_BIASES B6H_ACCA_Bias Dynamic float32 array detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 array detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic float32 array detectors 1-16 GROUP: ACCA_BIASES B6H_ACCA_Bias Dynamic float32 array detectors 1-16 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic float32 Band 6 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES B8H_ACCA_Bias Dynamic float32 Band 8 high-gain ACCA bias in digital counts for detectors 1-32 GROUP: <td></td> <td></td> <td>Dunamia</td> <td>(10 values)</td> <td>Valid format: NN.NN, where $N = 0$ to 9</td>			Dunamia	(10 values)	Valid format: NN.NN, where $N = 0$ to 9
ACCA_BIASES_HIGH (16 values) Valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES B5H_ACCA_Bias Dynamic ftoat32 Band 5 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic ftoat32 Band 6 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic ftoat32 Band 6 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic ftoat32 Band 6 high-gain ACCA bias in digital counts for detectors 1-10 ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic ftoat32 Band 7 high-gain ACCA bias in digital counts for detectors 1-10 GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic ftoat32 Band 8 high-gain ACCA bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic ftoat32 Band 3 land reflectance threshold GROUP: ACCA_HIRESHOLDS Thresh_B3_Lower Dynamic ftoat32 Band 3 land reflectance threshold ACCA_THRESHOLDS Thresh_B56_Low Dynamic ftoat32 Band 5 land composite	GROUP: ACCA_BIASES	B4H_ACCA_Blas	Dynamic	noat32 arrav	detectors 1-16
GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH B5H_ACCA_Bias Dynamic prarray Band 5 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES GROUP: ACCA_BIASES ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic Prarray (8 values) Band 5 high-gain ACCA bias in digital counts for detectors 1.8 GROUP: ACCA_BIASES GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic Prarray (8 values) Band 7 high-gain ACCA bias in digital counts for detectors 1.6 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic Prarray (16 values) Band 7 high-gain ACCA bias in digital counts for detectors 1.6 GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic Prarray (16 values) Band 7 high-gain ACCA bias in digital counts for detectors 1.32 GROUP: ACCA_BIASES_HIGH Thresh_B3 Dynamic Prarray Band 3 high-gain ACCA bias in digital counts for detectors 1.32 GROUP: ACCA_THRESHOLDS Thresh_B3 Dynamic Prarray Band 3 high-gain ACCA bias in digital counts for detectors 1.32 GROUP: ACCA_THRESHOLDS Thresh_B3_Lower Dynamic Prarray Band 3 high-gain ACCA bias in digital counts for detectors 1.32 GROUP: ACCA_THRESHOLDS Thresh_B45_High Dynamic Band 3 high-gain ACCA GROUP: ACCA_THRESHOLDS Thresh_B45_Ratio	ACCA_BIASES_HIGH			(16 values)	Valid format: NN.NN, where $N = 0$ to 9
GROUP: ACCA_BIASES_HIGH array (16 values) detectors valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES_HIGH B6H_ACCA_Bias Dynamic (Roup: ACCA_BIASES_HIGH Band 6 high-gain ACCA bias in digital counts for detectors 1-8 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic (Roup: ACCA_BIASES_HIGH Band 7 b to 9 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic (Roup: ACCA_BIASES_HIGH Band 7 b to 9 GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic (Roup: ACCA_BIASES_HIGH Band 8 high-gain ACCA bias in digital counts for detectors 1-16 (Roup: ACCA_BIASES_HIGH GROUP: ACCA_THRESHOLDS B8H_ACCA_Bias Dynamic (Roup: ACCA_THRESHOLDS Band 3 high-gain ACCA these hold valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_THRESHOLDS Thresh_B3 Dynamic (ROUP: ACCA_THRESHOLDS Band 3 ACCA threshold valid format: NN.NNN, where N.NN = 0.0800 GROUP: ACCA_THRESHOLDS Thresh_B56_High Dynamic (Roup: ACCA_THRESHOLDS Band 5-6 high-composite threshold valid format: NN.NNN, where NNN.NNN = 2.0000 GROUP: ACCA_THRESHOLDS Thresh_B66 Dynamic ACCA_THRESHOLDS Band 4-5 ratio threshold valid format: NNNNNN, where NNN.NNN = 2.0000 GROUP: ACCA_THRESHOLDS Thresh_B42_Ratio Dynamic ACCA_THRESHOLDS Band 4-5 ratio threshold valid format: NNNNNN, wh	GROUP: ACCA_BIASES	B5H_ACCA_Bias	Dynamic	float32	Band 5 high-gain ACCA bias in digital counts for
ACCA_BIASES_HIGH (16 values) Valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES B6H_ACCA_Bias Dynamic Band 6 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH Senume (8 values) Valid format: SNN.NNN, where S = "+" or "-" and N = 0 to 9 GROUP: ACCA_BIASES B7H_ACCA_Bias Dynamic float32 Band 6 high-gain ACCA bias in digital counts for detectors 1-8 ACCA_BIASES_HIGH CACA_BIASES_HIGH Dynamic float32 Band 7 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH CACA_BIASES_HIGH Dynamic float32 Band 8 high-gain ACCA bias in digital counts for detectors 1-16 GROUP: ACCA_BIASES_HIGH Dynamic float32 Band 3 high-gain ACCA bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES_HIGH Dynamic float32 Band 3 CCA threshold ACCA_THRESHOLDS Thresh_B3 Dynamic float32 Band 3 Land reflectance threshold ACCA_THRESHOLDS Thresh_B56_High Dynamic float32 Band 5 low-composite threshold ACCA_THRESHOLDS Thresh_B6 Dynamic float32 Band 4 format: NN.NN, where NNN.NNN + son 0.000 GROUP: Thresh_B6_Low	GROUP:			array	detectors 1-16
GROUP: CLCA_BIASES BBH_ACCA_Bias Dynamic Triad32 array (8 values) Bada Dynamic Triad32 array (8 values) Bada to mgn-gan ACCA bias in digital counts for detectors 1-18 GROUP: ACCA_BIASES_HIGH B7H_ACCA_Bias Dynamic float32 (16 values) Band 7 high-gan ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic float32 (16 values) Band 7 high-gan ACCA bias in digital counts for detectors 1-32 GROUP: ACCA_BIASES_HIGH B8H_ACCA_Bias Dynamic float32 (32 values) Band 8 high-gan ACCA bias in digital counts for detectors 1-32 GROUP: Thresh_B3 Dynamic float32 (32 values) Band 3 ACCA threshold ACCA_THRESHOLDS Thresh_B3_Lower Dynamic float32 Band 3 SCA threshold ACCA_THRESHOLDS Thresh_B5_Lower Dynamic float32 Band 3 SCA threshold ACCA_THRESHOLDS Thresh_B5_Lower Dynamic float32 Band 3 SCA threshold ACCA_THRESHOLDS Thresh_B45_Ratio Dynamic float32 Band 4-5 fnigh-composite threshold ACCA_THRESHOLDS Thresh_B45_Ratio Dynamic	ACCA_BIASES_HIGH		D	(16 values)	Valid format: NN.NN, where $N = 0$ to 9
ACCA_BIASES_HIGH (8 values) Valid format: SNN.NNN, where S = "+" or "-" and N = 0 to 9 ACCA_BIASES B7H_ACCA_Bias Dynamic float32 GROUP: ACCA_BIASES B7H_ACCA_Bias Dynamic float32 GROUP: ACCA_BIASES B8H_ACCA_Bias Dynamic float32 GROUP: ACCA_BIASES B8H_ACCA_Bias Dynamic float32 GROUP: ACCA_BIASES B8H_ACCA_Bias Dynamic float32 GROUP: Thresh_B3 Dynamic float32 GROUP: Thresh_B3_Lower Dynamic float32 GROUP: Thresh_B56_High Dynamic float32 GROUP: Thresh_B56_High Dynamic float32 GROUP: Thresh_B56_Low Dynamic float32 GROUP: Thresh_B6 Dynamic float32 GROUP: Thresh_B6 Dynamic float32 GROUP: Thresh_B6_Ratio Dynamic float32 GROUP: Thresh_B6 Dynamic float32 GROUP: Thresh_B45_Ratio Dynamic float32 GROUP: Thresh_B45_Ratio Dynamic <t< td=""><td>GROUP: ACCA_BIASES</td><td>B6H_ACCA_Blas</td><td>Dynamic</td><td>fioat32 arrav</td><td>Band 6 high-gain ACCA bias in digital counts for detectors 1-8</td></t<>	GROUP: ACCA_BIASES	B6H_ACCA_Blas	Dynamic	fioat32 arrav	Band 6 high-gain ACCA bias in digital counts for detectors 1-8
Image: Constraint of the second sec	ACCA_BIASES_HIGH			(8 values)	Valid format: SNN.NNNN, where S = "+" or "-"
GROUP: ACCA_BIASES GROUP: B7H_ACCA_Bias Dynamic (16 values) float32 array (32 values) Band 7 high-gain ACCA bias in digital counts for detectors 1-16 ACCA_BIASES_HIGH GROUP: ACCA_BIASES GROUP: B8H_ACCA_Bias Dynamic (32 values) float32 array (32 values) Band 8 high-gain ACCA bias in digital counts for detectors 1-32 valid format: NN.NN, where N = 0 to 9 GROUP: ACCA_BIASES_HIGH Thresh_B3 Dynamic (32 values) float32 band 3 ACCA threshold valid format: NN.NN, where N.NNNN = 0.0800 GROUP: Thresh_B3_Lower Dynamic ACCA_THRESHOLDS float32 Band 3 ACCA threshold valid format: NN.NN, where N.NNN = 0.07 GROUP: Thresh_B56_High Dynamic float32 Band 5-6 high-composite threshold valid format: NN.NN, where NNN.NNN = 225.000 GROUP: Thresh_B56_Low Dynamic float32 Band 6 threshold - maximum cloud temperature valid format: NNN.NNN = 210.000 GROUP: Thresh_B6 Dynamic float32 Band 4-5 ratio threshold valid format: NNN.NNN = 210.000 GROUP: Thresh_B45_Ratio Dynamic float32 Band 4-5 ratio threshold valid format: NNNNNN, where NNN.NNN = 21.0000 GROUP: Thresh_B42_Ratio Dynamic float32 Band 4-5 ratio threshold valid format: NNNNNN, whe					and N = 0 to 9
GROUP: ACCA_BIASES_HIGHdetectors 1-10 (16 values)detectors 1-10 valid format: NN.NN, where N = 0 to 9GROUP: ACCA_BIASES_HIGHB8H_ACCA_BiasDynamic (32 values)float32 valid format: NN.NN, where N = 0 to 9GROUP: ACCA_BIASES_HIGHThresh_B3Dynamic float32float32 valid format: NN.NN, where N = 0 to 9GROUP: ACCA_THRESHOLDSThresh_B3Dynamic float32float32 valid format: NN.NN, where N.NNN = 0.0800GROUP: ACCA_THRESHOLDSThresh_B3_LowerDynamic float32float32 valid format: NN.NN, where N.NNN = 0.070GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamic float32float32 valid format: NN.NN, where NNN.NNN = 20.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamic float32float32 valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamic float32float32 valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamic float32float32 band 4-5 ratio threshold valid format: N.NNNN, where NNN.NNN = 30.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamic float32float32 band 4-5 ratio threshold valid format: N.NNNN, where NNNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamic valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamic valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamic valid format: N.NNNN, where N.NNNN = 2.3500<	GROUP: ACCA_BIASES	B7H_ACCA_Bias	Dynamic	float32	Band 7 high-gain ACCA bias in digital counts for
Note-UnclementContractContractGROUP: ACCA_BIASES RCUP: ACCA_BIASES_HIGHB8H_ACCA_BiasDynamicfloat32 float32 gray (32 values)Band 8 high-gain ACCA bias in digital counts for detectors 1-32 valid format: NN.NN, where N = 0 to 9GROUP: ACCA_THRESHOLDSThresh_B3Dynamicfloat32Band 3 ACCA threshold valid format: NN.NN, where N.NNN = 0.0800GROUP: ACCA_THRESHOLDSThresh_B3_LowerDynamicfloat32Band 3 land reflectance threshold valid format: NN.NN, where NN.NN = 0.07GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamicfloat32Band 5-6 high-composite threshold valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 6 threshold - maximum cloud temperature valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold valid format: N.NNNN, where NNN.NNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-5 ratio threshold valid format: N.NNNN where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-5 ratio threshold valid format: N.NNNNN where N.NNNN = 2.0500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-5 ratio threshold valid format: N.NNNNN where N.NNNN = 2.7500 <td>GROUP:</td> <td></td> <td></td> <td>array (16 values)</td> <td>detectors 1-16 Valid format: NN NN, where N = 0 to 9</td>	GROUP:			array (16 values)	detectors 1-16 Valid format: NN NN, where N = 0 to 9
GROUP: ACCA_BIASES_HIGHDisplay and an array (32 values)detectors 1-32 Valid format: NN.NN, where N = 0 to 9GROUP: ACCA_THRESHOLDSThresh_B3Dynamicfloat32Band 3 ACCA threshold Valid format: N.NNN, where N.NNN = 0.0800GROUP: ACCA_THRESHOLDSThresh_B3_LowerDynamicfloat32Band 3 Iand reflectance threshold Valid format: NN.NN, where N.NNN = 0.070GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 20.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B66_LowDynamicfloat32Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 200.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 4-6 raximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.0500GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.0500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: AC	GROUP ACCA BIASES	B8H ACCA Bias	Dynamic	float32	Band 8 high-gain ACCA bias in digital counts for
ACCA_BIASES_HIGH(32 values)Valid format: NN.NN, where N = 0 to 9GROUP: ACCA_THRESHOLDSThresh_B3Dynamicfloat32Band 3 ACCA threshold Valid format: N.NNN, where N.NNN = 0.0800GROUP: ACCA_THRESHOLDSThresh_B3_LowerDynamicfloat32Band 3 land reflectance threshold Valid format: NN.NN, where NN.NN = 0.07GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamicfloat32Band 5-6 high-composite threshold Valid format: NN.NNN, where NNN.NNN, where NNN.NNN, where NNN.NNN, where NNN.NNN, where NNN.NNN, where NNN.NNN, where NNN.NNN = 20.07GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 20.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 6 threshold - maximum cloud temperature NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN =	GROUP:		2)	array	detectors 1-32
GROUP: ACCA_THRESHOLDSThresh_B3Dynamicfloat32Band 3 ACCA threshold Valid format: N.NNN, where N.NNN = 0.0800GROUP: ACCA_THRESHOLDSThresh_B3_LowerDynamicfloat32Band 3 land reflectance threshold Valid format: N.N.NN, where N.NN = 0.070GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamicfloat32Band 5-6 high-composite threshold Valid format: NN.NN, where N.NN = 0.070GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid	ACCA_BIASES_HIGH			(32 values)	Valid format: NN.NN, where $N = 0$ to 9
ACCA_THRESHOLDSThresh_B3_LowerDynamicfloat32Band 3 land reflectance threshold Valid format: N.N.NN, where N.N.NN = 0.07GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NN, where NN.NN = 0.07GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where NNN.NNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.0700GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) celing Valid format: N.NNNN, where NAINNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index	GROUP:	Thresh_B3	Dynamic	float32	Band 3 ACCA threshold
GROUP: ACCA_THRESHOLDSThresh_B56_High Thresh_B56_HighDynamic DynamicItod32Band 3 fand reliectance threshold Valid format: NN.NN, where NN.NN = 0.07GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNNNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4 threshold - maximum cloud temperature Valid format: NNNNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized		Thread D2 Lauran	Dunania	fla a t 2 0	Valid format: N.NNNN, where N.NNNN = 0.0800
GROUP: ACCA_THRESHOLDSThresh_B56_HighDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow difference Index (NDSI) ceiling Valid format: N.NNNN, whereGROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	ACCA_THRESHOLDS	Inresn_B3_Lower	Dynamic	1108132	Valid format: NN.NN, where NN.NN = 0.07
ACCA_ITRESHOLDSThresh_B56_LowDynamicFloat32Band 5-6 low-composite threshold Valid format: NNN.NNN = 225.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	GROUP:	Thresh_B56_High	Dynamic	float32	Band 5-6 high-composite threshold
GROUP: ACCA_THRESHOLDSThresh_B56_LowDynamicfloat32Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNN, where	ACCA_THRESHOLDS				Valid format: NNN.NNN, where
ACCA_THRESHOLDSIntern_Doc_DocDynamicNoticeDana of contract NNN.NNNACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 210.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized Snow difference index floor Valid format: SN.NNNN, where	GROUP	Thresh B56 Low	Dynamic	float32	Band 5-6 low-composite threshold
Image: constraint of the second sec	ACCA_THRESHOLDS		Dynamie	noutor	Valid format: NNN.NNN, where
GROUP: ACCA_THRESHOLDSThresh_B6Dynamicfloat32Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where					NNN.NNN = 210.000
ACCA_THRESHOLDSValid format: NNN.NNN, where NNN.NNN = 300.000GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	GROUP:	Thresh_B6	Dynamic	float32	Band 6 threshold - maximum cloud temperature
GROUP: ACCA_THRESHOLDSThresh_B45_RatioDynamicfloat32Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	ACCA_THRESHOLDS				Valid format: NNN.NNN, where
ACCA_THRESHOLDSThresh_B43_RatioDynamicIloat32Baild 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where		Throop P45 Potio	Dunamia	floot22	NNN.NNN = 300.000 Read 4.5 ratio threshold
GROUP: ACCA_THRESHOLDSThresh_B42_RatioDynamicfloat32Band 4-2 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	ACCA_THRESHOLDS	Thesh_D45_Nallo	Dynamic	1108132	Valid format: N.NNNN, where N.NNNN = 1.0000
ACCA_THRESHOLDSValid format: N.NNNNN, where N.NNNNN = 2.16248GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	GROUP:	Thresh_B42_Ratio	Dynamic	float32	Band 4-2 ratio threshold
GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where	ACCA_THRESHOLDS				Valid format: N.NNNNN, where
GROUP: ACCA_THRESHOLDSThresh_B43_RatioDynamicfloat32Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500GROUP: ACCA_THRESHOLDSThresh_NDSI_MaxDynamicfloat32Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000GROUP: ACCA_THRESHOLDSThresh_NDSI_MinDynamicfloat32Normalized snow difference index floor Valid format: SN.NNNN, where					N.NNNNN = 2.16248
ACCA_THRESHOLDS Thresh_NDSI_Max Dynamic float32 Normalized Snow Difference Index (NDSI) GROUP: ACCA_THRESHOLDS Thresh_NDSI_Max Dynamic float32 Normalized Snow Difference Index (NDSI) GROUP: ACCA_THRESHOLDS Thresh_NDSI_Min Dynamic float32 Normalized snow difference index floor Valid format: N.NNNN, where Thresh_NDSI_Min Dynamic float32 Normalized snow difference index floor ACCA_THRESHOLDS Thresh_NDSI_Min Dynamic float32 Normalized snow difference index floor	GROUP:	Thresh_B43_Ratio	Dynamic	float32	Band 4-3 ratio threshold
ACCA_THRESHOLDS Inresh_INDSI_IMax Dynamic Itoat32 Normalized Snow Difference Index (NDSI) ceiling GROUP: ACCA_THRESHOLDS Thresh_NDSI_Min Dynamic float32 Normalized Snow Difference Index (NDSI) ceiling ACCA_THRESHOLDS Thresh_NDSI_Min Dynamic float32 Normalized Snow Difference Index (NDSI) ceiling		Threeh NDCI Mair	Dumorris	floot20	valid format: N.NNNN, where N.NNNN = 2.3500
GROUP: Thresh_NDSI_Min Dynamic float32 Normalized snow difference index floor ACCA_THRESHOLDS Thresh_NDSI_Min Dynamic valid format: SN.NNNN, where	ACCA THRESHOLDS	Inresn_NDSI_Max	Uynamic	110at32	vormalized Snow Difference Index (NDSI)
GROUP: Thresh_NDSI_Min Dynamic float32 Normalized snow difference index floor ACCA_THRESHOLDS Thresh_NDSI_Min Dynamic float32 Normalized snow difference index floor					Valid format: N.NNNN, where N.NNNN = 0.7000
ACCA_THRESHOLDS Valid format: SN.NNNN, where	GROUP:	Thresh_NDSI_Min	Dynamic	float32	Normalized snow difference index floor
	ACCA_THRESHOLDS				Valid format: SN.NNNN, where

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: ACCA_THRESHOLDS	Thresh_NDSI_Snow	Dynamic	float32	NDSI threshold used to identify snow Valid format: NN.NNNN, where NN.NNNN = 0.8000
GROUP: ACCA_THRESHOLDS	Cloud_Percent_Min	Dynamic	float32	Minimum cloud cover percentage required for pass two Valid format: N.NNNN, where N.NNNN = 0.4000
GROUP: ACCA_THRESHOLDS	Desert_Index	Dynamic	float32	Desert index (Thresh_45_Ratio/ Thresh_42_Ratio) Valid format: N.NNN, where N.NNN = 0.500
GROUP: ACCA_THRESHOLDS	Thresh_Snow_Percent	Dynamic	float32	Maximum snow cover percentage allowed to use looser cloud properties for pass two Valid format: N.NNNN, where N.NNNN = 1.0000
GROUP: ACCA_THRESHOLDS	Thermal_Effect_High	Dynamic	float32	Maximum allowable pass two percentage cloud cover increase allowed using looser cloud properties Valid format: NN.NNNN, where NN.NNNN = 35.0000
GROUP: ACCA_THRESHOLDS	Thermal_Effect_Low	Dynamic	float32	Maximum allowable pass two percentage cloud cover increase allowed using narrower cloud properties Valid format: NN.NNN, where NN.NNN = 25.000
GROUP: ACCA_THRESHOLDS	B6Max_Maxthresh_Diff	Dynamic	float32	Minimum difference allowed between maximum cloud temperature and maximum thermal threshold Valid format: NN.NNN, where NN.NNN = 2.000
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B1_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 1 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1969.000
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B2_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 2 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1840.000
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B3_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 3 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1551.000
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B4_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 4 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1044.000
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B5_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 5 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 225.700
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B7_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 7 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 82.070
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B8_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 8 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1368.000
GROUP: THERMAL_CONSTANTS	K1_Constant	Static	float32	Thermal calibration constant 1 in W/m^2-ster- μ m Valid format: NNN.NN, where NNN.NN = 666.09
GROUP: THERMAL_CONSTANTS	K2_Constant	Static	float32	Thermal calibration constant 2 kelvin Valid format: NNNNNN, where NNNNN.NN = 1282.71

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B1L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 1, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B2L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 2, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B3L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 3, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B4L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 4, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B5L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 5, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B6L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 6, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B7L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 7, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B8L_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 8, low gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_LOW	B1H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 1, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B2H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 2, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B3H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 3, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B4H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 4, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B5H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 5, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B6H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 6, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B7H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 7, high gain, W/m^2-ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SCALING_PARAMETERS GROUP: SCALING_ PARAMETERS_HIGH	B8H_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 8, high gain, W/m^2 -ster- μ m Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B1_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan Modulation Transfer Function Compensation (MTFC) for Band 1 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B1_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 1 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B2_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 2 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B2_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 2 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B3_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 3 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B3_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 3 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B4_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 4 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B4_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 4 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B5_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 5 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B5_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 5 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B6_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 6 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B6_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 6 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B7_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 7 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B7_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 7 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: MTF_COMPENSATION	B8_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 8 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MTF_COMPENSATION	B8_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 8 Valid format: SN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B1_ME_Magnitude	Dynamic	float32 array (16 values)	Band 1 memory effect magnitude measured in Digital Numbers (DNs) Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B2_ME_Magnitude	Dynamic	float32 array (16 values)	Band 2 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B3_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B4_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B5_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B6_ME_Magnitude	Dynamic	float32 array (8 values)	Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B7_ME_Magnitude	Dynamic	float32 array (16 values)	Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B8_ME_Magnitude	Dynamic	float32 array (32 values)	Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B1_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 1 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B2_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 2 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B3_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 3 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B4_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 4 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B5_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 5 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B6_ME_Time_Constant	Dynamic	float32 array (8 values)	Band 6 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B7_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 7 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B8_ME_Time_Constant	Dynamic	float32 array (32 values)	Band 8 time constant measured in minor frames Valid format: NNNN.NNNNNN, where N = 0 to 9
GROUP: GHOST_PULSE	Ghost_Pulse_Endpoints	Dynamic	float32 array (2 values)	Beginning and ending fractional minor frames that bound IC ghost pulse Valid format: NNNN.NNNN, where N = 0 to 9
Parameter Group	Parameter Name	Value Type	Data Type	Description
--	-----------------------------	---------------	---------------------------------	---
GROUP: SCAN_CORRELATED_SHIFT	SCS_Reference_ Detectors	Dynamic	uint8 array (7 values)	Scan correlated shift reference detector, one per band Valid format: NN, where NN = 1-16
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B1L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 1 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B2L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 2 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B3L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 3 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B4L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 4 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B5L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 5 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B7L_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 7 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_LOW	B8L_SCS_Magnitudes	Dynamic	float32 array (32 values)	Magnitude of Band 8 low-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B1H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 1 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B2H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 2 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B3H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 3 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B4H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 4 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B5H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 5 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B7H_SCS_Magnitudes	Dynamic	float32 array (16 values)	Magnitude of Band 7 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SCAN_CORRELATED_SHIFT GROUP: SCS_HIGH	B8H_SCS_Magnitudes	Dynamic	float32 array (32 values)	Magnitude of Band 8 high-gain shift in digital numbers Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B1_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 1, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B2_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 2, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B3_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 3, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B4_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 4, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B5_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 5, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B6_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 6, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B7_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 7, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_LOW	Correction_ Reference_B8_Low	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 8, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B1_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 1, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B2_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 2, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B3_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 3, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B4_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 4, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B5_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 5, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B6_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 6, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B7_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 7, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING GROUP: STRIPING_FLAG_HIGH	Correction_ Reference_B8_High	Static	uint8	Striping correction methodology flag, relative to band average or reference detector, Band 8, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction)
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B1_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 1, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B2_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 2, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B3_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 3, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B4_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 4, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B5_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 5, low gain Valid format: N.NNNNNN, where N = 0 to 9, where NN.NNNN = CPF
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B6_Low	Dynamic	float32 array (8 values)	Standard deviation of image region data for each detector of Band 6, low gain Valid format: N.NNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B7_Low	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 7, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW	Detector_Noise_ Level_B8_Low	Dynamic	float32 array (32 values)	Standard deviation of image region data for each detector of Band 8, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B1_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 1, high gain Valid format: N.NNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B2_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 2, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B3_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 3, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B4_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 4, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B5_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 5, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B6_High	Dynamic	float32 array (8 values)	Standard deviation of image region data for each detector of Band 6, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B7_High	Dynamic	float32 array (16 values)	Standard deviation of image region data for each detector of Band 7, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH	Detector_Noise_ Level_B8_High	Dynamic	float32 array (32 values)	Standard deviation of image region data for each detector of Band 8, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B1_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 1, low gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B2_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 2, low gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B3_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 3, low gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B4_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 4, low gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B5_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 5, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B6_Low	Dynamic	float32 array (8 values)	Standard deviation of shutter region data for each detector of Band 6, low gain Valid format: N.NNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B7_Low	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 7, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW	Det_Shutter_Noise_ Level_B8_Low	Dynamic	float32 array (32 values)	Standard deviation of shutter region data for each detector of Band 8, low gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B1_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 1, high gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B2_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 2, high gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B3_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 3, high gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B4_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 4, high gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B5_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 5, high gain Valid format: N.NNNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B6_High	Dynamic	float32 array (8 values)	Standard deviation of shutter region data for each detector of Band 6, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B7_High	Dynamic	float32 array (16 values)	Standard deviation of shutter region data for each detector of Band 7, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH	Det_Shutter_Noise_ Level_B8_High	Dynamic	float32 array (32 values)	Standard deviation of shutter region data for each detector of Band 8, high gain Valid format: N.NNNNN, where N = 0 to 9
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B1	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 1 Valid format: NN, where NN = 15

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B2	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 2 Valid format: NN, where NN = 12
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B3	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 3 Valid format: NN, where NN = 08
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B4	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 4 Valid format: NN, where NN = 07
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B5	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 5 Valid format: NN, where NN = 14
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B6	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 6 Valid format: NN, where NN = 01
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B7	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 7 Valid format: NN, where NN = 10
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B8	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 8 Valid format: NN, where NN = 27
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B1	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 1 Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B2	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 2 Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B3	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 3 Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B4	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 4 Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B5	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 5 Valid format: NNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B6	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 6 Valid format: NNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS	Saturation_Bin_ Threshold_B7	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 7 Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation_Bin_ Threshold_B8	Dynamic	uint16	Number of pixels that a bin must have to be tested as a saturation bin, Band 8 Valid format: NNNNN, where NNNNN = 1000
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B1	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 1 Valid format: N, where N = 2 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B2	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare possible bin as saturation bin, Band 2 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B3	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 3 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B4	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 4 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B5	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 5 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B6	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 6 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B7	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 7 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B8	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 8 Valid format: N, where N = 2 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B1	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 1 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B2	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 2 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B3	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 3 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B4	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 4 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B5	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 5 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B6	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 6 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B7	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 7 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_ Threshold_B8	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 8 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default)
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B1	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 1 Valid format: NNN, where NNN = 243
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B2	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 2 Valid format: NNN, where NNN = 218
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B3	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 3 Valid format: NNN, where NNN = 193
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B4	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 4 Valid format: NNN, where NNN = 168
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B5	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 5 Valid format: NNN, where NNN = 97
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B6	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 6 Valid format: NNN, where NNN = 31
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B7	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 7 Valid format: NNN, where NNN = 123
GROUP: HISTOGRAM GROUP: STARTING_PIXEL	Start_pixel_B8	Dynamic	uint8	Leftmost pixel in the window to be tested, Band 8 Valid format: NNN, where NNN = 536
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B1	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 1 Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B2	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 2 Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B3	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 3 Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B4	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 4 Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B5	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 5 Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B6	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 6 Valid format: NNNNN, where NNNNN = 2937
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B7	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 7 Valid format: NNNNN, where NNNNN = 5874
GROUP: HISTOGRAM GROUP: WINDOW_WIDTH	Window_Samples_B8	Dynamic	uint8	Width of the window, in pixels, to be tested, Band 8 Valid format: NNNNN, where NNNNN = 11748
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B1	Dynamic	uint8	Number of scans in the window to be tested, Band 1 Valid format: NNN, where NNN = 375

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: WINDOW LENGTH	Window_Scans_B2	Dynamic	uint8	Number of scans in the window to be tested, Band 2
				Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B3	Dynamic	uint8	Number of scans in the window to be tested, Band 3 Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B4	Dynamic	uint8	Number of scans in the window to be tested, Band 4 Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B5	Dynamic	uint8	Number of scans in the window to be tested, Band 5 Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B6	Dynamic	uint8	Number of scans in the window to be tested, Band 6 Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B7	Dynamic	uint8	Number of scans in the window to be tested, Band 7 Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B8	Dynamic	uint8	Number of scans in the window to be tested, Band 8 Valid format: NNN, where NNN = 375
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B1	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 1 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B2	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 2 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B3	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 3 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B4	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 4 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B5	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 5 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B6	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 6 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B7	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 7 Valid format: NNN, where NNN = 0
GROUP: HISTOGRAM GROUP: OVERLAPPING_SCANS	Overlap_Scans_B8	Dynamic	uint8	Number of overlapping scans between the windows to be tested, Band 8 Valid format: NNN, where NNN = 0
GROUP: IMPULSE_NOISE	Median_Filter_Width	Static	uint8	Width of median filter Valid format: N, where N = 3
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B1L_Threshold	Dynamic	float32 array (16 values)	Band 1 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B2L_Threshold	Dynamic	float32 array (16 values)	Band 2 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B3L_Threshold	Dynamic	float32 array (16 values)	Band 3 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B4L_Threshold	Dynamic	float32 array (16 values)	Band 4 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B5L_Threshold	Dynamic	float32 array (16 values)	Band 5 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B6L_Threshold	Dynamic	float32 array (8 values)	Band 6 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B7L_Threshold	Dynamic	float32 array (16 values)	Band 7 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B8L_Threshold	Dynamic	float32 array (32 values)	Band 8 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B1H_Threshold	Dynamic	float32 array (16 values)	Band 1 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B2H_Threshold	Dynamic	float32 array (16 values)	Band 2 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B3H_Threshold	Dynamic	float32 array (16 values)	Band 3 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B4H_Threshold	Dynamic	float32 array (16 values)	Band 4 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B5H_Threshold	Dynamic	float32 array (16 values)	Band 5 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B6H_Threshold	Dynamic	float32 array (8 values)	Band 6 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B7H_Threshold	Dynamic	float32 array (16 values)	Band 7 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B8H_Threshold	Dynamic	float32 array (32 values)	Band 8 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B1L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 1 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B2L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 2 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN SIGMA THRESHOLD	B3L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 3 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B4L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 4 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B5L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 5 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B6L_Sigma_Threshold	Dynamic	float32 array (8 values)	Band 6 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B7L_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 7 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B8L_Sigma_Threshold	Dynamic	float32 array (32 values)	Band 8 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B1H_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 1 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B2H_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 2 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B3H_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 3 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B4H_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 4 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B5H_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 5 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B6H_Sigma_Threshold	Dynamic	float32 array (8 values)	Band 6 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B7H_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 7 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B8H_Sigma_Threshold	Dynamic	float32 array (32 values)	Band 8 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9
GROUP: COHERENT_NOISE	Frequency_Components	Dynamic	uint8	Number of frequency components derived during waveform analysis for coherent noise correction Valid format: NN, where NN = 10
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B1_Frequency_Mean	Dynamic	float32 array (10 values)	Band 1 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B2_Frequency_Mean	Dynamic	float32 array (10 values)	Band 2 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B3_Frequency_Mean	Dynamic	float32 array (10 values)	Band 3 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B4_Frequency_Mean	Dynamic	float32 array (10 values)	Band 4 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B5_Frequency_Mean	Dynamic	float32 array (10 values)	Band 5 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B6_Frequency_Mean	Dynamic	float32 array (10 values)	Band 6 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B7_Frequency_Mean	Dynamic	float32 array (10 values)	Band 7 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B8_Frequency_Mean	Dynamic	float32 array (10 values)	Band 8 frequency means measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B1_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 1 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B2_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 2 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B3_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 3 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B4_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 4 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B5_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 5 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B6_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 6 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B7_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 7 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B8_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 8 frequency sigmas measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B1_Frequency_Min	Dynamic	float32 array (10 values)	Band 1 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B2_Frequency_Min	Dynamic	float32 array (10 values)	Band 2 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B3_Frequency_Min	Dynamic	float32 array (10 values)	Band 3 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B4_Frequency_Min	Dynamic	float32 array (10 values)	Band 4 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B5_Frequency_Min	Dynamic	float32 array (10 values)	Band 5 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B6_Frequency_Min	Dynamic	float32 array (10 values)	Band 6 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B7_Frequency_Min	Dynamic	float32 array (10 values)	Band 7 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B8_Frequency_Min	Dynamic	float32 array (10 values)	Band 8 frequency minimums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B1_Frequency_Max	Dynamic	float32 array (10 values)	Band 1 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B2_Frequency_Max	Dynamic	float32 array (10 values)	Band 2 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B3_Frequency_Max	Dynamic	float32 array (10 values)	Band 3 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B4_Frequency_Max	Dynamic	float32 array (10 values)	Band 4 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B5_Frequency_Max	Dynamic	float32 array (10 values)	Band 5 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B6_Frequency_Max	Dynamic	float32 array (10 values)	Band 6 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B7_Frequency_Max	Dynamic	float32 array (10 values)	Band 7 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B8_Frequency_Max	Dynamic	float32 array (10 values)	Band 8 frequency maximums measured in inverse minor frames Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B1_Phase_Mean	Dynamic	float32 array (10 values)	Band 1 phase means measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B2_Phase_Mean	Dynamic	float32 array (10 values)	Band 2 phase means measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B3_Phase_Mean	Dynamic	float32 array (10 values)	Band 3 phase means measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B4_Phase_Mean	Dynamic	float32 array (10 values)	Band 4 phase means measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B5_Phase_Mean	Dynamic	float32 array (10 values)	Band 5 phase means measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B6_Phase_Mean	Dynamic	float32 array (10 values)	Band 6 phase means measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B7_Phase_Mean	Dynamic	float32 array (10 values)	Band 7 phase means measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B8_Phase_Mean	Dynamic	float32 array (10 values)	Band 8 phase means measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B1_Phase_Sigma	Dynamic	float32 array (10 values)	Band 1 phase sigmas measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B2_Phase_Sigma	Dynamic	float32 array (10 values)	Band 2 phase sigmas measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B3_Phase_Sigma	Dynamic	float32 array (10 values)	Band 3 phase sigmas measured in radians Valid format: NNNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B4_Phase_Sigma	Dynamic	float32 array (10 values)	Band 4 phase sigmas measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B5_Phase_Sigma	Dynamic	float32 array (10 values)	Band 5 phase sigmas measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B6_Phase_Sigma	Dynamic	float32 array (10 values)	Band 6 phase sigmas measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B7_Phase_Sigma	Dynamic	float32 array (10 values)	Band 7 phase sigmas measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_SIGMAS	B8_Phase_Sigma	Dynamic	float32 array (10 values)	Band 8 phase sigmas measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B1_Phase_Min	Dynamic	float32 array (10 values)	Band 1 phase minimums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B2_Phase_Min	Dynamic	float32 array (10 values)	Band 2 phase minimums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B3_Phase_Min	Dynamic	float32 array (10 values)	Band 3 phase minimums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B4_Phase_Min	Dynamic	float32 array (10 values)	Band 4 phase minimums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B5_Phase_Min	Dynamic	float32 array (10 values)	Band 5 phase minimums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B6_Phase_Min	Dynamic	float32 array (10 values)	Band 6 phase minimums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B7_Phase_Min	Dynamic	float32 array (10 values)	Band 7 phase minimums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS	B8_Phase_Min	Dynamic	float32 array (10 values)	Band 8 phase minimums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B1_Phase_Max	Dynamic	float32 array (10 values)	Band 1 phase maximums measured in radians Valid format: NNNNNN, where $N = 0$ to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B2_Phase_Max	Dynamic	float32 array (10 values)	Band 2 phase maximums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B3_Phase_Max	Dynamic	float32 array (10 values)	Band 3 phase maximums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B4_Phase_Max	Dynamic	float32 array (10 values)	Band 4 phase maximums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B5_Phase_Max	Dynamic	float32 array (10 values)	Band 5 phase maximums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B6_Phase_Max	Dynamic	float32 array (10 values)	Band 6 phase maximums measured in radians Valid format: NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B7_Phase_Max	Dynamic	float32 array (10 values)	Band 7 phase maximums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS	B8_Phase_Max	Dynamic	float32 array (10 values)	Band 8 phase maximums measured in radians Valid format: NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B1_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 1 magnitudes means measured in DNs Valid format: NNN.NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B2_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 2 magnitudes means measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B3_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 3 magnitudes means measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B4_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 4 magnitudes means measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B5_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 5 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B6_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 6 magnitudes means measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B7_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 7 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B8_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 8 magnitudes means measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B1_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 1 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B2_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 2 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B3_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 3 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE SIGMAS	B4_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 4 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B5_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 5 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B6_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 6 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B7_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 7 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B8_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 8 magnitudes sigmas measured in DNs Valid format: NNN.NNNNNN, where $N = 0$ to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS	B1_Magnitude_Min	Dynamic	float32 array (10 values)	Band 1 magnitudes minimums measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS	B2_Magnitude_Min	Dynamic	float32 array (10 values)	Band 2 magnitudes minimums measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE	B3_Magnitude_Min	Dynamic	float32	Band 3 magnitudes minimums measured in
GROUP: CN_MAGNITUDE_			array (10 values)	DNs Valid format: NNN NNNNNN where N = 0 to 9
GROUP:			(10 value)	
MAGNITUDE_MINIMUMS		- ·	<i>(</i>)	
GROUP: COHERENT_NOISE	B4_Magnitude_Min	Dynamic	float32 array	Band 4 magnitudes minimums measured in DNs
PARAMETERS			(10 values)	Valid format: NNN.NNNNNNN, where $N = 0$ to 9
GROUP: MAGNITUDE MINIMUMS				
GROUP: COHERENT_NOISE	B5_Magnitude_Min	Dynamic	float32	Band 5 magnitudes minimums measured in
GROUP: CN_MAGNITUDE_			array (10 values)	DNs Valid format: NNN NNNNNNN where N = 0 to 9
GROUP:			(
MAGNITUDE_MINIMUMS	DC Magnituda Min	Dunamia	fleet22	Dond 6 magnitudes minimums measured in
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_	bb_wagnitude_win	Dynamic	array	DNs
PARAMETERS			(10 values)	Valid format: NNN.NNNNNNN, where $N = 0$ to 9
MAGNITUDE_MINIMUMS				
GROUP: COHERENT_NOISE	B7_Magnitude_Min	Dynamic	float32	Band 7 magnitudes minimums measured in
GROUP: CN_MAGNITUDE_			array (10 values)	DNS Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP:				
GROUP COHERENT NOISE	B8 Magnitude Min	Dynamic	float32	Band 8 magnitudes minimums measured in
GROUP: CN_MAGNITUDE_		Dynamie	array	DNs
PARAMETERS			(10 values)	Valid format: NNN.NNNNNNN, where N = 0 to 9
MAGNITUDE_MINIMUMS				
GROUP: COHERENT_NOISE	B1_Magnitude_Max	Dynamic	float32	Band 1 magnitudes maximums measured in
PARAMETERS			(10 values)	Valid format: NNN.NNNNNNN, where $N = 0$ to 9
GROUP:				
GROUP: COHERENT_NOISE	B2_Magnitude_Max	Dynamic	float32	Band 2 magnitudes maximums measured in
GROUP: CN_MAGNITUDE_			array	
GROUP:			(10 values)	valid format. NNN. NNNNNNNN, where $N = 0.009$
MAGNITUDE_MAXIMUMS				
GROUP: COHERENT_NOISE	B3_Magnitude_Max	Dynamic	float32 array	Band 3 magnitudes maximums measured in DNs
PARAMETERS			(10 values)	Valid format: NNN.NNNNNNN, where $N = 0$ to 9
GROUP: MAGNITUDE_MAXIMUMS				
GROUP: COHERENT_NOISE	B4_Magnitude_Max	Dynamic	float32	Band 4 magnitudes maximums measured in
GROUP: CN_MAGNITUDE_			array (10 values)	DNs Valid format: NNN NNNNNNN, where N = 0 to 9
GROUP:			· /	
MAGNITUDE_ MAXIMUMS				
GROUP: COHERENT_NOISE	B5_Magnitude_Max	Dynamic	float32	Band 5 magnitudes maximums measured in
GROUP: CN_MAGNITUDE_			array (10 values)	UNS Valid format: NNN.NNNNNNN, where N = 0 to 9
GROUP:			,	
MAGNITUDE_MAXIMUMS	B6 Magnitudo Mox	Dynamia	float32	Band 6 magnitudes maximums massured in
GROUP: CN_MAGNITUDE_		Dynamic	array	DNs
PARAMETERS			(10 values)	Valid format: NNN.NNNNNNN, where N = 0 to 9
MAGNITUDE_MAXIMUMS				

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MAXIMUMS	B7_Magnitude_Max	Dynamic	float32 array (10 values)	Band 7 magnitudes maximums measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MAXIMUMS	B8_Magnitude_Max	Dynamic	float32 array (10 values)	Band 8 magnitudes maximums measured in DNs Valid format: NNN.NNNNNN, where N = 0 to 9
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B1_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 1, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B2_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 2, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B3_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 3, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION LOW	High_AD_Level_B4_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 4, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B5_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 5, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B6_low	Dynamic	uint8 array (8 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 6, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B7_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 7, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	High_AD_Level_B8_low	Dynamic	uint8 array (32 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 8, low gain Valid format: NNN, where NNN = 255 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B1_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 1, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B2_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 2, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B3_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 3, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B4_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 4, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B5_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 5, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B6_low	Dynamic	uint8 array (8 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 6, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B7_low	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 7, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW	Low_AD_Level_B8_low	Dynamic	uint8 array (32 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 8, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B1_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 1, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B2_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 2, high gain Valid format: NNN, where NNN = 255 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B3_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 3, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B4_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 4, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B5_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 5, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B6_high	Dynamic	uint8 array (8 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 6, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B7_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the high end; Band 7, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	High_AD_Level_B8_high	Dynamic	uint8 array (32 values)	Digital count at which analog-to-digital converter saturates at high end; Band 8, gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B1_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 1, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B2_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 2, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B3_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 3, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B4_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 4, high gain Valid format: NNN, where NNN = 0 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B5_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 5, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B6_high	Dynamic	uint8 array (8 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 6, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B7_high	Dynamic	uint8 array (16 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 7, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH	Low_AD_Level_B8_high	Dynamic	uint8 array (32 values)	Digital count at which the analog-to-digital converter saturates at the low end; Band 8, gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B1_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B2_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B3_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B4_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B5_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B6_low	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, low gain Valid format: NNN, where NNN = 255 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B7_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	High_Analog_Level_ B8_low	Dynamic	uint8 array (32 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, low gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B1_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B2_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B3_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B4_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B5_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at low end; Band 5, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B6_low	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B7_low	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, low gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW	Low_Analog_Level_ B8_low	Dynamic	uint8 array (32 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, low gain Valid format: NNN, where NNN = 0 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B1_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B2_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B3_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B4_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B5_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B6_high	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B7_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	High_Analog_Level_ B8_high	Dynamic	uint8 array (32 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, high gain Valid format: NNN, where NNN = 255 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B1_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B2_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, high gain Valid format: NNN, where NNN = 0 (default)

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B3_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B4_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B5_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 5, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B6_high	Dynamic	uint8 array (8 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B7_high	Dynamic	uint8 array (16 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH	Low_Analog_Level_ B8_high	Dynamic	uint8 array (32 values)	Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, high gain Valid format: NNN, where NNN = 0 (default)
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B1L_RTemp_Prelaunch	Static	float64	Band 1 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B1L_RTemp_Postlaunch	Static	float64	Band 1 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B1L_RTemp_Current	Dynamic	float64	Band 1 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B2L_RTemp_Prelaunch	Static	float64	Band 2 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B2L_RTemp_Postlaunch	Static	float64	Band 2 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B2L_RTemp_Current	Dynamic	float64	Band 2 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B3L_RTemp_Prelaunch	Static	float64	Band 3 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B3L_RTemp_Postlaunch	Static	float64	Band 3 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B3L_RTemp_Current	Dynamic	float64	Band 3 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B4L_RTemp_Prelaunch	Static	float64	Band 4 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B4L_RTemp_Postlaunch	Static	float64	Band 4 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B4L_RTemp_Current	Dynamic	float64	Band 4 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B5L_RTemp_Prelaunch	Static	float64	Band 5 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B5L_RTemp_Postlaunch	Static	float64	Band 5 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B5L_RTemp_Current	Dynamic	float64	Band 5 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B6L_RTemp_Prelaunch	Static	float64	Band 6 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B6L_RTemp_Postlaunch	Static	float64	Band 6 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B6L_RTemp_Current	Dynamic	float64	Band 6 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B7L_RTemp_Prelaunch	Static	float64	Band 7 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B7L_RTemp_Postlaunch	Static	float64	Band 7 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B7L_RTemp_Current	Dynamic	float64	Band 7 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B8L_RTemp_Prelaunch	Static	float64	Band 8 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B8L_RTemp_Postlaunch	Static	float64	Band 8 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_LOW	B8L_RTemp_Current	Dynamic	float64	Band 8 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B1H_RTemp_Prelaunch	Static	float64	Band 1 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B1H_RTemp_Postlaunch	Static	float64	Band 1 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B1H_RTemp_Current	Dynamic	float64	Band 1 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B2H_RTemp_Prelaunch	Static	float64	Band 2 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B2H_RTemp_Postlaunch	Static	float64	Band 2 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B2H_RTemp_Current	Dynamic	float64	Band 2 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B3H_RTemp_Prelaunch	Static	float64	Band 3 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B3H_RTemp_Postlaunch	Static	float64	Band 3 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B3H_RTemp_Current	Dynamic	float64	Band 3 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B4H_RTemp_Prelaunch	Static	float64	Band 4 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B4H_RTemp_Postlaunch	Static	float64	Band 4 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B4H_RTemp_Current	Dynamic	float64	Band 4 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B5H_RTemp_Prelaunch	Static	float64	Band 5 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B5H_RTemp_Postlaunch	Static	float64	Band 5 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B5H_RTemp_Current	Dynamic	float64	Band 5 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B6H_RTemp_Prelaunch	Static	float64	Band 6 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B6H_RTemp_Postlaunch	Static	float64	Band 6 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B6H_RTemp_Current	Dynamic	float64	Band 6 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B7H_RTemp_Prelaunch	Static	float64	Band 7 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B7H_RTemp_Postlaunch	Static	float64	Band 7 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B7H_RTemp_Current	Dynamic	float64	Band 7 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B8H_RTemp_Prelaunch	Static	float64	Band 8 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B8H_RTemp_Postlaunch	Static	float64	Band 8 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: REFERENCE_ TEMPERATURES GROUP: REFERENCE_HIGH	B8H_RTemp_Current	Dynamic	float64	Band 8 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B1L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 1 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B1L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 1 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B1L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 1 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B2L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 2 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B2L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 2 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B2L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 2 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B3L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 3 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B3L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 3 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B3L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 3 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B4L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 4 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B4L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 4 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B4L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 4 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B5L_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 5 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B5L_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 5 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B5L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 5 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeff_Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeff_Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeff_Current	Dynamic	float64 array (8 values)	Band 6 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeffOff_ Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeffOff_ Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B6L_SCoeffOff_ Current	Dynamic	float64 array (8 values)	Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B7L_SCoeff_ Prelaunch	Static	float64 array (16 values)	Band 7 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B7L_SCoeff_ Postlaunch	Static	float64 array (16 values)	Band 7 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B7L_SCoeff_Current	Dynamic	float64 array (16 values)	Band 7 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B8L_SCoeff_ Prelaunch	Static	float64 array (32 values)	Band 8 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B8L_SCoeff_ Postlaunch	Static	float64 array (32 values)	Band 8 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_LOW	B8L_SCoeff_Current	Dynamic	float64 array (32 values)	Band 8 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B1H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 1 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B1H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 1 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B1H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 1 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B2H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 2 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B2H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 2 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B2H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 2 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B3H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 3 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B3H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 3 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B3H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 3 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B4H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 4 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B4H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 4 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B4H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 4 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B5H_SCoeff_Prelaunch	Static	float64 array (16 values)	Band 5 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B5H_SCoeff_Postlaunch	Static	float64 array (16 values)	Band 5 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B5H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 5 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeff_Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeff_Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeff_Current	Dynamic	float64 array (8 values)	Band 6 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeffOff_ Prelaunch	Static	float64 array (8 values)	Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeffOff_ Postlaunch	Static	float64 array (8 values)	Band 6 postlaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B6H_SCoeffOff_ Current	Dynamic	float64 array (8 values)	Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B7H_SCoeff_ Prelaunch	Static	float64 array (16 values)	Band 7 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B7H_SCoeff_ Postlaunch	Static	float64 array (16 values)	Band 7 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B7H_SCoeff_Current	Dynamic	float64 array (16 values)	Band 7 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B8H_SCoeff_ Prelaunch	Static	float64 array (32 values)	Band 8 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B8H_SCoeff_ Postlaunch	Static	float64 array (32 values)	Band 8 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: SENSITIVITY_ TEMPERATURES GROUP: SENSITIVITY_HIGH	B8H_SCoeff_Current	Dynamic	float64 array (32 values)	Band 8 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: TRENDING_COEFFS	Lamp1_Coeffs	Static	float32 array (2 values)	Time since launch coefficients for Lamp 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: TRENDING_COEFFS	Lamp2_Coeffs	Static	float32 array (2 values)	Time since launch coefficients for Lamp 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B1L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B2L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B3L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B4L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B5L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B7L_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State1_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State1_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State1_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State2_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State2_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State2_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State3_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State3_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_LOW	B8L_Rad_State3_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
Parameter Group	Parameter Name	Value Type	Data Type	Description
--	-------------------------------	---------------	---------------------------------	---
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B1H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B2H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B3H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B4H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B5H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State1_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State1_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State1_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State2_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster- μ m; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State2_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State2_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State3_ Prelaunch	Static	float32 array (16 values)	Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State3_ Postlaunch	Static	float32 array (16 values)	Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B7H_Rad_State3_ Current	Dynamic	float32 array (16 values)	Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State1_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State1_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State1_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State2_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State2_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State2_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State3_ Prelaunch	Static	float32 array (32 values)	Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State3_ Postlaunch	Static	float32 array (32 values)	Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9
GROUP: LAMP_RADIANCE GROUP: LAMP_RADIANCE_HIGH	B8H_Rad_State3_ Current	Dynamic	float32 array (32 values)	Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_REFERENCE	Lmp_Rtemp_ PreLaunch	Static	float32 array (14 values)	Prelaunch internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 T1 = Cal shutter flag temp T2 = Backup shutter flag temp T3 = Silicon focal plane array temp T4 = Cold focal plane monitor temp T5 = Cal lamp housing temp T6 = Scan line corrector temp T7 = Cal shutter hub temp T8 = Ambient pre-amp temp (high) T9 = Ambient pre-amp temp (low) T10 = Cold pre-amp temp (B4) T12 = Primary mirror amp temp T13 = Secondary mirror temp T14 = Pan band post-amp temp
GROUP: LAMP_REFERENCE	Lmp_Rtemp_ Postlaunch	Static	float32 array (14 values)	Postlaunch internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 Descriptions of T1 through T14 are the same as above
GROUP: LAMP_REFERENCE	Lmp_Rtemp_Current	Dynamic	float32 array (14 values)	Current internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 Descriptions of T1 through T14 are the same as above
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 3 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B1L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 1, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 3 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B2L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B2L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 2, low gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B3L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 3, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B4L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B4L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 3 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B4L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B4L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 4, low gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 3 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B5L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 5, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 3 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B7L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 7, low gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B8L_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 3 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients _Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector17	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 17 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B8L_Coefficients_ Detector18	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 18 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector19	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 19 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector20	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 20 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector21	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 21 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector22	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 22 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector23	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 23 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector24	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 24 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector25	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 25 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW	B8L_Coefficients_ Detector26	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 26 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector27	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 27 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector28	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 28 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector29	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 29 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector30	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 30 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector31	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 31 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW	B8L_Coefficients_ Detector32	Dynamic	float32 array (18 values)	IC coefficients for Band 8, low gain, detector 32 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B1H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B1H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 1, high gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B2H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B2H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 2, high gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B3H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 3, high gain, detector 16 Valid format: SNNN.NNNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 6 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 7 Valid format: SNNN.NNNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 8 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B4H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B4H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 4, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 4 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 5 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 1 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B5H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B5H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 5, high gain, detector 16 Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 1 Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 3 Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 4 Valid format: SNNN.NNNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 6 Valid format: SNNN.NNNNNN, where = $+$ or $-$ and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 7 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B7H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 13 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 15 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B7H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 7, high gain, detector 16 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients _Detector1	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 1 Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector2	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 2 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector3	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 3 Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector4	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector5	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector6	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector7	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector8	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector9	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 9 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B8H_Coefficients_ Detector10	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 10 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector11	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 11 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector12	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 12 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector13	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector14	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 14 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector15	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector16	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector17	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 17 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector18	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector19	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 19 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector20	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 20 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector21	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 21 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector22	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 22 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector23	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 23 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector24	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 24 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH	B8H_Coefficients_ Detector25	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 25 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector26	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 26 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector27	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 27 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector28	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 28 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector29	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 29 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector30	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 30 Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector31	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH	B8H_Coefficients_ Detector32	Dynamic	float32 array (18 values)	IC coefficients for Band 8, high gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector1 B6 View Coefficients	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 1 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 a1 = Scan line corrector view factor a2 = Central baffles (heater) a3 = Secondary mirror and mask view factor a4 = Primary mirror and mask view factor a5 = Scan mirror view factor a6 = Black body (isolated) view factor a7 = Black body (control) view factor a8 = Cold focal plane control view factor a10 = Baffle (tube) view factor a11 = Baffle (support) view factor a12 = Telescope housing view factor vbb = Blocked aperture black body view factor Vsh = Blocked aperture shutter view factor
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector2	Static	tioat32 array (15 values)	View factor coefficients for Band 6, detector 2 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector3	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 3 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector4	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 4 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector5	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 5 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector6	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 6 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector7	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 7 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_VIEW_COEFFS	B6_View_Coefficients_ Detector8	Static	float32 array (15 values)	View factor coefficients for Band 6, detector 8 Valid format: SNNN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above
GROUP: B6_TEMP_MODEL_COEFFS	B6_Temp_Model_Parm	Dynamic	float32 array (6 values)	Coefficients used to calculate scan mirror temperature where (a1) = Scan mirror/secondary mirror adjustment factor, (a2) = Average secondary mirror temperature, and (a3) - (a6) = reserved Valid format: SNNN.NNNNNN, where S = "+" or "-" and SNNN.NNNNNN = +1.0178 (a1) SNNN.NNNNNN = +0.0 (a2) SNNN.NNNNNN = +0.0 (a3) SNNN.NNNNNN = +0.0 (a4) SNNN.NNNNNN = +0.0 (a5) SNNN.NNNNNN = +0.0 (a6)
GROUP: THERMISTOR_COEFFS	Black_Body_Isolated_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Black_Body_Control_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Cold_FP_Control_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Cold_FP_Monitor_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Cal_Shutter_Flag_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Backup_Shutter_ Flag_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: THERMISTOR_COEFFS	Baffle_Heater_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Silicon_FP_Array_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Primary_Mirror_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Secondary_Mirror_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Scan_Line_Corrector_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Baffle3_Tube_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Baffle2_Support_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Cal_Lamp_Housing_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Cal_Shutter_Hub_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Ambient_Preamp_ HighCh_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Ambient_Preamp_ LowCh_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Postamp_Temp_B4	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Cold_Preamp_B7_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Pan_Band_Postamp_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Telescope_Housing_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Primary_Mirror_ Mask_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Secondary_Mirror_ Mask_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Telescope_ Baseplate_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Mem_Heat_Sink_ Power_Supply1_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9

Parameter Group	Parameter Name	Value Type	Data Type	Description
GROUP: THERMISTOR_COEFFS	Mem_Heat_Sink_ Power_Supply2_Temp	Static	float32 array (6 values)	Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: THERMISTOR_COEFFS	Mux1_Power_Supply_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: THERMISTOR_COEFFS	Mux1_Electronics_ Temp	Static	float32 array (6 values)	Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNN, where $S = "+"$ or "-" and $N = 0$ to 9
GROUP: LAMP_CURRENTS	Tec_Lamp_i1	Static	float32 array (2 values)	Calibration coefficients for raw data (telemetry value contains current in mA of primary on- board calibration lamp, telemetry name = TECLAMP1I) Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: LAMP_CURRENTS	Tec_Lamp_i2	Static	float32 array (2 values)	Calibration coefficients for raw data (telemetry value contains current in mA of primary on- board calibration lamp, telemetry name = TECLAMP2I) Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9
GROUP: FILL_PATTERNS	Band_Fill_Pattern	Static	uint8 array (2 values)	Fill pattern used to fill erroneous or missing image data minor frames Valid format: NNN, where NNN = (0, 255) (alternating 0, 255's)

Table 2-1. Landsat 7 CPF Parameters

Section 3 CPF ODL

3.1 Introduction

The ODL syntax employs the following conventions:

- Parameter definition is in the form of parameter = value.
- Value can be either a scalar or an array. Array values are enclosed in parentheses and are separated by commas.
- Parameter arrays can and do exist on multiple lines.
- A carriage return <CR> and line feed <LF> end each line in the file.
- Blank spaces and lines are ignored.
- Each line of comments must begin with /* and end with */, including comments embedded on the same line as a parameter definition.
- Quotation marks are required for values that are text strings, including single characters. The exceptions to this rule are the GROUP and END_GROUP identifiers or values, which do not use quotation marks. The parameters Effective_Date_Begin and Effective_Date_End also do not have quotation marks. ODL recognizes dates if they follow prescribed formats.
- In general for ODL, case is not significant. However, for the CPF, the case is significant for keyword and group names. All group names are in all capital letters and keywords are in mixed case.
- Indentation is not significant but is used for readability.
- The reserved word END concludes the file.
- Most parameter values have been derived during prelaunch instrument and spacecraft testing and analysis. Formats for CPF numerical parameters are accurate; however, negative signs are not explicitly stated. A data dictionary that declares each parameter's data type and value range has been defined.

3.2 Sample ETM+ CPF ODL File

The following is a prototype of CPF file that contains valid parameter values for the first calendar quarter of 2007. To present the format structure, the hypothetical bumper mode specific parameters are also included in this example.

```
GROUP = FILE_ATTRIBUTES
Spacecraft_Name = "Landsat_7"
Sensor_Name = "Enhanced_Thematic_Mapper_Plus"
Effective_Date_Begin = 2007-01-01
Effective_Date_End = 2007-03-31
CPF_File_Name = "L7CPF20070101_20070331.01"
END_GROUP = FILE_ATTRIBUTES
GROUP = EARTH_CONSTANTS
Ellipsoid_Name = "WGS84"
Semi_Major_Axis = 6378137.000
Semi_Minor_Axis = 6356752.3142
Ellipticity = 0.00335281066474
Eccentricity = 0.0069437999013
Earth_Spin_Rate = 72.921158553E-06
Gravity_Constant = 3.986005E14
J2_Earth_Model_Term = 1082.63E-06
END_GROUP = EARTH_CONSTANTS
GROUP = ORBIT_PARAMETERS
WRS_Cycle_Days = 16
WRS_Cycle_Orbits = 233
Scenes_Per_Orbit = 248
```

```
Orbital_Period = 5933.0472
          Angular Momentum = 53.136250E9
          Orbit Radius = 7083.4457
          Orbit_Semimajor_Axis = 7083.4457
Orbit_Semiminor_Axis = 7083.4408
          Orbit Eccentricity = 0.00117604
          Inclination Angle = 98.2096
          Argument Of Perigee = 90.0
         Descending_Node_Row = 60
Long_Path1_Row60 = -64.6
Descending_Node_Time_Min = "09:45"
        Descending_Node_Time_Max = "10:15"
Nodal_Regression_Rate = 0.985647366
END GROUP = ORBIT PARAMETERS
GROUP = SCANNER PARAMETERS
         Lines_Per_Scan_30 = 16
Lines_Per_Scan_60 = 8
         Lines_Per_Scan_15 = 32
Scans_Per_Scene = 375
         Swath_Angle = .26868
Scan_Rate = 2.21095
         Dwell_Time_30 = 9.6110206
Dwell_Time_60 = 19.222041
          Dwell Time 15 = 4.8055103
          IC_Line_Length_30 = 1150
          IC\_Line\_Length\_60 = 575
          IC Line Length 15 = 2300
          Scan_Line_Length_30 = 6320
          Scan_Line_Length_60 = 3160
          Scan_Line_Length_15 = 12640
         Filter_Frequency_30 = 52.02
Filter_Frequency_60 = 26.01
          Filter_Frequency_15 = 115.00
IFOV_B1234 = 42.5
          IFOV B57 along scan = 39.4
          IFOV_B57_across_scan = 42.5
IFOV_B6 = 85.0
IFOV_B8_along_scan = 18.5
          IFOV B8 across scan = 21.25
          Scan Period = 143.58
          Scan Frequency = 6.96476
          Active Scan Time = 60743.346
Turn Around Time = 11.055
END GROUP = SCANNER PARAMETERS
GROUP = SPACECRAFT PARAMETERS
          ADS Interval = 2.0
         ADS_Roll_Offset = 0.375
ADS_Pitch Offset = 0.875
         ADS_Yaw_Offset = 1.375
Data Rate = 74.914
END GROUP = SPACECRAFT PARAMETERS
GROUP = MIRROR PARAMETERS
          Error Conversion Factor = 0.18845139
          GROUP = ANGLES_SME1_SAM
                    Forward_Along_SME1_SAM = (0.000000E+00,-2.188024E-03,3.507066E-01,-
1.638834E+01, 3.070082E+02, -2.016646E+03)
                     Forward_Cross_SME1_SAM = (-8.926001E-07,2.945449E-04,-2.799967E-02,1.024417E+00,-
1.579172E+01, 8.64\overline{4}595E+01)
                    Forward_Angle1_SME1_SAM = 67166.9
Forward_Angle2_SME1_SAM = 67145.9
                     Reverse_Along_SME1_SAM = (0.000000E+00,2.717297E-03,-3.610215E-01,1.637412E+01,-
3.045525E+02,1.987221E+03)
                    Reverse Cross SME1 SAM = (-7.702087E-07,1.318691E-04,-4.507913E-03,-8.416380E-
02, 5.421192\overline{E}+00, -\overline{5}.563\overline{4}24\overline{E}+01)
                   Reverse_Angle1_SME1_SAM = 67142.8
Reverse_Angle2_SME1_SAM = 67169.9
          END GROUP = ANGLES_SME1_SAM
          GROUP = ANGLES SMET BUMP
                     Forward Along SMEI Bump = (1.177376E-19, -2.713081E-03, 3.605800E-01, -1.618500E+01,
3.001900E+02, -1.965000E+03)
                    Forward Cross SME1 Bump = (-3.159000E-07, 4.831800E-06, -1.336000E-03, 6.273300E-02, -
1.174500E+00, 7.932400E+00)
                    Forward Angle1 SME1 Bump =
  (68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,
68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 68302.9, 6830
8302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,6
302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,6
02.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68
2.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,683002.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68
  .9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,683002.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,680
9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9)
```

Forward_Angle2_SME1_Bump = (69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5, 9050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69 5,69050.5,69050.5,69050.5,69050.5,69050.5) Forward FHSERR SME1 Bump

 883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -884, -844, -844, -844, -844, -844, -844, -844, -844, -844, 883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883, -883) Reverse_Along_SME1_Bump = (-4.065758E-2, 2.074688E-03, -3.345100E-01, 1.567300E+01, -2.953100E+02, 1.954000E+03) Reverse Cross SME1 Bump = (-5.611700E-07, -1.018300E-06, -1.553500E-04, 2.048200E-03, 1.075500E-01, -1.450700E+00) Reverse_Angle1_SME1_Bump (68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 6234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,682344.3,682344.2,682344.2,682344.2,682344.2,682344.2,682344.2,682344.2,682344.2,682344.2,6824482682448268244848484846866868466868 4.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.3, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 68234.2, 682343,68234.3,68234.3,68234.3,68234.3,68234.3) Reverse_Angle2_SME1_Bump = (68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3, 68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6 8889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6 889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6 89.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.3,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,6889.2,68 9.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3, .3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3, 3,68889.3,68889.3,68889.3,68889.3,68889.3) 790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790, -790) END GROUP = ANGLES_SME1_BUMP GROUP = ANGLES_SME2_SAM Forward_Along_SME2_SAM = (0.000000E+00, -2.100656E-03, 3.401124E-01, -1.558871E+01, 2.878695E+02, -1.877441E+03) Forward_Cross_SME2_SAM = (-2.374600E-09, -8.188300E-06, 1.072700E-04, -3.646200E-03, 1.456200E-01, -1.486700E+00) Forward_Angle1_SME2_SAM = 67162.7 Forward_Angle2_SME2_SAM = 67162.8 Reverse Along SME2 SAM = (0.000000E+00, 2.746938E-03, -3.415100E-01, 1.534667E+01, - $2.872800E+0\overline{2}, 1.892100\overline{E}+03)$ Reverse Cross SME2 SAM = (-6.351600E-07, 1.258700E-05, -7.787700E-04, 1.767400E-02, -1.108500E-01, -1.597100E-01) Reverse Angle1 SME2 SAM = 67162.8 Reverse_Angle2_SME2_SAM = 67162.7 END_GROUP = ANGLES_SME2_SAM GROUP = ANGLES SME2 BUMPForward_Along_SME2_Bump = (0.000000E+00, -2.463915E-03, 3.546100E-01, -1.609400E+01, 2.987000E+02, -1.956800E+03)Forward Cross SME2 Bump = (-3.344900E-07, 7.778000E-06, -1.768700E-03, 8.061500E-02, -1.463400E+00, 9.512300E+00)Forward Angle1 SME2 Bump = (67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7, 7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7 162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,

2.7,67162.7,671

7,67162.7,67162.7,67162.7,67162.7,67162.7) Forward Angle2 SME2 Bump =

(67162.8,67162. 67162.8,67162.8 7162.8,67162.8, 162.8,67162.8,6 62.8,67162.8,67 2.8,67162.8,671 .8,67162.8,6716 8,67162.8,67162.8,67162.8,67162.8,67162.8) Forward FHSERR SME2 Bump =

883, -8 883, - 883 883,-883)

Reverse Along SME2 Bump = (0.000000E+00, 2.234071E-03, -3.347900E-01, 1.554200E+01, -2.927500E+02, 1.936900E+03)

Reverse_Cross_SME2_Bump = (-6.024100E-07, 6.736100E-06, -1.153000E-03, 5.158900E-02, -9.145700E-01, 5.977300E+00)

Reverse Angle1 SME2 Bump =

(67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8, 67162.8,67162.8 7162.8,67162.8, 162.8,67162.8,6 62.8,67162.8,67 2.8,67162.8,671 .8,67162.8,6716 8,67162.8,67162.8,67162.8,67162.8,67162.8)

Reverse Angle2 SME2 Bump = (67162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76162.7,76 7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67 162.7,67162.7,6 62.7,67162.7,67 2.7,67162.7,671 7,67162.7,67162 7,67162.7,67162.7,67162.7,67162.7,67162.7)

Reverse FHSERR SME2 Bump

790, -790,-790)

END GROUP = ANGLES SME2 BUMP END GROUP = MIRROR_PARAMETERS

GROUP = BUMPER MODE PARAMETERS

SME1 BumperA Dwell Time =

(9770.8,97708 8,9770.8,97708,97708,97708,977088,977088,977088,977088,977088,977088,977088,97788,977088,977088,977088,977088,977088,977088,977088,977088,97708 .8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,977 0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,97 70.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9 770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8, 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8)

SME1 BumperA Pickoff Time

(511.0, 511.0,5 11.0, 51.0, 51.0,511. 0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0)

SME1 BumperA Offset Time = 10110.0

SME1_BumperA_Angle = -690 SME1_BumperB_Dwell Time = -69000.0

(9801.7,9

01.7,9801 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7)

SME1_BumperB_Pickoff_Time = (439.6,4400.6,440.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6,400.6, 439.6,439.600.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,400.6,40 39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 .6, 4396,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6)

SME1 BumperB Offset Time = 10110.0

SME1_BumperB_Angle = 69000.0 SME2_BumperA_Dwell_Time =

(9770.8,97 8,9770.8,9 .8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,977 0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,97 70.8,9770 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8)

SME2_BumperA_Pickoff_Time = (511.0,51111.0,511.0.0, 5110, 511.

SME2_BumperA_Offset_Time = 10110.0 SME2_BumperA_Angle = -69000.0

7,9801.7, 801.7,9801.7,880 SME2 BumperB Pickoff Time =

439.6,439.6{00.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,400.6 39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 .6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6, 6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6)

SME2_BumperB_Offset_Time = 10110.0 SME2_BumperB_Angle = 69000.0

END GROUP = BUMPER MODE PARAMETERS

GROUP = SCAN_LINE_CORRECTOR
Primary_Angular_Velocity = 0.0 Secondary Angular Velocity = 0.0 Primary_Corrector_Motion = (0.00000,0.00000,0.00000,0.00000,0.00000) Secondary Corrector Motion = (0.00000,0.00000,0.00000,0.00000,0.00000) Unpowered_Pointing_Bias = 0.0000427 END GROUP = SCAN_LINE_CORRECTOR GROUP = FOCAL PLANE PARAMETERS GROUP = BAND OFFSETSAlong_Scan_Band_Offsets = (+3627.944,+2564.567,+1501.002,+438.166,-2577.619,-4072.538,-1473.263, +4692.000) Across Scan Band Offsets = (+1.280,+0.537,-0.270,-1.447,+15.828,+31.762,+15.683,+0.000) Forward Focal Plane Offsets = (+25.0,+50.0,+75.0,+100.0,+171.0,+206.0,+145.0,+0.0) Reverse Focal Plane Offsets = (-25.0,-50.0,-75.0,-100.0,-171.0,-206.0,-145.0,+0.5) END_GROUP = BAND_OFFSETS GROUP = DETECTOR OFFSETS Forward Along Scan DO B1 = (1.250, 1.298, 1.324, 1.250, 1.253, 1.241, 1.254, 1.271, 1.207, $1.260, 1.24\overline{7}, 1.2\overline{5}1, 1.23\overline{4}, 1.227, 1.264, 1.243)$ Reverse_Along_Scan_DO_B1 = (1.241, 1.278, 1.320, 1.230, 1.244, 1.224, 1.256, 1.260, 1.223, $1.255, 1.26\overline{2}, 1.\overline{252}, 1.\overline{251}, 1.234, 1.287, 1.258$ Forward Along Scan DO B2 = (1.260, 1.278, 1.263, 1.276, 1.269, 1.246, 1.233, 1.232, 1.281, 1.229, $1.23\overline{7}$, $1.\overline{240}$, $1.\overline{228}$, 1.246, 1.221, 1.267) Reverse Along Scan DO B2 = (1.249, 1.262, 1.257, 1.258, 1.260, 1.230, 1.234, 1.221, 1.294, $1.224, 1.25\overline{3}, 1.2\overline{42}, 1.24\overline{4}, 1.252, 1.244, 1.282)$ Forward Along Scan DO B3 = (1.252, 1.256, 1.267, 1.225, 1.240, 1.261, 1.236, 1.297, 1.203, 1.222, 1.214, 1.193, 1.218, 1.210, 1.269, 1.221) Reverse Along Scan DO B3 = (1.242, 1.237, 1.260, 1.207, 1.231, 1.244, 1.235, 1.287, 1.213, 1.218, 1.229, 1.195, 1.238, 1.214, 1.294, 1.237) Forward Along Scan DO B4 = (1.263, 1.259, 1.286, 1.268, 1.265, 1.269, 1.257, 1.300, 1.281, 1.265, 1.234, 1.253, 1.232, 1.226, 1.256, 1.301) Reverse_Along_Scan_DO_B4 = (1.253, 1.238, 1.278, 1.246, 1.256, 1.251, 1.257, 1.291, 1.292, 1.263, $1.24\overline{9}$, $1.\overline{259}$, $1.\overline{250}$, 1.233, 1.281, 1.317)

```
Forward_Along_Scan_DO_B5 = (1.163, 1.165, 1.144, 1.137, 1.150, 1.120, 1.109, 1.109, 1.100,
1.095, 1.067, 1.069, 1.058, 1.053, 1.058, 1.027)
                       Reverse Along Scan DO B5 = (1.047, 1.037, 1.045, 1.068, 1.078, 1.077, 1.075, 1.103, 1.108,
 1.125, 1.107, 1.133, 1.133, 1.151, 1.168, 1.166)
                      Forward Along Scan DO B6 = (1.904, 2.058, 1.890, 2.055, 1.899, 1.946, 1.820, 1.924)
Reverse Along Scan DO B6 = (1.952, 1.899, 1.951, 1.924, 1.964, 1.907, 1.974, 1.924)
Forward Along Scan DO B7 = (1.202, 1.190, 1.217, 1.165, 1.185, 1.116, 1.168, 1.117, 1.121,
 1.092, 1.110, 1.091, 1.079, 1.058, 1.076, 1.042)
                       Reverse Along Scan DO B7 = (1.034, 1.064, 1.098, 1.074, 1.104, 1.064, 1.135, 1.113, 1.133,
 1.133, 1.16\overline{3}, 1.1\overline{68}, 1.17\overline{0}, 1.171, 1.206, 1.199)
                      Forward Along Scan DO B8 = (0.511, 0.508, 0.505, 0.514, 0.513, 0.523, 0.521, 0.511, 0.509,
0.499, 0.517, 0.513, 0.508, 0.508, 0.516, 0.512, 0.507, 0.523, 0.522, 0.541, 0.499, 0.527, 0.510, 0.528, 0.518, 0.519, 0.515, 0.518, 0.514, 0.521, 0.499, 0.523)
                      Reverse_Along_Scan_DO_B8 = (0.511, 0.508, 0.505, 0.514, 0.513, 0.523, 0.521, 0.511, 0.509,
0.499, 0.517, 0.513, 0.507, 0.508, 0.516, 0.512, 0.514, 0.499, 0.525, 0.504, 0.515, 0.497, 0.522, 0.505, 0.535, 0.497, 0.539, 0.505, 0.544, 0.516, 0.537, 0.523)
Forward Across Scan DO B1 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.
\begin{array}{c} 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.000, \ 0.00,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
Forward Across Scan DO B3 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
                      Reverse_Across_Scan_DO_B3 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0
0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)
                      Forward Across Scan DO B4 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)
                      Reverse_Across_Scan_DO_B4 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0
0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)
                       Forward Across Scan DO B5 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)
                      Reverse Across Scan DO B5 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)
                        Forward_Across_Scan_DO_B6 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
                       Reverse Across Scan DO B6 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000)
Forward Across Scan DO B7 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)
                       Reverse Across Scan DO B7 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000)

      Forward_Across_Scan_DO_B8 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000
                      Reverse Across Scan DO B8 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,
0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.
            END GROUP = DETECTOR OFFSETS
            GROUP = ODD EVEN OFFSETS
                       Forward_Even_Detector_Shift = (31.0,56.0,81.0,106.0,177.0,101.0,151.0,14.0)
                       Forward_Odd_Detector_Shift = (31.0,58.0,83.0,108.0,179.0,104.0,153.0,18.0)
Reverse_Even_Detector_Shift = (27.0,52.0,77.0,102.0,173.0,105.0,147.0,4.0)
                       Reverse_Odd_Detector_Shift = (30.0,55.0,80.0,105.0,176.0,107.0,150.0,8.0)
END_GROUP = ODD_EVEN_OFFSETS
END_GROUP = FOCAL_PLANE PARAMETERS
GROUP = ATTITUDE PARAMETERS
            Gyro_To_Attitude_Matrix = (9.999999900E-01, -3.68543600E-04, 2.43062700E-05, 2.43207600E-05, -
 2.22997000E-04, -1.00000000E+00, 3.68785400E-04, 9.99999900E-01, -2.22941100E-04)
           ADSA TO ETM Matrix = (9.99999800E-01, 1.65108100E-04, 6.51893000E-04, 6.78739000E-05,
 9.39659800E-01, -3.42110300E-01, -6.69042800E-04, 3.42110300E-01, 9.39659600E-01)
           Attitude To ETM Matrix = (9.99999845E-01, 1.18363752E-04, 5.43986578E-04, -1.18213574E-04,
9.99999955E-01, -2.76092898E-04, -5.44019232E-04, 2.76028548E-04, 9.99999814E-01)
            Spacecraft_Roll_Bias = 0.0000000E+00
            Spacecraft_Pitch_Bias = 0.0000000E+00
             Spacecraft Yaw Bias = 0.00000000E+00
            IMU_Drift_Bias_XA = -2.23500000E-06
IMU_Drift_Bias_YA = -2.23500000E-06
             IMU Drift Bias ZA = 1.68230000E-06
            IMU_Drift_Bias_XB = 1.86665000E-06
IMU_Drift_Bias_YB = -6.35100000E-07
            IMU_Drift_Bias_ZB = 4.84810000E-08
 END GROUP = ATTITUDE PARAMETERS
 GROUP = TIME PARAMETERS
            Scan Time = 60743.0
           Forward First Half Time = 30371.4
Forward Second Half Time = 30371.6
Reverse_First_Half_Time = 30371.6
Reverse_Second_Half_Time = 30371.4
END_GROUP = TIME_PARAMETERS
GROUP = TRANSFER FUNCTION
```

GROUP = IMU Fn = 3.3113091Zeta = 0.66882924Tau = -1.6086176E-2P = -4.1138195E-3Ak = 1.0103061END GROUP = IMU GROUP = ADSADS num = (0.0,0.0,0.0,+1.1381628E3,+2.0062211E2,+1.00000E0,0.0,0.0,0.0,1.1381628E3,+2.0062211E2,+1.00000E0 ,0.0,0.0,0.0,+9.2111049E2,+1.9766902E2,+1.00000E0) ADS den = (+1.4195461E5,+1.6961111E5,+4.7877303E4,+4.8108434E3,+2.3739131E2,+1.0000000E0,+1.4168390E5,+1.83 26650E5, +5.2674623E4, +5.1999651E3, +2.3909029E2, +1.0000000E0, +1.1459413E5, +1.4727717E5, +4.7786443E 4,+4.3224093E3,+2.3570742E2,+1.0000000E0) ADS num temp = (0.0,0.0,0.0,+6.4416984E1,-1.3578067E0,-5.0789831E-3,0.0,0.0,0.0,+2.0618135E2,+4.7466808E0,-2.9005228E-3,0.0,0.0,0.0,+9.1603744E1,+2.0285055E0,+4.0783070E-2) ADS_den_temp = (+7.6388956E3,+8.7276441E3,+7.5038775E2,+3.2855210E0,-2.1966002E0,-4.6355589E-3,+1.9779418E4,+3.3575148E4,+4.6478372E3,+2.6281609E2,+4.3279161E0,-2.7584826E- $\tt 3, +9.9464208E3, +1.3229420E4, +1.8093952E3, +9.2350092E1, +2.9068940E0, +4.2219584E-2)$ END GROUP = ADSGROUP = PREFILTERADSPre_W = (0.000670695,0.000427279,0.000667499,0.000946530,0.001221428) $ADSPre_H = (-0.0748, 0.0133, 0.7994, 0.1824, 1.00157)$ $ADSPre_T = (0.0010191, 0.000015, 0.0, 0.0, 0.0)$ END GROUP = PREFILTEREND_GROUP = TRANSFER_FUNCTION GROUP = UT1_TIME_PARAMETERS UT1_Year = (2006, 2007, 2 07, 200 , 2007, 2 07,2007,2007,2007,2007,2007) UT1_Month = ("Nov", "Nov", "Dec", "Jan", "Mar", "Mar', "Ma UT1 Month : ", "May", "May") UT1 Dav = 7,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,1,2,3,4, 11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,1 6) UT1 Modified_Julian = (54057,54058,54059,54060,54061,54062,54063,54064,54065,54066,54067,54068,54069,54070,54071,54072, 54073,54074,54075,54076,54077,54078,54079,54080,54081,54082,54083,54084,54085,54086,54087,54088,5 4089,54090,54091,54092,54093,54094,54095,54096,54097,54098,54099,54100,54101,54102,54103,54104,54 105, 54106, 54107, 54108, 54109, 54110, 54111, 54112, 54113, 54114, 54115, 54116, 54117, 54118, 54119, 54120, 54120, 54112, 54114, 54115, 54116, 54117, 54118, 54119, 54120, 54120, 54114, 54114, 54115, 54116, 54117, 54118, 54119, 54120, 54112, 54114, 54114, 54115, 54116, 54117, 54118, 54119, 54120, 54120, 54114, 54114, 54115, 54116, 54117, 54118, 54112, 54112, 54114, 54114, 54115, 54116, 54117, 54118, 54112, 54112, 54114, 54114, 54115, 54116, 54116, 54117, 54118, 54112, 54112, 54114, 54114, 54115, 54116, 54117, 54118, 54112, 54112, 54114, 54114, 54115, 54116, 54114, 54112, 54114, 54112, 54114, 5421,54122,54123,54124,54125,54126,54127,54128,54129,54130,54131,54132,54133,54134,54135,54136,5413 7,54138,54139,54140,54141,54142,54143,54144,54145,54146,54147,54148,54149,54150,54151,54152,54153 54154,54155,54156,54157,54158,54159,54160,54161,54162,54163,54164,54165,54166,54167,54168,54169, 54170, 54171, 54172, 54173, 54174, 54175, 54176, 54177, 54178, 54179, 54180, 54181, 54182, 54183, 54184, 54185, 5 4186,54187,54188,54189,54190,54191,54192,54193,54194,54195,54196,54197,54198,54199,54200,54201,54 202,54203,54204,54205,54206,54207,54208,54209,54210,54211,54212,54213,54214,54215,54216,54217,542 18, 54219, 54220, 54221, 54222, 54223, 54224, 54225, 54226, 54227, 54228, 54229, 54230, 54231, 54232, 542334,54235,54236) UT1 X = (-0.02126,-0.02269,-0.02414,-0.02561,-0.02684,-0.02808,-0.02957,-0.03118,-0.03286,-0.03446,-0.03572,-0.03663,-0.03742,-0.03814,-0.03848,-0.03856,-0.03863,-0.03876,-0.03921,-0.04011,-0.04122,-0.04235,-0.04350,-0.04465,-0.04579,-0.04691,-0.04802,-0.04910,-0.05016,-0.05120, -0.05220, -0.05318, -0.05413, -0.05504, -0.05593, -0.05679, -0.05761, -0.05840, -0.05917, -0.05989, -0.06059, -0.06125, -0.06187, -0.06247, -0.06303, -0.06355, -0.06404, -0.06449, -0.06492, -0.060.06530,-0.06564,-0.06595,-0.06623,-0.06646,-0.06666,-0.06681,-0.06693,-0.06706,-0.06703,-0.06694,-0.06684,-0.06669,-0.06660,-0.06626,-0.06599,-0.06568,-0.06532,-0.06493,-0.06450,-0.06402,-0.06351,-0.06295,-0.06235,-0.06171,-0.06104,-0.06032,-0.05956,-

0.05876, -0.05792, -0.05704, -0.05612, -0.05516, -0.05416, -0.05312, -0.05204, -0.05093, -0.04977, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.05916, -0.050.04858, -0.04734, -0.04607, -0.04476, -0.04342, -0.04203, -0.04061, -0.03916, -0.03767, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.03614, -0.030.03458, -0.03298, -0.03134, -0.02968, -0.02798, -0.02625, -0.02448, -0.02269, -0.02086, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.01900, -0.010.01711,-0.01519,-0.01324,-0.01126,-0.00926,-0.00723,-0.00517,-0.00308, 0.00097, 0.00117, 0.00333, 0.00551, 0.00772, 0.00995, 0.01220, 0.01447, 0.01676, 0.01907, 0.02140, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.01240, 0.02375, 0.00240, 0.00240, 0.02375, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.00240, 0.02612, 0.02850, 0.03090, 0.03331, 0.03574, 0.03818, 0.04063, 0.04310, 0.04558, 0.04807, 0.05057, 0.05308, 0.04807, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05057, 0.05559,0.05812,0.06065,0.06318,0.06573,0.06827,0.07082,0.07338,0.07594,0.07849,0.08105,0.08361,0.0 8617,0.08873,0.09128,0.09383,0.09638,0.09892,0.10146,0.10400,0.10652,0.10904,0.11155,0.11406,0.11 655,0.11903,0.12151,0.12397,0.12642,0.12885,0.13128,0.13369,0.13608,0.13846,0.14083,0.14317,0.145 50,0.14782,0.15011) UT1 Y = (0.29018,0.29078,0.29127,0.29199,0.29307,0.29435,0.29579,0.29730,0.29881,0.30016,0.30114,0.30189, 0.30287, 0.30385, 0.30490, 0.30642, 0.30828, 0.31009, 0.31195, 0.31392, 0.31583, 0.31768, 0.31948, 0.32125, 0. .32298,0.32470,0.32640,0.32810,0.32979,0.33147,0.33316,0.33486,0.33656,0.33827,0.33998,0.34171,0. 34345,0.34520,0.34696,0.34873,0.35051,0.35230,0.35410,0.35591,0.35774,0.35957,0.36141,0.36326,0.3 6512,0.36699,0.36886,0.37074,0.37263,0.37453,0.37643,0.37833,0.38024,0.38216,0.38407,0.38599,0.38 792,0.38984,0.39176,0.39369,0.39562,0.39754,0.39947,0.40139,0.40331,0.40523,0.40711,0.40903,0.410 94,0.41284,0.41474,0.41664,0.41852,0.42040,0.42228,0.42414,0.42600,0.42784,0.42968,0.43150,0.4333 2,0.43512,0.43691,0.43868,0.44045,0.44220,0.44393,0.44565,0.44735,0.44904,0.45071,0.45236,0.45400 0.47335, 0.47467, 0.47596, 0.47723, 0.47847, 0.47969, 0.48087, 0.48203, 0.48315, 0.48425, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48635, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48531, 0.48735, 0.48832, 0.48926, 0.49016, 0.49103, 0.49187, 0.49268, 0.49345, 0.49418, 0.49488, 0.49554, 0.49617, 0.49617, 0.49418, 0.49418, 0.4954, 0.49554, 0.49617, 0.49617, 0.49418, 0.49418, 0.4954, 0.49554, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49554, 0.49554, 0.49617, 0.49418, 0.49418, 0.49554, 0.49554, 0.49617, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49418, 0.49418, 0.49554, 0.49617, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.49418, 0.4949676,0.49732,0.49783,0.49831,0.49875,0.49916,0.49952,0.49985,0.50013,0.50038,0.50059,0.50076,0.5 0089, 0.50098, 0.50103, 0.50104, 0.50101, 0.50093, 0.50082, 0.50066, 0.50047, 0.50023, 0.49995, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49963, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.49964, 0.499664, 0.49966666, 0.4996666, 0.499666, 0.499666, 0.49966, 0.49966, 0.499927,0.49887,0.49843,0.49794,0.49741,0.49685,0.49624,0.49559,0.49489,0.49416,0.49339,0.49257,0.491 72,0.49082,0.48988,0.48890,0.48789,0.48683,0.48573,0.48459,0.48342,0.48220,0.48095) UT1 UTC = $(0.08\overline{5}66, 0.08458, 0.08362, 0.08277, 0.08206, 0.08147, 0.08094, 0.08033, 0.07952, 0.07842, 0.07703, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07539, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.07529, 0.0752$ 0.07361, 0.07180, 0.07013, 0.06875, 0.06767, 0.06679, 0.06607, 0.06538, 0.06459, 0.06360, 0.06245, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0.06121, 0 $.05987, 0\,.05846, 0\,.05700, 0\,.05561, 0\,.05436, 0\,.05331, 0\,.05246, 0\,.05181, 0\,.05130, 0\,.05087, 0\,.05039, 0\,.04977, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.05087, 0\,.050$ 04891, 0.04781, 0.04648, 0.04502, 0.04354, 0.04218, 0.04106, 0.04022, 0.03963, 0.03924, 0.03893, 0.03857, 0.03857, 0.03857, 0.03857, 0.03857, 0.03857, 0.03857, 0.03857, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03858, 0.03807,0.03738,0.03650,0.03547,0.03435,0.03321,0.03209,0.03105,0.03013,0.02936,0.02873,0.02824,0.02 780,0.02733,0.02670,0.02583,0.02465,0.02318,0.02153,0.01983,0.01825,0.01690,0.01583,0.01504,0.014 45,0.01395,0.01343,0.01279,0.01198,0.01098,0.00980,0.00850,0.00714,0.00580,0.00453,0.00338,0.0023 9,0.00155,0.00086,0.00025,-0.00036,-0.00109,-0.00205,-0.00334,-0.00497,-0.00686,-0.00888,-0.01085, -0.01260, -0.01405, -0.01520, -0.01613, -0.01693, -0.01773, -0.01863, -0.01971, -0.02099, -0.02246, -0.02409, -0.02581, -0.02754, -0.02921, -0.03076, -0.03216, -0.03339, -0.03446, -0.03542, -0.03542, -0.03216, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.03542, -0.0354, -0.0354, -0.0354, -0.0354, -0.0354, -0.0354, -0.0354, -00.03632,-0.03728,-0.03840,-0.03980,-0.04154,-0.04360,-0.04588,-0.04818,-0.05033,-0.05218,-0.05366,-0.05484,-0.05583,-0.05677,-0.05778,-0.05893,-0.06025,-0.06174,-0.06337,-0.06510,-0.06684, -0.06854, -0.07012, -0.07155, -0.07281, -0.07389, -0.07485, -0.07573, -0.07663, -0.07764, -0.07668, -0.07764, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766, -0.0766,0.07886,-0.08038,-0.08223,-0.08434,-0.08658,-0.08875,-0.09069,-0.09229,-0.09355,-0.09454,-0.09542, -0.09631, -0.09732, -0.09848, -0.09980, -0.10124, -0.10277, -0.10431, -0.10580, -0.10718, -0.09542, -0.09631, -0.09732, -0.09848, -0.09980, -0.10124, -0.10277, -0.10431, -0.10580, -0.10718, -0.09542, -0.09848, -0.09980, -0.10124, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.09848, -0.090.10840,-0.10943,-0.11028,-0.11096,-0.11155,-0.11211,-0.11274,-0.11353,-0.11455,-0.11584,-0.11739,-0.11911,-0.12083,-0.12241,-0.12368) END GROUP = UT1 TIME PARAMETERS GROUP = DETECTOR_STATUS Status Band1 = "00000", "00000", "00000", "00000") Status_Band2 = Status Band3 = "00000", "00000", "00000", "00000") Status_Band4 = ("00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","0000","0000","0000","00000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","0000","000","0000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000","000"," Status_Band5 = Status Band6 = ("00000","00000","00000","00000","00000","00000","00000","00000") Status_Band7 = Status Band8 = END_GROUP = DETECTOR_STATUS GROUP = DETECTOR GAINSGROUP = DETECTOR GAINS LOW B1L Prelaunch = (0.81539, 0.81569, 0.80851, 0.81656, 0.80959, 0.81726, 0.81510, 0.81726, 0.81972, 0.82364, 0.81647, 0.81569, 0.81558, 0.81421, 0.81637, 0.82413) B1L Postlaunch = (0.81823, 0.81783, 0.80966, 0.81754, 0.81015, 0.81693, 0.81472, 0.81488, 0.81880, 0.82097, 0.81406, 0.81251, 0.81488,0.81594,0.81815,0.82591) B1L Current = (0.81799, 0.81750, 0.80957, 0.81749, 0.81003, 0.81677, 0.81467, 0.81498, 0.81855, 0.82083, 0.81422, 0.81251, 0.81532, 0.81641, 0.81808, 0.82585)

B2L Prelaunch = (0.79631,0.79482,0.78627,0.79980,0.79164,0.79352,0.79342,0.78984,0.78915,0.80556,0.79114,0.79323, 0.79721,0.79393,0.79909,0.78627) B2L Postlaunch (0.79776, 0.79609, 0.78776, 0.80101, 0.79164, 0.79403, 0.79284, 0.78974, 0.78839, 0.80499, 0.79077, 0.79244, 0.79657,0.79395,0.79720,0.78602) B2L Current = (0.79746,0.78745,0.78744,0.79996,0.79186,0.79381,0.79329,0.78996,0.78878,0.80521,0.79057,0.79210, 0.79651,0.79394,0.79806,0.78682) B3L Prelaunch = (1.02746, 1.02044, 1.02350, 1.02469, 1.02370, 1.03171, 1.03417, 1.02360, 1.01866, 1.02785, 1.01728, 1.02884, 1.02192, 1.02578, 1.01966, 1.02212) B3L Postlaunch = 1.02298,1.02656,1.01940,1.02205) B3L Current = (1.02779, 1.02074, 1.02399, 1.02526, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02203, 1.02624, 1.01991, 1.02282)B4L Prelaunch = $(1.0015\overline{5}, 0.99885, 1.00308, 0.98557, 1.00135, 1.00001, 0.99761, 1.00491, 0.99087, 0.99626, 0.98750, 0.99693, 0.9963, 0.9$ 0.99405,0.99751,0.98913,1.00578) B4L Postlaunch = (1.00200,0.99891,1.00320,0.98575,1.00160,0.99990,0.99711,1.00359,0.99203,0.99691,0.98724,0.99661, 0.99402,0.99761,0.98844,1.00608) B4L_Current = (1.00257,0.99977,1.00358,0.98599,1.00195,1.00017,0.99770,1.00433,0.99132,0.99636,0.98717,0.99667, 0.99341,0.99711,0.98861,1.00640) B5L_Prelaunch : (5.03398,5.06663,5.07855,5.05421,5.08496,5.02657,5.04109,5.08426,5.06803,5.08837,5.04810,5.04560, 5.03738, 5.05932, 5.03949, 5.09518) B5L Postlaunch (5.03903,5.07388,5.07588,5.05826,5.09772,5.02991,5.04964,5.07949,5.07899,5.10122,5.04353,5.03692, 5.02130, 5.04453, 5.03642, 5.08500) B5L_Current = (5.04091,5.07587,5.07901,5.05802,5.09723,5.03077,5.05160,5.08235,5.07142,5.09768,5.04620,5.03239, 5.02648, 5.05153, 5.03273, 5.07932) B6L_Prelaunch = (12.283,12.474,13.150,12.511,12.805,12.646,13.108,12.794) B6L^Postlaunch = (12.426,12.614,13.270,12.625,12.899,12.893,13.217,12.969) B6L Current = (12.435,12.620,13.276,12.628,12.898,12.758,13.211,12.951) B7L Prelaunch = (14.54238,14.52680,14.58439,14.51162,14.55705,14.59233,14.60841,14.48228,14.52429,14.53584,14.622 07,14.51916,14.21294,14.68861,14.51303,14.49303) B7L Postlaunch = (14.51063,14.46411,14.60801,14.52661,14.55857,14.57595,14.62399,14.52219,14.53385,14.53676,14.653 03,14.54550,14.19237,14.68207,14.50772,14.47285) B7L Current = (14.50706,14.48280,14.61788,14.53490,14.54235,14.58111,14.59652,14.50995,14.53182,14.54217,14.643 89, 14, 52400, 14, 21692, 14, 69388, 14, 51501, 14, 47046) B8L Prelaunch = (0.98287,0.99414,0.98206,0.99334,0.99072,0.99545,0.98679,0.99656,0.98277,0.98146,0.98821,0.98096, 0.98861,0.98468,0.98438,0.99464,0.99344,0.97783,0.99504,0.98428,0.99122,0.98589,0.99092,0.98166,0 .99636, 0.98719, 0.98780, 0.98337, 0.99313, 0.99575, 0.99344, 0.98831)B8L Postlaunch = $(0.9840\overline{0}, 0.99576, 0.98222, 0.99448, 0.99022, 0.99586, 0.98529, 0.99645, 0.98271, 0.98083, 0.98657, 0.98103, 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98044, 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98044, 0.99092, 0.98044, 0.99092, 0.98044, 0.99092, 0.99122, 0.98044, 0.99092, 0.99092, 0.99092, 0.99092, 0.98004, 0.99092, 0.99092, 0.99092, 0.98004, 0.99092, 0.99092, 0.99092, 0.99092, 0.98004, 0.99092, 0.99092, 0.99092, 0.99092, 0.98004, 0.99092, 0.99092, 0.99092, 0.99092, 0.99092, 0.98004, 0.99004, 0.99004, 0.99092, 0.99092, 0.99092, 0.980251, 0.99122, 0.98044, 0.98004, 0.990$.99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914) B8L Current = $(0.9840\overline{0}, 0.99576, 0.98222, 0.99448, 0.99022, 0.99586, 0.98529, 0.99645, 0.98271, 0.98083, 0.98657, 0.98103, 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98044, 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98044, 0.99092, 0.98558, 0.98000, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98044, 0.99092, 0.98558, 0.98058, 0.98004, 0.99092, 0.99418, 0.99092, 0.99122, 0.98058, 0.99122, 0.98044, 0.98044, 0.99092, 0.99122, 0.98058, 0.99122, 0.98044, 0.98044, 0.99004, 0.99092, 0.99122, 0.98051, 0.99122, 0.98044, 0.98044, 0.99092, 0.98058, 0.99122, 0.98058, 0.98044, 0.98044, 0.99004, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.9900444, 0.990044$.99527, 0.98667, 0.98647, 0.98351, 0.99448, 0.99487, 0.99418, 0.98914)END_GROUP = DETECTOR_GAINS_LOW GROUP = DETECTOR GAINS HIGH B1H Prelaunch = (1.22405, 1.22336, 1.21383, 1.22582, 1.21451, 1.22641, 1.22287, 1.22630, 1.23112, 1.23643, 1.22523, 1.22365, 1.22483,1.22306,1.22473,1.23711) B1H Postlaunch : $(1.2280\overline{7}, 1.22746, 1.21521, 1.22703, 1.21594, 1.22611, 1.22281, 1.22304, 1.22892, 1.23218, 1.22182, 1.21949, 1.22182, 1.21949, 1.22182, 1.21949, 1.21946, 1.21946, 1.21946, 1.21946, 1.21946, 1.2194$ 1.22304,1.22464,1.22795,1.23959) B1H Current = $(1.2280\overline{3}, 1.22712, 1.21536, 1.22724, 1.21611, 1.22630, 1.22281, 1.22306, 1.22901, 1.23215, 1.22207, 1.21956, 1.22207, 1.22207, 1.21956, 1.22207, 1.22200, 1.22200, 1.22200, 1.22200, 1.22200, 1.222000, 1.2220000000, 1.2200000, 1.22000000000000000000000000000000$ 1.22259, 1.22435, 1.22788, 1.23963) B2H Prelaunch = (1.19510, 1.19271, 1.18036, 1.20027, 1.18664, 1.18942, 1.18893, 1.18444, 1.18424, 1.20845, 1.18723, 1.18992, 1.19510,1.19092,1.19779,1.17906) B2H Postlaunch = (1.19657,1.19406,1.18157,1.20144,1.18739,1.19097,1.18918,1.18453,1.18252,1.20740,1.18608,1.18858, 1.19478, 1.19085, 1.19573, 1.17895) B2H Current = (1.19663,1.18166,1.18154,1.20040,1.18714,1.19041,1.18950,1.18471,1.18307,1.20780,1.18624,1.18886, 1.19419,1.19057,1.19641,1.17941)

B3H Prelaunch = (1.54197, 1.53259, 1.53429, 1.53718, 1.53629, 1.54845, 1.55294, 1.53678, 1.52820, 1.54297, 1.52711, 1.54436, 1.53459, 1.54107, 1.52980, 1.53289)B3H Postlaunch : (1.54289, 1.53152, 1.53674, 1.53721, 1.53582, 1.54736, 1.55319, 1.53659, 1.52922, 1.54121, 1.52629, 1.54336, 1.53537,1.54075,1.52999,1.53398) B3H Current = (1.54333,1.53257,1.53633,1.53773,1.53541,1.54789,1.55255,1.53701,1.52843,1.54193,1.52569,1.54413, 1.53439, 1.54101, 1.53007, 1.53442) B4H Prelaunch = (1.50174, 1.49785, 1.50437, 1.47818, 1.50252, 1.49989, 1.49531, 1.50642, 1.48850, 1.49610, 1.48227, 1.49668, 1.49259,1.49785,1.48461,1.50963) B4H Postlaunch = (1.50351,1.49886,1.50530,1.47912,1.50290,1.50036,1.49616,1.50589,1.48854,1.49587,1.48136,1.49542, 1.49153,1.49692,1.48315,1.50963) B4H Current = (1.50367,1.49969,1.50557,1.47950,1.50283,1.50040,1.49576,1.50606,1.48807,1.49590,1.48144,1.49577, 1.49192,1.49748,1.48375,1.51046) B5H Prelaunch = (7.55469,7.59878,7.62118,7.58419,7.63018,7.54119,7.55799,7.61848,7.59718,7.63598,7.57749,7.57069, 7.54699,7.58149,7.56809,7.64298) B5H Postlaunch = $(7.5585\overline{4}, 7.61082, 7.61382, 7.58738, 7.64657, 7.54487, 7.57446, 7.61923, 7.61848, 7.65183, 7.56530, 7.55538, 7.55588, 7.5558, 7.5558, 7.5558, 7.55858, 7.5558, 7.5558, 7.5558, 7.5558, 7.55858, 7.5558, 7.5558, 7.5558, 7.55858, 7.5558, 7.5558, 7.5558, 7.5558, 7.5558, 7.5558, 7.5558, 7.5558, 7.5558, 7.558, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.5585, 7.55585, 7.558, 7.558,$ 7.53195,7.56680,7.55463,7.62749) B5H Current = (7.55944,7.61343,7.61647,7.58572,7.64538,7.54615,7.57231,7.61890,7.61047,7.64933,7.56928,7.55076, 7.53328,7.57133,7.55801,7.62922) B6H_Prelaunch = (23.953,24.325,25.642,24.397,24.969,24.659,25.561,24.949) B6H Postlaunch = (24.231,24.597,25.876,24.618,25.153,25.142,25.774,25.289) B6H Current = (24.257,24.700,26.097,24.783,25.211,24.980,25.851,25.424) B7H Prelaunch = (21.82563,21.80364,21.87966,21.77120,21.83747,21.89717,21.93090,21.74115,21.78742,21.79995,21.957 57, 21.78373, 21.30363, 22.02712, 21.76921, 21.74891) B7H Postlaunch = (21.77175,21.70194,21.91786,21.79573,21.84368,21.86976,21.94183,21.78909,21.80658,21.81096,21.985 41,21.82407,21.29424,22.02898,21.76738,21.71506) B7H Current (21.75815,21.72167,21.93070,21.80577,21.81935,21.86660,21.92634,21.79395,21.80156,21.81776,21.989 36,21.81000,21.31337,22.03100,21.77424,21.70837) B8H Prelaunch = $(1.4746\overline{9}, 1.49009, 1.47114, 1.49009, 1.48593, 1.49231, 1.48026, 1.49565, 1.47530, 1.47246, 1.48420, 1.47226, 1.472226, 1.472226, 1.47226, 1.472226, 1.472226, 1.472226, 1.47222, 1.47222, 1.47222, 1$ 1.48269,1.47732,1.47610,1.49231,1.49130,1.46730,1.49423,1.47550,1.48715,1.47803,1.48735,1.47459,1 .49697,1.48127,1.48300,1.47630,1.48958,1.49423,1.49049,1.48249) B8H Postlaunch = $(1.4763\overline{9}, 1.49404, 1.47373, 1.49212, 1.48573, 1.49419, 1.47833, 1.49508, 1.47446, 1.47164, 1.48025, 1.47194, 1.47194, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1.48025, 1.4714, 1$ 1.48677,1.47876,1.47639,1.49123,1.49212,1.47045,1.49167,1.47757,1.48722,1.47416,1.48722,1.47105,1 .49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411) B8H Current = $(1.4763\overline{9}, 1.49404, 1.47373, 1.49212, 1.48573, 1.49419, 1.47833, 1.49508, 1.47446, 1.47164, 1.48025, 1.47194, 1.48677, 1.47876, 1.47639, 1.49123, 1.49212, 1.47045, 1.49167, 1.47757, 1.48722, 1.47416, 1.48722, 1.47105, 1.4710$.49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411) END_GROUP = DETECTOR_GAINS_HIGH END GROUP = DETECTOR GAINS GROUP = BIAS_LOCATIONS Forward_Bias_Location_30 = 143 Forward_Bias_Length_30 = 500 Forward IC Region 30 = 814 Reverse_Bias_Location_30 = 780 Reverse_Bias_Length_30 = 500 Reverse IC Region 30 = 780Forward_Bias_Location_60 = 85 Forward Bias Length 60 = 275 Forward_IC_Region_60 = 380 Reverse Bias Location 60 = 380 $Reverse_Bias_Length_60 = 275$ Reverse IC Region 60 = 380Forward_Bias_Location_15 = 286 Forward Bias Length 15 = 1000 Forward IC Region 15 = 1635 Reverse_Bias_Location_15 = 1580 Reverse Bias Length 15 = 1000 Reverse_IC_Region_15 = 1580 END_GROUP = BIAS_LOCATIONS GROUP = DETECTOR_BIASES_B6 GROUP = DETECTOR_BIASES_B6_LOW B6L_Bias_Prelaunch = (31.51, 30.12, 25.27, 29.86, 27.84, 28.91, 25.65, 27.87) B6L Bias Postlaunch = (25.96,24.86,20.14,24.76,22.76,22.93,20.57,22.43) B6L_Bias_Current = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463) END_GROUP = DETECTOR_BIASES_B6_LOW GROUP = DETECTOR_BIASES_B6_HIGH B6H Bias Prelaunch = (-66.23,-68.95,-78.39,-69.44,-73.38,-71.30,-77.66,-73.33)

B6H_Bias_Postlaunch = (-77.10,-79.26,-88.45,-79.44,-83.35,-83.01,-87.62,-83.98) B6H_Bias_Current = (-69.566,-72.634,-82.61,-73.2228,-76.1918,-76.3519,-80.6467,-77.7089) END GROUP = DETECTOR BIASES B6 HIGH $END_GROUP = DETECTOR_BIASES_B\overline{6}$ $GRO\overline{U}P = ACCA BIASES$ GROUP = ACCA BIASES LOWB1L ACCA Bias = (9.91,9.87,10.11,10.02,10.06,10.02,10.12,10.03,10.00,9.97,10.08,10.09,10.02,10.07,9.96,10.03) B2L ACCA Bias = (9.95,10.12,9.95,10.09,9.87,10.05,9.98,10.11,9.90,10.14,9.87,10.13,9.83,10.11,9.88,10.16) B3L ACCA Bias : (10.20, 9.79, 10.18, 9.70, 10.08, 9.66, 10.20, 9.84, 10.23, 9.84, 10.24, 9.83, 10.13, 9.72, 10.11, 9.74) B4L ACCA Bias (10.06, 9.99, 9.97, 9.88, 10.00, 9.90, 10.03, 9.92, 10.00, 9.94, 9.77, 9.74, 9.81, 9.78, 9.99, 9.95) B5L ACCA Bias = (10.02,10.03,10.00,9.98,10.06,10.07,10.01,10.07,10.09,10.09,9.90,9.97,10.10,10.08,10.07,10.06) B6L_ACCA_Bias = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463) B7L ACCA Bias = (10.23,10.16,10.08,10.08,10.14,10.16,10.20,10.09,10.00,10.02,10.12,10.11,10.04,10.17,9.96,10.10) B8L ACCA Bias = (10.49,9.40,10.62,9.48,10.25,9.75,10.26,9.64,9.90,10.37,10.02,10.26,9.10,10.37,9.49,9.90,9.28,9.4 5, 9.05, 9.02, 8.60, 10.19, 8.53, 10.02, 8.29, 8.82, 7.99, 9.02, 7.34, 8.98, 7.45, 8.95)END GROUP = ACCA BIASES LOW GROUP = ACCA BIASES HIGHB1H_ACCA_Bias = (14.86, 14.80, 15.13, 15.00, 15.14, 15.08, 15.23, 15.09, 14.94, 14.93, 15.07, 15.09, 15.08, 15.15, 14.99, 15.08) B2H ACCA Bias $(14.92,\overline{15.19},\overline{14.90},15.13,14.70,15.00,14.93,15.13,14.82,15.18,14.79,15.17,14.71,15.13,14.76,15.18)$ B3H ACCA Bias (15.19,14.58,15.33,14.61,15.07,14.46,15.32,14.80,15.23,14.64,15.24,14.63,15.18,14.55,15.22,14.66) B4H ACCA Bias (14.97, 14.84, 14.88, 14.72, 15.03, 14.84, 15.10, 14.88, 15.08, 14.95, 14.64, 14.57, 14.70, 14.66, 14.92, 14.85) B5H ACCA Bias $(14.98,\overline{1}5.00,\overline{1}5.05,15.02,15.02,15.04,15.01,15.10,15.18,15.19,14.81,14.93,15.04,15.01,15.04,15.03)$ B6H ACCA Bias = (-69.566,-72.634,-82.61,-73.2228,-76.1918,-76.3519,-80.6467,-77.7089) B7H ACCA Bias = $(15.32,\overline{1}5.15,\overline{1}5.13,15.11,15.14,15.16,15.31,15.12,15.03,15.04,15.11,15.10,15.02,15.22,14.91,15.13)$ B8H ACCA Bias = (15.85,14.28,16.29,14.39,15.51,14.87,15.49,14.54,14.99,15.60,15.12,15.25,13.80,15.59,14.27,14.82, 14.06, 14.18, 13.46, 13.52, 12.70, 15.49, 12.56, 15.21, 12.21, 13.14, 11.91, 13.21, 10.91, 13.12, 11.16, 13.00) END GROUP = ACCA BIASES HIGH END GROUP = ACCA BIASESGROUP = ACCA_THRESHOLDS Thresh B3 = 0.0800 Thresh B3 Lower = 0.07 Thresh B56_High = 225.000 Thresh B56_Low = 210.000 Thresh_B6 = 300.000 Thresh_B45_Ratio = 1.0000 Thresh_B42_Ratio = 2.16248 Thresh_NDSI_Max = 0.7000 Thresh_NDSI_Max = 0.7000 Thresh_NDSI_Min = -0.2500 Thresh_NDSI_Snow = 0.8000 Cloud Percent Min = 0.4000 Desert Index = 0.500 Thresh Snow Percent = 1.0000 $Thermal_Effect_High = 35.0000$ Thermal_Effect_Low = 25.000 B6Max_Maxthresh_Diff = 2.000 END_GROUP = ACCA_THRESHOLDS GROUP = SOLAR SPECTRAL IRRADIANCES B1_Solar_Irradiance = 1969.000 B2_Solar_Irradiance = 1840.000 B3_Solar_Irradiance = 1551.000 B4 Solar Irradiance = 1044.000 B5_Solar_Irradiance = 225.7 B7 Solar Irradiance = 82.07 B8_Solar_Irradiance = 1368.000 END_GROUP = SOLAR_SPECTRAL_IRRADIANCES GROUP = THERMAL CONSTANTSK1_Constant = 666.09 K2_Constant = 1282.71 END GROUP = THERMAL CONSTANTS GROUP = SCALING PARAMETERS GROUP = SCALING_PARAMETERS LOW B1L Lmin Lmax = $(-6.2, 29\overline{3}, 7)$ B2L_Lmin_Lmax = (-6.4,300.9) B3L_Lmin_Lmax = (-5.0,234.4) B4LLminLmax = (-5.1, 241.1)

B5LLminLmax = (-1.0, 47.57)
```
B6L\_Lmin\_Lmax = (0.0, 17.04)
                      B7LLminLmax = (-0.35, 16.54)
                      B8LLminLmax = (-4.7, 243.1)
            END_GROUP = SCALING_PARAMETERS_LOW
            GROUP = SCALING PARAMETERS HIGH
                      B1H Lmin Lmax = (-6.2, 191.6)
                       B2H Lmin Lmax = (-6.4, 196.5)
                      B3H Lmin Lmax = (-5.0, 152.9)
                     B4H Lmin Lmax = (-5.1,157.4)
                      B5H Lmin Lmax = (-1.0, 31.06)
                      B6H Lmin Lmax = (3.2, 12.65)
                       B7H Lmin Lmax = (-0.35,10.80)
                     B8H Lmin Lmax = (-4.7, 158.3)
          END GROUP = SCALING PARAMETERS HIGH
END GROUP = SCALING PARAMETERS
GROUP = MTF_COMPENSATION
B1_weights_along = (1.56766583,0.00000000,-1.56766583,-0.01966520,-0.01966520)
           B1 weights across = (1.45063128,0.00000000,-1.45063128,0.00257381,0.00257381)
           B2_weights_along = (1.61050310,0.00000000,-1.61050310,-0.02774139,-0.02774139)
           B2_weights_across = (1.49221631,0.00000000,-1.49221631,-0.00535953,-0.00535953)
           B3_weights_along = (1.65047774,0.00000000,-1.65047774,-0.03525043,-0.03525043)
          B3_weights_across = (1.52298447,0.00000000,-1.52298447,-0.01120648,-0.01120648)
B4_weights_along = (1.73786071,0.00000000,-1.73786071,-0.05158080,-0.05158080)
          B4_weights_across = (1.55814152,0.00000000,-1.55814152,-0.01786521,-0.01786521)
B5_weights_along = (1.54118459,0.00000000,-1.54118459,-0.01465645,-0.01465645)
           B5_weights_across = (1.43789226,0.00000000,-1.43789226,0.00501156,0.00501156)
           B6 weights along = (1.74511478,0.00000000,-1.74511478,-0.05293163,-0.05293163)
           B6_weights_across = (1.24858736,0.00000000,-1.24858736,0.04172298,0.04172298)
          B7 weights along = (1.47951767,0.00000000,-1.47951767,-0.00294082,-0.00294082)
           B7_weights_across = (1.42261190,0.00000000,-1.42261190,0.00794044,0.00794044)
           B8_weights_along = (1.94052085,0.00000000,-1.94052085,-0.08907866,-0.08907866)
          B8 weights across = (2.11745387,0.00000000,-2.11745387,-0.12147250,-0.12147250)
END \overline{GROUP} = \overline{MTF} COMPENSATION
GROUP = MEMORY \overline{E}FFECT
           GROUP = ME MAGNITUDES
                     B6 ME Magnitude = (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
                     B8 ME Magnitude =
  0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)
END_GROUP = ME_MAGNITUDES
           GROUP = ME TIME CONSTANTS
                     B1_ME_Time_Constant =
  (1100.\overline{0}, 1\overline{1}00.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.
0,1100.0,1100.0)
  B2_ME_Time_Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,
0,1100.0,1100.0
                      B3_ME_Time_Constant =
   (1100.\overline{0}, 1\overline{1}00.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.
0, 1100.0, 1100.0
  B4 ME_Time_Constant = (1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,
0,1100.0,1100.0)
                     B5_ME_Time_Constant =
   (1100.\overline{0},1\overline{1}00.0,\overline{1}100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.
0,1100.0,1100.0)
 B6 ME Time Constant = (1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0)
B7 ME Time Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0
0,1100.0,1100.0)
  B8 ME Time Constant =
(1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,
 0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1
 .0,1100.0,1100.0,1100.0,1100.0)
END GROUP = ME TIME CONSTANTS
 END G\overline{R}OUP = MEMO\overline{R}Y EF\overline{F}ECT
GROUP = GHOST_PULSE
           Ghost Pulse Endpoints = (0.00,0.00)
 END GROUP = GHOST PULSE
GROUP = SCAN CORRELATED SHIFT
           SCS Reference Detectors = (1,1,1,1,1,1,1)
           GROUP = SCS LOW
```

B8L_SCS_Magnitudes = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) END GROUP = SCS LOW $GRO\overline{U}P = SCS HIG\overline{H}$ B8H SCS Magnitudes = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) END_GROUP = SCS HIGH END_GROUP = SCAN_CORRELATED_SHIFT GROUP = STRIPINGGROUP = STRIPING FLAG LOW Correction_Reference_B1_Low = 2 Correction Reference B2 Low = 2 Correction Reference B3 Low = 2 Correction_Reference_B4_Low = 2 Correction_Reference_B5_Low = 2 Correction Reference B6 Low = 0 Correction_Reference_B7_Low = 2 Correction Reference B8 Low = 2 END GROUP = STRIPING FLAG LOW GROUP = STRIPING FLAG HIGH $Correction_Reference_B1_High = 2$ Correction Reference B2 High = 2 Correction_Reference_B3_High = 2 Correction Reference B4 High = 2 Correction Reference B5 High = 2 Correction_Reference_B6_High = 0 Correction Reference B7 High = 2 Correction Reference B8 High = 2 END GROUP = STRIPING FLAG HIGH END $G\overline{R}OUP = STRIPING$ GROUP = HISTOGRAMGROUP = DETECTOR NOISE GROUP = DETECTOR NOISE LOWDetector Noise Level B1 Low = (0.779460,0.772285,0.728671,0.763302,0.786943,0.776291,0.770672,0.739825,0.804123,0.737660,0.7495 92,0.794155,0.765984,0.780631,0.743702,0.759316) Detector Noise Level B2 Low = (0.601029, 0.576235, 0.578696, 0.572740, 0.587501, 0.591210, 0.577901, 0.596892, 0.612274, 0.599762, 0.6019 85,0.572298,0.605657,0.588833,0.586422,0.574523) Detector_Noise_Level_B3_Low = (0.814260,0.797001,0.806253,0.825438,0.805607,0.835023,0.802352,0.759353,0.814861,0.804235,0.8303 29,0.835847,0.795850,0.819125,0.760094,0.808781) Detector_Noise_Level_B4_Low = $(0.373855, 0.35\overline{7}412, 0.\overline{4}1080\overline{1}, 0.\overline{4}01166, 0.386735, 0.385534, 0.351177, 0.388469, 0.298362, 0.346134, 0.4544\overline{1}, 0.4544\overline{1})$ 76,0.467169,0.430189,0.458503,0.309542,0.349836) Detector_Noise_Level_B5_Low = $(0.541758, 0.53\overline{8}805, 0.\overline{5}6404\overline{0}, 0.\overline{5}28059, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.54877, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.54877, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.557496, 0.55957, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.557496, 0.559577, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.564582, 0.557496, 0.559577, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.557496, 0.559577, 0.576319, 0.563746, 0.54877, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.557496, 0.576319, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.564582, 0.576482, 0.57642, 0.5$ 35,0.554186,0.578348,0.541598,0.546643,0.543750) Detector Noise Level B6 Low = (0.38498,0.40307,0.39786,0.37927,0.38451,0.38594,0.37989,0.37353) Detector_Noise_Level_B7_Low = (0.882830,0.841372,0.840801,0.836801,0.918675,0.888781,0.868970,0.833833,0.889666,0.816621,0.8723 48,0.823312,0.844422,0.839332,0.818657,0.838030) Detector_Noise_Level_B8_Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976, 1.455102, 1.447059, 1.445895, 1.428523, 1.518779, 1.410482, 1.546677, 1.412992, 1.568844, 1.432523, 1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786, 1.435104, 1.447014, 1.411219, 1.420777, 1.483956, 1.469533, 1.473144, 1.436488, 1.435460) END GROUP = DETECTOR NOISE LOW $GROUP = DETECTOR_NOISE_HIGH$ Detector Noise Level B1 High = (1.115767,1.105730,1.034492,1.088057,1.122772,1.109671,1.093771,1.045665,1.135931,1.051208,1.0683 69,1.137889,1.088930,1.113233,1.060574,1.083090) Detector Noise Level B2 High = (0.840525, 0.802531, 0.811894, 0.802952, 0.821014, 0.828448, 0.799075, 0.826498, 0.848278, 0.828466, 0.8339 49,0.787364,0.842703,0.814721,0.810008,0.789331) Detector Noise Level B3 High = (1.171068,1.145406,1.154020,1.185309,1.152540,1.197513,1.145797,1.079392,1.168113,1.152881,1.1973 19,1.204024,1.142140,1.177719,1.081946,1.158203)

Detector_Noise_Level_B4_High = (0.571712,0.568938,0.601790,0.577678,0.585365,0.570769,0.564726,0.575154,0.523646,0.549596,0.5781 82,0.564183,0.560860,0.580182,0.528458,0.559510) Detector Noise Level B5 High = (0.758784,0.753994,0.791165,0.746657,0.796592,0.791935,0.769362,0.774648,0.810945,0.794850,0.7724 70,0.783913,0.811670,0.761202,0.770891,0.766004) Detector Noise Level B6 High = (0.63424,0.64766,0.63594,0.62451,0.62835,0.64975,0.62390,0.60717) Detector_Noise_Level_B7_High = (1.292273,1.226330,1.215933,1.208056,1.337354,1.291756,1.261227,1.208343,1.296625,1.183313,1.2693 91, 1.193715, 1.221458, 1.216385, 1.179451, 1.211407) Detector Noise Level B8 High = (2.01844,2.03392,2.10339,1.99754,2.63946,2.07794,2.46647,2.03946,2.51454,2.12575,2.02078,2.16917, 1.98090,2.18632,2.01149,1.98286,2.07499,2.11379,2.10509,2.14305,2.00573,2.09848,2.03111,2.08271,2 .06095,2.01814,1.98271,2.17801,2.44790,2.15665,2.25689,2.24758) END GROUP = DETECTOR NOISE HIGH END GROUP = DETECTOR NOISE GROUP = DET SHUTTER NOISEGROUP = DET_SHUTTER_NOISE_LOW Det_Shutter_Noise_Level_B1_Low = (0.779460, 0.772285, 0.728671, 0.763302, 0.786943, 0.776291, 0.770672, 0.739825, 0.804123, 0.737660, 0.7495 92,0.794155,0.765984,0.780631,0.743702,0.759316) Det_Shutter_Noise_Level_B2_Low = (0.601029,0.576235,0.578696,0.572740,0.587501,0.591210,0.577901,0.596892,0.612274,0.599762,0.6019 85,0.572298,0.605657,0.588833,0.586422,0.574523) Det_Shutter_Noise_Level_B3_Low = (0.814260,0.797001,0.806253,0.825438,0.805607,0.835023,0.802352,0.759353,0.814861,0.804235,0.8303 29, 0.835847, 0.795850, 0.819125, 0.760094, 0.808781)Det Shutter Noise Level B4 Low : (0.373855, 0.357412, 0.410801, 0.401166, 0.386735, 0.385534, 0.351177, 0.388469, 0.298362, 0.346134, 0.45444, 0.4544, 0.4544, 0.4544, 0.4544, 0.45444, 0.4544, 0.4544, 0.45476,0.467169,0.430189,0.458503,0.309542,0.349836) Det_Shutter_Noise_Level_B5_Low = (0.541758,0.538805,0.564040,0.528059,0.567236,0.564582,0.557496,0.559557,0.576319,0.563746,0.5487 35,0.554186,0.578348,0.541598,0.546643,0.543750) Det Shutter Noise Level B6 Low = (0.38498, 0.40307, 0.39786, 0.37927, 0.38451, 0.38594, 0.37989, 0.37353) Det_Shutter_Noise_Level B7 Low (0.882830,0.841372,0.840801,0.836801,0.918675,0.888781,0.868970,0.833833,0.889666,0.816621,0.8723 48,0.823312,0.844422,0.839332,0.818657,0.838030) Det_Shutter_Noise_Level_B8_Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976, 1.455102, 1.447059, 1.445895, 1.428523, 1.518779, 1.410482, 1.546677, 1.412992, 1.568844, 1.432523, 1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786, 1.435104, 1.447014, 1.411219, 1.420777, 1.483956, 1.469533, 1.473144, 1.436488, 1.435460) END_GROUP = DET_SHUTTER_NOISE_LOW GROUP = DET SHUTTER NOISE HIGH Det Shutter Noise Level B1 High = (1.115767,1.105730,1.034492,1.088057,1.122772,1.109671,1.093771,1.045665,1.135931,1.051208,1.0683 69,1.137889,1.088930,1.113233,1.060574,1.083090) Det Shutter Noise Level B2 High = (0.840525,0.802531,0.811894,0.802952,0.821014,0.828448,0.799075,0.826498,0.848278,0.828466,0.8339 49,0.787364,0.842703,0.814721,0.810008,0.789331) Det_Shutter_Noise_Level_B3_High = (1.171068,1.145406,1.154020,1.185309,1.152540,1.197513,1.145797,1.079392,1.168113,1.152881,1.1973 19,1.204024,1.142140,1.177719,1.081946,1.158203) Det_Shutter_Noise_Level_B4_High = (0.571712,0.568938,0.601790,0.577678,0.585365,0.570769,0.564726,0.575154,0.523646,0.549596,0.5781 82,0.564183,0.560860,0.580182,0.528458,0.559510) Det_Shutter_Noise_Level_B5_High 70,0.783913,0.811670,0.761202,0.770891,0.766004) Det_Shutter_Noise_Level_B6_High (0.63424,0.64766,0.63594,0.62451,0.62835,0.64975,0.62390,0.60717) Det_Shutter_Noise_Level_B7_High = (1.292273, 1.226330, 1.215933, 1.208056, 1.337354, 1.291756, 1.261227, 1.208343, 1.296625, 1.183313, 1.2693 91,1.193715,1.221458,1.216385,1.179451,1.211407) Det Shutter Noise Level B8 High : (2.01844, 2.03392, 2.10339, 1.99754, 2.63946, 2.07794, 2.46647, 2.03946, 2.51454, 2.12575, 2.02078, 2.16917, 1.98090, 2.18632, 2.01149, 1.98286, 2.07499, 2.11379, 2.10509, 2.14305, 2.00573, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.03111, 2.08271, 2.09848, 2.09848, 2.03111, 2.08271, 2.09848, 2. .06095,2.01814,1.98271,2.17801,2.44790,2.15665,2.25689,2.24758) END_GROUP = DET_SHUTTER_NOISE_HIGH END GROUP = DET SHUTTER NOISEGROUP = REFERENCE DETECTORSReference_Detector_B1 = 15 Reference_Detector_B2 = 12 Reference Detector B3 = 08 Reference Detector B4 = 07 Reference Detector B5 = 14 Reference_Detector_B6 = 01 Reference_Detector_B7 = 10 Reference_Detector B8 = 27 END GROUP = REFERENCE DETECTORS

```
GROUP = SATURATION_THRESHOLDS
             Saturation Bin Threshold B1 = 1000
             Saturation Bin Threshold B2 = 1000
            Saturation_Bin_Threshold_B3 = 1000
Saturation_Bin_Threshold_B4 = 1000
            Saturation_Bin_Threshold_B5 = 1000
Saturation_Bin_Threshold_B6 = 1000
            Saturation Bin Threshold B7 = 1000
Saturation Bin Threshold B8 = 1000
      END GROUP = SATURATION THRESHOLDS
      GROUP = ADJACENT BINS
            GROUP = BIN NUMBER
                 Adjacent_Bin_Number_B1 = 2
Adjacent_Bin_Number_B2 = 2
Adjacent_Bin_Number_B3 = 2
                 Adjacent_Bin_Number_B4 = 2
Adjacent_Bin_Number_B5 = 2
            Adjacent_Bin_Number_B5 = 2
Adjacent_Bin_Number_B7 = 2
Adjacent_Bin_Number_B7 = 2
Adjacent_Bin_Number_B8 = 2
END_GROUP = BIN_NUMBER
             GROUP = BIN THRESHOLD
                  Adjacent \underline{Bin} Threshold B1 = 10
                 Adjacent_Bin_Threshold_B2 = 10
Adjacent_Bin_Threshold_B3 = 10
Adjacent_Bin_Threshold_B4 = 10
Adjacent_Bin_Threshold_B5 = 10
                 Adjacent_Bin_Threshold_B6 = 10
Adjacent_Bin_Threshold_B7 = 10
            Adjacent_Bin_Threshold_B8 = 10
END_GROUP = BIN_THRESHOLD
      END_GROUP = ADJACENT BINS
      GROUP = STARTING PIXEL
            Start_pixel_B1 = 243
Start_pixel_B2 = 218
            Start_pixel_B3 = 193
Start_pixel_B4 = 168
Start_pixel_B5 = 97
            Start_pixel_B6 = 31
Start_pixel_B7 = 123
Start_pixel_B8 = 536
      END GROUP = STARTING PIXEL
      GROUP = WINDOW WIDTH
            Window Samples B1 = 5874
           Window_Samples_B1 = 5874
Window_Samples_B2 = 5874
Window_Samples_B3 = 5874
Window_Samples_B4 = 5874
Window_Samples_B5 = 5874
Window_Samples_B6 = 2937
Window_Samples_B7 = 5874
Window_Samples_B8 = 1174
      Window Samples B8 = 11748
END_GROUP = WINDOW_WIDTH
     GROUP = WINDOW_LENGTH
Window_Scans_B1 = 375
            Window_Scans_B2 = 375
Window_Scans_B3 = 375
            Window_Scans_B4 = 375
Window_Scans_B5 = 375
            Window_Scans_B6 = 375
            Window Scans B7 = 375
     Window_Scans_B8 = 375
END_GROUP = WINDOW_LENGTH
      GROUP = OVERLAPPING SCANS
             Overlap_Scans_B1 = 0
             Overlap_Scans_B2 = 0
            Overlap_Scans_B3 = 0
Overlap_Scans_B4 = 0
            Overlap Scans B5 = 0
             Overlap Scans B6 = 0
            Overlap_Scans_B7 = 0
Overlap_Scans_B8 = 0
      END GROUP = OVERLAPPING SCANS
END GROUP = HISTOGRAM
GROUP = IMPULSE NOISE
      Median_Filter_Width = 3
      GROUP = IN THRESHOLD
            BlL_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
B2L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33,
10.33, 10.33, 10.33, 10.33, 10.33)
```

B4L_Threshold = (20.67, $20.67, \overline{2}0.67, 20.67, 20.67, 20.67)$ B5L_Threshold = (10.33, 10.33) B6L Threshold = (20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67) B7L_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B8L_Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17, 6.89, 5.17, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B1H Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B2H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B3H_Threshold = (6.89, 6.8 6.89, 6.89, 6.89, 6.89B4H_Threshold = (10.33, 10.33) B5H_Threshold = (10.33, 10.33) B6H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B7H Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B8H_Threshold = (4.13, 4.13, 4.13, 5.17, 3.44, 4.13, 4.13, 4.13, 3.44, 4.13, 4.13, 4.13, 5.17, 4.13, 4.13, 5.17, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 5.17, 4.13, 4.13, 4.13, 4.13, 4.13) END GROUP = IN THRESHOLD GROUP = IN SIGMA THRESHOLD BlL_Sigma_Threshold = (13.26, 13.38, 14.18, 13.54, 13.13, 13.31, 13.41, 13.97, 12.85, 14.01, 13.78, 13.01, 13.49, 13.24, 13.89, 13.61) B2L Sigma Threshold = (17.19, 17.93, 17.86, 18.04, 17.59, 17.48, 17.88, 17.31, 16.88, 17.23, 17.16, 18.06, 17.06, 17.55, 17.62, 17.99) $B3L_Sigma_Threshold = (12.69, 12.96,$ 12.82, 12.52, 12.83, 12.37, 12.88, 13.61, 12.68, 12.85, 12.44, 12.36, 12.98, 12.61, 13.59, 12.78) B4L_Sigma_Threshold = (27.64, 28.91, 25.15, 25.76, 26.72, 26.80, 29.42, 26.60, 34.63, 29.85, 22.74, 22.12, 24.02, 22.54, 33.38, 29.54) B5L Sigma Threshold = (19.07, 19.18, 18.32, 19.57, 18.22, 18.30, 18.53, 18.47, 17.93, 18.33, 18.83, 18.65, 17.87, 19.08, 18.90, 19.00) B6L_Sigma_Threshold = (26.84, 25.64, 25.97, 27.24, 26.87, 26.77, 27.20, 27.66) B7L_Sigma_Threshold = (11.70, 12.28, 12.29, 12.35, 11.25, 11.63, 11.89, 12.39, 11.61, 12.65, 11.85, 12.55, 12.24, 12.31, 12.62, 12.33) B8L_Sigma_Threshold = (7.32, 7.23, 7.00, 7.29, 7.24, 7.10, 7.14, 7.15, 7.23, 6.80, 7.33, 6.68, 7.31, 6.59, 7.21, 7.35, 7.05, 6.78, 6.94, 6.72, 7.28, 7.18, 7.19, 7.20, 7.14, 7.32, 7.27, 6.96, 7.03, 7.01, 7.19, 7.20) BlH_Sigma_Threshold = (9.26, 9.34, 9.99, 9.50, 9.20, 9.31, 9.45, 9.88, 9.10, 9.83, 9.67, 9.08, 9.49, 9.28, 9.74, 9.54) B2H Sigma Threshold = (12.29, 12.88, 12.73, 12.87, 12.59, 12.47, 12.93, 12.50, 12.18, 12.47, 12.39, 13.12, 12.26, 12.68, 12.76, 13.09) B3H_Sigma_Threshold = (8.82, 9.02, 8.95, 8.72, 8.97, 8.63, 9.02, 9.57, 8.85, 8.96, 8.63, 8.58, 9.05, 8.77, 9.55, 8.92) 8.58, 9.05, 8.77, 9.55, 8.92) B4H_Sigma_Threshold = (18.07, 18.16, 17.17, 17.89, 17.65, 18.10, 18.30, 17.97, 19.73, 18.80, 17.87, 18.31, 18.42, 17.81, 19.55, 18.47) B5H_Sigma_Threshold = (13.62, 13.70, 13.06, 13.84, 12.97, 13.05, 13.43, 13.34, 12.74, 13.00, 13.38, 13.18, 12.73, 13.57, 13.40, 13.49) DCU_Circa_Threshold = (16.25, 16.25, 16.55, 16.44, 15.90, 16.56, 17.02) B6H_Sigma_Threshold = (16.29, 15.95, 16.25, 16.55, 16.44, 15.90, 16.56, 17.02) B7H_Sigma_Threshold = (8.00, 8.43, 8.50, 8.55, 7.73, 8.00, 8.19, 8.55, 7.97, 8.73, 8.14, 8.66, 8.46, 8.49, 8.76, 8.53) B8H_Sigma_Threshold = (5.12, 5.08, 4.91, 5.17, 3.91, 4.97, 4.19, 5.07, 4.11, 4.86, 5.11, 4.76, 5.22, 4.73, 5.14, 5.21, 4.98, 4.89, 4.91, 4.82, 5.15, 4.92, 5.09, 4.96, 5.01, 5.12, 5.21, 4.74, 4.22, 4.79, 4.58, 4.60) END GROUP = IN SIGMA THRESHOLD END GROUP = IMPULSE NOISEGROUP = COHERENT NOISEFrequency Components = 10 GROUP = \overline{CN} FREQUENCY PARAMETERS $GROUP = \overline{F}REQUENCY \overline{M}EANS$ GROUP = FREQUENCY SIGMAS

END_GROUP = FREQUENCY SIGMAS GROUP = FREQUENCY MINIMUMS B1 Frequency Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) $END \ \overline{G}ROUP = FREQUENCY MINIMUMS$ GROUP = FREQUENCY MAXIMUMSEND_GROUP = FREQUENCY_MAXIMUMS END_GROUP = CN_FREQUENCY_PARAMETERS GROUP = CN_PHASE_PARAMETERS GROUP = PHASE_MEANS В8 $END \overline{GROUP} = PHASE MEANS$ GROUP = PHASE SIGMASEND GROUP = PHASE SIGMAS GROUP = PHASE MINIMUMS $B1_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)$ $B4_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)$ $B5_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)$ END GROUP = PHASE MINIMUMS GROUP = PHASE MAXIMUMS $B6_Phase_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)$ END $\overline{\text{GROUP}}$ = PHASE MAXIMUMS END_GROUP = CN_PHASE_PARAMETERS GROUP = CN_MAGNITUDE_PARAMETERS $GROUP = \overline{M}AGNITUDE \ \overline{M}EANS$ END GROUP = MAGNITUDE MEANS

END GROUP = MAGNITUDE SIGMAS GROUP = MAGNITUDE MINIMUMS B1 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00)END GROUP = MAGNITUDE MINIMUMS GROUP = MAGNITUDE MAXIMUMS END GROUP = MAGNITUDE MAXIMUMS END_GROUP = CN_MAGNITUDE PARAMETERS END GROUP = COHERENT NOISE GROUP = DETECTOR SATURATIONGROUP = AD CONVERTER SATURATION GROUP = \overline{AD} _CONVERTER_SATURATION_LOW 255, 255, 255, 255, 255, 255, 255, 255) GROUP = AD CONVERTER SATURATION HIGH High AD Level B6 high = (255, 255, 255, 255, 255, 255, 255, 255) 255, 255, 255, 255, 255, 255, 255, 255) $Low_AD_Level_B1_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$ Low AD Level B2 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_AD_Level_B3_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B4 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B5 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) END_GROUP = AD_CONVERTER SATURATION HIGH END_GROUP = AD_CONVERTER_SATURATION GROUP = ANALOG SIGNAL SATURATION GROUP = ANALOG_SIGNAL_SATURATION_LOW High_Analog_Level_B1_low =

```
High Analog Level B4 low =
High Analog Level B5 low =
High_Analog_Level_B6_low = (255,255,255,255,255,255,255,255)
High_Analog_Level_B7_low =
255, 255, 255, 255, 255, 255, 255, 255)
    Low Analog Level B1 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Low Analog Level B2 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Low Analog Level B3 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Low Analog Level B4 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Low Analog Level B5 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

Low Analog Level B5 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
   GROUP = ANALOG SIGNAL SATURATION_HIGH
High_Analog_Level_B1_high =
High_Analog_Level_B3_high =
High Analog Level B4 high =
High_Analog_Level_B5_high :
High Analog Level B6 high = (255,255,255,255,255,255,255,255)
    High_Analog_Level_B7_high =
High Analog Level B8 high =
255, 255, 255, 255, 255, 255, 255, 255)
    END_GROUP = ANALOG_SIGNAL_SATURATION
END_GROUP = DETECTOR_SATURATION
GROUP = REFERENCE_TEMPERATURES
GROUP = REFERENCE_LOW
   B1L_RTemp_Prelaunch = 25.00
B1L_RTemp_Postlaunch = 25.00
   B1L_RTemp_Current = 25.00
B2L_RTemp_Prelaunch = 25.00
   B2L_RTemp_Postlaunch = 25.00
B2L_RTemp_Current = 25.00
   B3L_RTemp_Prelaunch = 25.00
   B3L_RTemp_Postlaunch = 25.00
   B3L_RTemp_Current = 25.00
B4L_RTemp_Prelaunch = 25.00
   B4L_RTemp_Postlaunch = 25.00
   B4L_RTemp_Current = 25.00
   B5L_RTemp_Prelaunch = -182.1
   B5L RTemp Postlaunch = -182.1
   B5L_RTemp_Current = -182.1
   B6L RTemp Prelaunch = -182.2
   B6L RTemp Postlaunch = -182.1
   B6L_RTemp_Current = -182.2
B7L_RTemp_Prelaunch = -182.1
   B7L RTemp Postlaunch = -182.1
   B7L_RTemp_Current = -182.1
   B8L RTemp Prelaunch = 25.00
   B&L RTemp Postlaunch = 25.00
 B8L_RTemp_Current = 25.00
END GROUP = REFERENCE LOW
 GROUP = REFERENCE HIGH
   B1H_RTemp_Prelaunch = 25.00
B1H_RTemp_Postlaunch = 25.00
   B1H RTemp Current = 25.00
```

B2H_RTemp_Prelaunch = 25.00 B2H RTemp Postlaunch = 25.00 B2H RTemp Current = 25.00 B3H_RTemp_Prelaunch = 25.00 B3H RTemp Postlaunch = 25.00 B3H RTemp Current = 25.00 B4H_RTemp_Prelaunch = 25.00 B4H RTemp Postlaunch = 25.00 B4H_RTemp_Current = 25.00 B5H_RTemp_Prelaunch = -182.1 B5H_RTemp_Postlaunch = -182.1 BSH_RTemp_Postlaunch = -182.1 B5H_RTemp_Current = -182.1 B6H_RTemp_Prelaunch = -182.2 B6H_RTemp_Postlaunch = -182.1 B6H_RTemp_Current = -182.2 B7H_RTemp_Prelaunch = -182.1 B7H_RTemp_Postlaunch = -182.1 B7H_RTemp_Postlaunch = -182.1 B7H_RTemp_Current = -182.1 B8H_RTemp_Prelaunch = 25.00 B0H_PTC_____ B8H_RTemp_Postlaunch = 25.00 B8H_RTemp_Current = 25.00 END_GROUP = REFERENCE HIGH END_GROUP = REFERENCE_TEMPERATURES GROUP = SENSITIVITY TEMPERATURES GROUP = SENSITIVITY LOW $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}$) $0.0, 0.\overline{0}, 0.0\overline{)}$ $0.0, 0.\overline{0}, 0.0$ 0.0, 0.0) $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0\overline{)}$ $0.0, 0.\overline{0}$) $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}$) 0.0, 0.0) $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}$) GROUP = SENSITIVITY HIGH $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0\overline{)}$

 $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}$) $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0\overline{)}$ $0.0, 0.\overline{0}$) $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0\overline{)}$ 0.0, 0.0) 0.0, 0.0) $0.0, 0.\overline{0}, 0.0$ $0.0, 0.\overline{0}, 0.0\overline{)}$ $0.0, 0.\overline{0}$) END GROUP = SENSITIVITY TEMPERATURES GROUP = LAMP RADIANCEGROUP = TRENDING COEFFS
Lamp1_Coeffs = (+0.0,+0.0)
Lamp2_Coeffs = (+0.0,+0.0) END GROUP = TRENDING COEFFS GROUP = LAMP RADIANCE LOW B1L Rad State1 Prelaunch = $(45.787, 45.\overline{3}77, 46.\overline{0}26, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.56)$ 1,46.177,45.732)B1L_Rad_State1_Postlaunch = $(50.0, \overline{50}.0, \overline{50}.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)$ B1L_Rad_State1 Current = (45.787, 45.377, 46.026, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.56)1,46.177,45.732) B1L_Rad_State2_Prelaunch = (45.803,45.365,45.935,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33 5,45.981,45.577) B1L Rad State2 Postlaunch = B1L Rad State2 Current = (45.803,45.365,45.935,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33 5,45.981,45.577) B1L_Rad_State3_Prelaunch = (81.684,80.810,81.903,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83 9,82.374,81.345) B1L_Rad_State3_Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,100$ B1L Rad State3 Current = (81.684, 80.810, 81.903, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83 9,82.374,81.345) B2L Rad State1 Prelaunch = (92.855,86.584,93.161,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82 6,93.658,85.806) B2L Rad State1 Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,100$

B2L_Rad_State1_Current = (92.855,86.584,93.161,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82 6,93.658,85.806) B2L_Rad_State2_Prelaunch = (100.787,95.042,101.110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41 3,95.003,101.319,93.884) B2L Rad State2 Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,\overline{1}00.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0))$ B2L Rad State2 Current = (100.787,95.042,101.110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41 3,95.003,101.319,93.884) B2L Rad State3 Prelaunch = (183.710,171.503,184.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468, 186.974,171.568,185.010,169.558) B2L Rad State3 Postlaunch = (200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0) B2L Rad State3 Current = 186.974,171.568,185.010,169.558) B3L_Rad_State1 Prelaunch (74.771,68.694,75.603,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87 4,74.268,68.658) B3L Rad State1 Postlaunch = (60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0)B3L_Rad_State1_Current = (74.771,68.694,75.603,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87 4,74.268,68.658) B3L_Rad_State2_Prelaunch = (83.835,78.103,84.806,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17 7,83.013,77.903) B3L Rad State2 Postlaunch $(60.0, 6\overline{0}.0, \overline{6}0.0, 60\overline{.0}, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0)$ B3L Rad State2 Current = (83.835,78.103,84.806,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17 7,83.013,77.903) B3L Rad State3 Prelaunch = (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203, 149.181,137.271,147.210,136.848) B3L Rad State3 Postlaunch = $(120.0,\overline{1}20.\overline{0},120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0)$ B3L Rad State3 Current = (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203, 149.181,137.271,147.210,136.848) B4L Rad State1 Prelaunch = (90.684, 86.813, 91.648, 85.361, 91.916, 86.890, 91.548, 87.355, 91.100, 86.758, 90.371, 86.732, 90.606, 86.79 4,89.926,87.610) B4L Rad State1 Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,\overline{1}00.0,100.0,$ B4L_Rad_State1 Current (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79 4,89,926,87,610) B4L_Rad_State2_Prelaunch = (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.587, 99.572,.661,98.474,98.477) B4L_Rad_State2_Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B4L Rad State2 Current = (99.545,97.781,100.581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97 .661,98.474,98.477) B4L Rad State3 Prelaunch = $(180.29\overline{7}, 17\overline{4}, 745, 1\overline{8}2.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865,$ 180.368,174.777,178.348,176.381) B4L_Rad_State3_Postlaunch = $(200.0, \overline{2}00.\overline{0}, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0, 200.0)$ B4L Rad State3 Current = (180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.368,174.777,178.348,176.381) B5L Rad State1 Prelaunch = (22.307,21.710,22.166,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53 3,22.030,21.432) B5L_Rad_State1_Postlaunch = $(20.0, 2\overline{0}.0, \overline{2}0.0, 20\overline{.0}, 20.0,$ B5L Rad State1 Current (22.307,21.710,22.166,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53 3,22.030,21.432) B5L Rad State2 Prelaunch = (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.20 4,23.054,23.045) B5L Rad State2 Postlaunch =

 $(20.0, 2\overline{0}.0, \overline{2}0.0, 20\overline{.0}, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0)$

B5L_Rad_State2_Current = (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.20 4,23.054,23.045) B5L_Rad_State3_Prelaunch = (43.679,43.113,43.429,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83 9,43.069,42.487) B5L Rad State3 Postlaunch = $(50.0, \overline{50}.0, \overline{50}.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)$ B5L Rad State3 Current = (43.679,43.113,43.429,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83 9,43.069,42.487) B7L Rad State1 Prelaunch = (12.224,11.010,12.122,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95 3,12.035,10.990) B7L Rad State1 Postlaunch = $(10.0, 1\overline{0}.0, \overline{10}.0, 10.\overline{0}, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)$ B7L_Rad_State1_Current = (12.224,11.010,12.122,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95 3,12.035,10.990) B7L_Rad_State2 Prelaunch = (12.661,11.945,12.529,11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80 1,12.390,11.835) B7L Rad State2 Postlaunch = (10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)B7L_Rad_State2_Current = 1,12.390,11.835) B7L_Rad_State3_Prelaunch = (24.885,22.955,24.651,22.925,24.702,22.848,24.685,22.938,24.678,22.807,24.601,22.863,24.632,22.75 4,24.425,22.825) B7L Rad State3 Postlaunch $(30.0, \overline{30.0}, \overline{30.0}, \overline{30.0}, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0)$ B7L Rad State3 Current = (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75 4,24.425,22.825) B8L Rad State1 Prelaunch = (99.913,88.876,102.090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540 ,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8L Rad State1 Postlaunch = $(110.0,\overline{1}10.\overline{0},110.0,110$ 110.0,B&L Rad Statel Current = (99.913,88.876,102.090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540 ,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8L Rad State2 Prelaunch = (93.948,84.423,96.089,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8L Rad State2 Postlaunch = $(110.0,\overline{1}10.\overline{0},110.0,\overline{1}10.0,110.0,$ 110.0,1 B8L Rad State2 Current = (93.948,84.423,96.089,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8L_Rad_State3_Prelaunch = $(182.44\overline{0}, 16\overline{3}.589, 1\overline{8}6.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231,$ 192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) B8L Rad State3 Postlaunch = $(220.0,\overline{2}20.\overline{0},220.0,\overline{2}20.0,200.0,220.0,200.0,220.0,200.0,220.0,200.0,$ 220.0,B8L Rad State3 Current = (182.440, 163.589, 186.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) END GROUP = LAMP RADIANCE LOW GROUP = LAMP RADIANCE HIGHB1H Rad State1 Prelaunch = (45.787,45.377,46.026,45.784,46.332,45.894,46.752,45.929,46.900,46.087,46.742,45.694,46.361,45.56 1,46.177,45.732) B1H Rad State1 Postlaunch = $(50.0, \overline{50.0}, \overline{50.0}, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)$ B1H Rad State1 Current = (45.787,45.377,46.026,45.784,46.332,45.894,46.752,45.929,46.900,46.087,46.742,45.694,46.361,45.56 1,46.177,45.732) B1H Rad State2 Prelaunch = (45.803,45.365,45.935,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33

B1H_Rad_State2_Postlaunch = $(50.0, \overline{50}.0, \overline{50}.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0)$ B1H Rad State2 Current = (45.803,45.365,45.935,45.555,46.116,45.726,46.623,45.706,46.806,45.923,46.497,45.639,46.194,45.33 5,45.981,45.577) B1H Rad State3 Prelaunch = (81.684,80.810,81.903,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83 9,82.374,81.345) B1H Rad State3 Postlaunch = $(100.0, \overline{1}00.\overline{0}, 100.0, \overline{1}00.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0)$ B1H Rad State3 Current = (81.684, 80.810, 81.903, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83 9,82.374,81.345) B2H Rad State1 Prelaunch = (92.855,86.584,93.161,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82 6,93.658,85.806) B2H Rad State1 Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B2H_Rad_State1 Current = (92.855,86.584,93.161,87.519,94.752,86.906,95.384,86.465,95.068,88.235,94.897,86.732,94.539,86.82 6,93.658,85.806) B2H_Rad_State2_Prelaunch = (100.787,95.042,101.110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41 3,95.003,101.319,93.884) B2H_Rad_State2_Postlaunch = $(100.0, \overline{1}00.\overline{0}, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0)$ B2H Rad State2 Current $(100.78\overline{7},95.042,10\overline{1}.110,95.845,102.845,95.216,103.303,94.719,102.990,96.648,102.735,94.994,102.41)$ 3,95.003,101.319,93.884) B2H Rad State3 Prelaunch (183.710,171.503,184.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468, 186.974,171.568,185.010,169.558) B2H Rad State3 Postlaunch $(200.0,\overline{2}00.\overline{0},200.0,\overline{2}00.0,200.0,$ B2H Rad State3 Current (183.710,171.503,184.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468, 186.974,171.568,185.010,169.558) B3H Rad State1_Prelaunch = (74.771,68.694,75.603,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87 4,74.268,68.658) B3H Rad State1 Postlaunch = $(60.0, \overline{60.0}, \overline{60.0}, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0, 60.0)$ B3H Rad State1 Current = (74.771,68.694,75.603,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87 4,74.268,68.658) B3H_Rad_State2_Prelaunch = (83.835,78.103,84.806,78.339,85.510,78.794,86.371,78.474,85.090,78.442,84.790,78.771,84.271,78.17 7,83.013,77.903) B3H Rad State2 Postlaunch = B3H Rad State2 Current = $(83.835, 78.\overline{1}03, 84.\overline{8}06, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.17, 78.17, 78.474, 85.090, 78.442, 790, 78.771, 84.271, 78.17, 78.17, 78.17, 78.474, 85.090, 78.442, 790, 78.771, 84.271, 78.17, 78.17, 78.17, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.17, 78.$ 7,83.013,77.903) B3H Rad State3_Prelaunch = $(148.35\overline{8},13\overline{6}.935,1\overline{5}0.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203,13$ 149.181,137.271,147.210,136.848) B3H_Rad_State3_Postlaunch $(120.0,\overline{1}20.\overline{0},120.0,120$ B3H_Rad_State3_Current = (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203, 149.181,137.271,147.210,136.848) B4H Rad State1 Prelaunch = (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79 4,89.926,87.610) B4H Rad State1 Postlaunch = $(100.0, \overline{1}00.\overline{0}, 100.0, \overline{1}00.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0, 100.0)$ B4H Rad State1 Current = (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79 4,89.926,87.610) B4H_Rad_State2_Prelaunch = (99.545,97.781,100.581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97 .661,98.474,98.477) B4H Rad State2 Postlaunch = $(100.0,\overline{1}00.\overline{0},100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0)$ B4H Rad State2 Current = (99.545,97.781,100.581,96.103,100.861,97.858,100.429,98.329,99.894,97.626,99.123,97.587,99.371,97 .661,98.474,98.477) B4H Rad State3 Prelaunch = (180.297,174.745,182.339,171.777,182.794,174.990,182.165,176.045,180.939,174.523,179.635,174.865,

(180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.368, 174.777, 178.348, 176.381)

B4H_Rad_State3_Postlaunch = $(200.0,\overline{2}00.\overline{0},200.0,\overline{2}00.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0)$ B4H Rad State3 Current = $(180.29\overline{7}, 17\overline{4}, 745, 1\overline{8}2.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 174.523, 179.635, 174.865, 180.939, 180.939, 174.523, 179.635, 174.865, 180.939, 180.939, 174.523, 179.635, 174.865, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180.939, 180, 180.939, 180.939, 180.939, 180$ 180.368,174.777,178.348,176.381) B5H Rad State1 Prelaunch = (22.307,21.710,22.166,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53 3,22.030,21.432) B5H Rad State1 Postlaunch = $(20.0, 2\overline{0}.0, \overline{2}0.0, 20\overline{.0}, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0)$ B5H Rad State1 Current = (22.307,21.710,22.166,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53 3,22.030,21.432) B5H Rad State2 Prelaunch = $(23.397, 23.\overline{4}05, 23.\overline{2}70, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 23.20, 2$ 4,23.054,23.045) B5H Rad State2_Postlaunch = (20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.B5H_Rad_State2 Current = (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.20 4,23.054,23.045) B5H_Rad_State3_Prelaunch = (43.679,43.113,43.429,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83 9,43.069,42.487) B5H_Rad_State3_Postlaunch = $(50.0, \overline{50}.0, \overline{50}.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.$ B5H Rad State3 Current = (43.679,43.113,43.429,42.911,43.374,42.978,43.272,42.897,43.283,42.604,43.140,42.467,43.155,42.83 9,43.069,42.487) B7H_Rad_State1_Prelaunch = (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.95 3,12.035,10.990) B7H Rad State1 Postlaunch = $(10.0, 1\overline{0}.0, \overline{1}0.0, 10\overline{.0}, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)$ B7H Rad State1 Current = (12.224,11.010,12.122,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95 3,12.035,10.990) B7H Rad State2 Prelaunch = (12.661,11.945,12.529,11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80 1,12.390,11.835) B7H Rad State2 Postlaunch = (10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0)B7H Rad State2 Current = (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.80 1,12.390,11.835) B7H Rad State3 Prelaunch = (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75 4,24.425,22.825B7H Rad State3 Postlaunch = (30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, B7H Rad State3 Current = (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75 4,24.425,22.825) B8H Rad State1 Prelaunch = (99.913,88.876,102.090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8H_Rad_State1_Postlaunch $(110.0,\overline{1}10.\overline{0},110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110$ 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0,B8H_Rad_State1_Current (99.913,88.876,102.090,89.352,103.174,89.855,103.613,90.034,103.929,91.642,104.850,90.456,104.540 ,103.097,90.113,102.637,90.968,101.805,89.732) B8H Rad State2 Prelaunch = (93.948,84.423,96.089,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8H_Rad_State2_Postlaunch = $(110.0,\overline{1}10.\overline{0},110.0,\overline{1}10.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,110.0,$ 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0, 110.0,B8H Rad State2 Current = (93.948,84.423,96.089,84.763,96.898,85.256,97.194,85.395,97.565,87.087,98.395,86.116,97.894,86.73 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8H Rad State3 Prelaunch =

 $(182.44\overline{0}, 16\overline{3}.589, 1\overline{8}6.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 192.365, 165.990, 191.352, 165.694, 193.326, 164.103, 194.511, 164.837, 193.731, 165.855, 193.256, 165.002, 193.115, 165.292, 190.031, 164.790, 189.484, 166.400, 187.450, 164.442)$

B8H_Rad_State3_Postlaunch = $(220.0,\overline{2}20.\overline{0},220.0,\overline{2}20.0,200)$ 220.0,B8H_Rad_State3_Current = (182.440, 163.589, 186.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) END GROUP = LAMP RADIANCE HIGH END \overline{GROUP} = LAMP $\overline{RADIANCE}$ GROUP = LAMP REFERENCELmp Rtemp PreLaunch = (+25.76, +25.76, +25.80, -168.6, +25.09, +25.50, +25.41, +28.98,+28.98,+24.45,+27.35,+24.45,+23.81,+28.65) Lmp Rtemp Postlaunch = (+25.0, +25.00, +25.00, -168.6, +25.00, +25.00, +25.00, +25.00, +25.00, +25.00, +25.00, +25.00, +25.00, +25.00) Lmp Rtemp Current = (+25.76, +25.76, +25.80, -168.6, +25.09, +25.50, +25.41, +28.98,+28.98,+24.45,+27.35,+24.45,+23.81,+28.65) END GROUP = LAMP REFERENCE GROUP = REFLECTIVE IC COEFFSGROUP = REFLECT_IC_COEFFS_LOW $0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$ $0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) $0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$ $0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$

	B2L_Coefficients_Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	.0,
0.0	0.0, 0.0, 0.0, 0.0, 0.0)	0
0.0	0.0, 0.0, 0.0, 0.0, 0.0)	Ο,
0.0	B3L_Coefficients_Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0 0	B3L_Coefficients_Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	B3L_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.0	0.0, 0.0, 0.0, 0.0, 0.0) B3L Coefficients Detector5 = $(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,$	ο.
0.0		• /
0.0	B3L_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0 0	B3L_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	B3L Coefficients Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	0.0, 0.0, 0.0, 0.0, 0.0) B3L Coefficients Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.0	$0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	0
0.0		,
0.0	$B3L_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$.0,
0 0	B3L_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	.0,
0.0	B3L_Coefficients_Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	.0,
0.0	0.0, 0.0, 0.0, 0.0, 0.0) B3L Coefficients Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	.0,
0.0	$0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	0
0.0	$0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0)$.0,
0.0	B3L_Coefficients_Detector16 = $(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,$.0,
0 0	B4L_Coefficients_Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	B4L_Coefficients_Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	0.0, 0.0, 0.0, 0.0, 0.0) B4L Coefficients Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.0	$0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$, 0
0.0	0.0, 0.0, 0.0, 0.0, 0.0)	Ο,
0.0	B4L_Coefficients_Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0 0	B4L_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
	B4L_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	0.0, 0.0, 0.0, 0.0, 0.0) B4L Coefficients Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.0	$0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0$ B4L Coefficients Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	0
0.0		~,
0.0	$B4L_COEFFICIENTS_DetectorI0 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$.0,
0.0	B4L Coefficients Detector11 = $(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,$.0,
0 0	B4L Coefficients Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	.0,
0.0	B4L_Coefficients_Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	.0,
0.0	0.0, 0.0, 0.0, 0.0, 0.0) B4L Coefficients Detector $14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$.0.
0.0		,
0.0	$\begin{array}{c} B4L Coefficients Detectoris = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$.0,
0.0	B4L Coefficients Detector16 = $(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,$.0,
0.0	B5L Coefficients Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	Ο,
0.0	B5L_Coefficients_Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	$0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0)$ B5L Coefficients Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο.
0.0		- , 0
0.0	$\begin{array}{c} \text{DSL}_\text{COEILICIENCS}_\text{DELeccor4} = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	υ,
0.0	B5L Coefficients Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0 0	B5L_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	B5L_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0.0	0.0, 0.0, 0.0, 0.0, 0.0)	

	B5L_Coefficients_Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B5L Coefficients Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	, 0.0, 0.0, 0.0, 0.0)	
0.0	0.0, 0.0, 0.0, 0.0, 0.0)	, ,
0.0	B5L_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0 0	B5L Coefficients Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	B5L Coefficients Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B5L_Coefficients_Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B5L Coefficients Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.).
0.0	$(0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	'n
0.0	, 0.0, 0.0, 0.0, 0.0)	<i>'</i>
0.0	B/L_Coefficients_DetectorI = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.0	B7L Coefficients Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0 0	B7L Coefficients Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.0	B7L Coefficients Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	B7L_Coefficients_Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7L Coefficients Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7L Coefficients Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	_
0.0	, 0.0, 0.0, 0.0, 0.0)	
0.0	$\begin{array}{c} 0.0, 0.0, 0.0, 0.0, 0.0 \end{array}$	
0.0	B/L_COEFFICIENTS_Detectory = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.0	B7L_Coefficients_Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	B7L Coefficients Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0 0	B7L_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	B7L Coefficients Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7L_Coefficients_Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7L Coefficients Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) BZL Coefficients Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	٦.
0.0		· ,
0.0	$\begin{array}{c} \text{BSL COEFFICIENTS Detector} = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	
0.0	B8L_Coefficients_Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.0	B8L Coefficients Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0 0	B8L_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.0	$\begin{array}{l} \text{B8L Coefficients Detector5} = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.$	
0.0	B8L_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B8L Coefficients Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B&L Coefficients Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.0	(0.0, 0.0, 0.0, 0.0, 0.0)	
0.0	$\begin{array}{c} \text{Ball Coefficients Detectory} = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	
0.0	B8L_Coefficients_Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	B8L_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0 (B8L Coefficients Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	$B8L_{Coefficients_Detector13} = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$),
0.0	B8L Coefficients Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B8L_Coefficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.),
0.0	$, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	

	B8L_Coefficients_Detector16	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) B&L Coefficients Detector17	- ((0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0	$0, 0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0$	- (0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector18	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector19	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) B&L Coefficients Detector20	- ((0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0	$0, 0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0$	- (0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector21	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector22	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) B&L Coefficients Detector23	= ((0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	- (, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector24	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
~	B8L_Coefficients_Detector25	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L Coefficients Detector26	= ((0.0	, 0.0,	0.0	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	$0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0$,	· · ·											
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	= (0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector28	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0.	B8L_Coefficients_Detector29	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	$.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	- ((0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	- (0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L Coefficients Detector31	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B8L_Coefficients_Detector32	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) END GROUP = REFLECT IC COEFFS	LOW	J											
	GROUP = REFLECT_IC_COEFFS_HIG	Ĥ,												
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
~	B1H_Coefficients_Detector2	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H Coefficients Detector3	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	$.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	_ (0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H_Coefficients_Detector5	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H_Coefficients_Detector6	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) B1H Coefficients Detector7	= (0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	,												
0	B1H_Coefficients_Detector8	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
	B1H_Coefficients_Detector9	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H Coefficients Detector10	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	$.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$,		0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	= (0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H_Coefficients_Detector12	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H_Coefficients_Detector13	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) BlH Coefficients Detector14	= ((0.0	. 0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.
0	0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	- (, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B1H_Coefficients_Detector15	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
	B1H_Coefficients_Detector16	= ((0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) B2H Coefficients Detector1	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	$0, 0.\overline{0}, 0.0, 0.0, \overline{0}, 0, 0.0$,	0 0	0 0	0 0	0 0	0 0	0.0	0.0	0 0	0 0	0 0		0.0
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0)	= (υ.υ,	υ.υ,	υ.υ,	υ.υ,	υ.υ,	υ.υ,	0.0,	υ.υ,	υ.υ,	υ.υ,	υ.υ,	υ.υ,
0	B2H_Coefficients_Detector3	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	B2H_Coefficients_Detector4	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0	.0, 0.0, 0.0, 0.0, 0.0, 0.0) B2H Coefficients Detectors	= (0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0	0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)		,	,	5.0,	5.0,	,	5.0,	,	,	,	,	,	,
0	B2H_Coefficients_Detector6	= (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
<u> </u>	.,,,,,,													

	B2H_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B2H Coefficients Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	
0.		·
Ο.	0, 0.0, 0.0, 0.0, 0.0, 0.0)	'
ο.	B2H Coefficients Detector10 = $(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,$	Ο,
	B2H Coefficients Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	Ο,
0.	B2H_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B2H Coefficients Detector $13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	Ο.
0.	0, 0.0, 0.0, 0.0, 0.0)	~ ,
Ο.	0, 0.0, 0.0, 0.0, 0.0, 0.0)	υ,
ο.	B2H_Coefficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0	B2H_Coefficients_Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
•••	B3H Coefficients Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B3H Coefficients Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	$0, 0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0$ B3H Coefficients Detector3 = (00000000000000000000000000000000000	
0.	$\begin{array}{c} 0, 0.0, 0.0, 0.0, 0.0 \end{array}$	'
Ο.	$B3H_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	'
ο.	B3H_Coefficients_Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	'
0	B3H_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	B3H_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B3H Coefficients Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	$0, 0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0)$ B3H Coefficients Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	
0.	0, 0.0, 0.0, 0.0, 0.0)	, ,
Ο.	0, 0.0, 0.0, 0.0, 0.0, 0.0)	υ,
ο.	B3H_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
0	B3H_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	Ο,
	B3H Coefficients Detector 13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	Ο,
0.	B3H_Coefficients_Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B3H Coefficients Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.	$0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$, 0
Ο.	0, 0.0, 0.0, 0.0, 0.0)	Ο,
ο.	$B4H_Coefficients_Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0$	'
ο.	B4H Coefficients Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	'
0	B4H_Coefficients_Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	B4H_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B4H Coefficients Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
0.	$0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$ B4H Coefficients Detector6 = (00000000000000000000000000000000000	
0.	0, 0.0, 0.0, 0.0, 0.0)	'
Ο.	0, 0.0, 0.0, 0.0, 0.0, 0.0)	'
ο.	B4H_Coefficients_Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	'
0	B4H_Coefficients_Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	,
•••	B4H Coefficients Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0	Ο,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B4H_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο,
0.	0, 0.0, 0.0, 0.0, 0.0, 0.0) B4H Coefficients Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	ο.
0.	$0, 0.\overline{0}, 0.0, 0.0, \overline{0.0}, 0.0)$ B4H Coefficients Detector 13 = (00000000000000000000000000000000000	, 0
0.	0, 0.0, 0.0, 0.0, 0.0)	~ '
Ο.	B4H_COELLICIENTS_DETECTOTI4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.	υ,

	B4H Coefficients Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0)
0 0	B4H Coefficients Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0, B5H Coefficients Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	$, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$
0.0	, 0.0, 0.0, 0.0, 0.0)
0.0	B5H Coefficients Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
	B5H Coefficients Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B5H Coefficients Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	$, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$
0.0	, 0.0, 0.0, 0.0, 0.0)
0.0	B5H_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B5H_Coefficients_Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0, B5H_Coefficients_Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B5H Coefficients Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0)
0.0	B5H_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B5H Coefficients Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0, B5H_Coefficients_Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B5H Coefficients Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	
0.0	BSH_COEfficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B5H_Coefficients_Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	B7H Coefficients Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7H Coefficients Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	$, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$
0.0	, 0.0, 0.0, 0.0, 0.0)
0.0	B7H_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B7H_Coefficients_Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0, B7H_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7H Coefficients Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0)
0.0	B/H_Coefficients_Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B7H_Coefficients_Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	B7H Coefficients Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7H Coefficients Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	$, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$
0.0	(0.0, 0.0, 0.0, 0.0, 0.0)
0.0	B7H Coefficients Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B7H Coefficients Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7H_Coefficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B7H Coefficients Detector16 - (00000000000000000000000000000000000
0.0	
0.0	B8H_Coefficients_Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B8H_Coefficients_Detector2 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0, B8H_Coefficients_Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0, 0.0) B8H Coefficients Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	, 0.0, 0.0, 0.0, 0.0)
0.0	BBH_COULLICIENCS_DETECTORS = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0 0	B8H_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.
0.0	

B8H_Coefficients_Detector7	= (0.0),	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector8	= (0.0),	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
$0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	- (0 0	h	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	- (0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector10 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector11	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector12	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0) B8H Coefficients Detector13	=	(0.	0.	0.0.	0.0.	0.0.	0.0	. 0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.
$0.0, \overline{0.0}, 0.0, 0.0, \overline{0.0}, 0.0)$		(0	· · · ,											
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector15	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector16	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H Coefficients Detector17	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0) B&H Coefficients Detector18	=	(0	0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.	0.0.
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)		(0.	,	0.0,	0.0,	0.0,	0.0,	,,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_COefficients_Detectoris 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector20	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector21	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0) B8H Coefficients Detector22	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
$0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	_	()	0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0	0 0
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	-	(0.	,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector24 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector25	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector26	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0) B8H Coefficients Detector27	=	(0.	.0,	0.0,	0.0,	0.0,	0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
$0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$							0 0	0 0			0 0			
0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	-	(0.	. 0 ,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector29 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector30	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
B8H_Coefficients_Detector31	=	(0.	.0,	0.0,	0.0,	0.0,	0.0,	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0) B8H Coefficients Detector32	=	(0.	.0,	0.0,	0.0,	0.0,	0.0	, 0.0,	0.0,	0.0,	0.0,	0.0,	0.0,	0.0,
$0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0)$	υт	сп	,	,	,	,	,		,		,	,	,	,
END_GROUP = REFLECT_IC_COEFFS END_GROUP = REFLECTIVE_IC_COEFF	'S	σп												
GROUP = B6_VIEW_COEFFS B6 View Coefficients Detector	1 =													
(0.2055,0.1770,0.0220,0.0220,0.	006	6,0.	.0,	0.0,0	.0,0.	0,0.0	,0.0,	,0.0,0	.7088	62512	,+1.0	,+0.9	86347	162)
B6_View_Coefficients_Detector (0.2120,0.1775,0.0256,0.0256,0.	007	7,0.	.0,	0.0,0	.0,0.	0,0.0	,0.0,	,0.0,0	.7112	34307	,+1.0	,+1.0	00250	279)
B6_View_Coefficients_Detector	3 =	5 0	0	0 0 0		0 0 0	0 0	0 0 0	7091	57515	±1 0	±0 9	88932	3921
B6_View_Coefficients_Detector	4 =	5,0.	,	0.0,0	,	0,0.0	,0.0,	, 0 . 0 , 0	. / 0 / 1		, 11.0	,10.5	00552	.552)
(0.2070,0.1805,0.0253,0.0253,0. B6 View Coefficients Detector	007 5 =	6,0.	.0,	0.0,0	0.0,0.	0,0.0	,0.0,	,0.0,0	.7113	78831	,+1.0	,+0.9	98771	.185)
(0.1875, 0.1810, 0.0242, 0.0242, 0.	007	2,0.	.0,	0.0,0	0.0,0.	0,0.0	,0.0,	,0.0,0	.7101	84278	,+1.0	,+0.9	83917	41)
(0.2075, 0.1815, 0.0242, 0.0242, 0.	007	2,0.	.0,	0.0,0	.0,0.	0,0.0	,0.0,	,0.0,0	.7101	84278	,+1.0	,+0.9	95997	411)
B6_View_Coefficients_Detector (0.1955,0.1785,0.0232,0.0232,0.	7 = 006	9,0.	.0,	0.0,0	.0,0.	0,0.0	,0.0,	,0.0,0	.7105	31517	,+1.0	,+0.9	85386	12)
B6_View_Coefficients_Detector	8 =	o o	· · · ,	0 0 0		0 0 0	,	0 0 0	7001	44426	, 1 0	,	07100	
[0.2230, 0.1015, 0.0226, 0.0	006	ο,υ.	. ∪,	0.0,0	,	0,0.0	,0.0,	, , 0	. /061	.44426	,+1.0	,+0.9	21105	1057)
GROUP = B6_TEMP_MODEL_COEFFS B6_Temp_Model_Parm = (+1_0178	.+0	.0.4	+0	0,+0	0,+0	0,+0	0)							
END_GROUP = B6_TEMP_MODEL_COEFF	'S	- / '		.,	.,	.,	• ,							
GROUP = THERMISTOR_COEFFS Black_Body_Isolated Temp = (1	6.7	7800	00,	0.092	912,0	.0001	1322,	,0,0,0)					
Black Body Control Temp = (51 Cold FP Control Temp - (110 3	.72	4000),- -0	0.163	68,0.	00007	1646,	,0,0,0)					
Cold_FP_Monitor_Temp = (109.7	185	00,-	-0.	10177	,0,0,	0,0)								
$Cal_Shutter_Flag_Temp = (37.2)$	3,-	0.16	587	8,3.8	161E-	05,0.	0,0.0	0,0.0)						

Backup_Shutter_Flag_Temp = (37.230000,-0.16878,0.000038161,0,0,0) Baffle_Heater_Temp = (-2.999300,0.093187,0.00026150,0,0,0) Silicon_FP_Array_Temp = (5.139200,0.086259,0.00020767,0,0,0) Primary_Mirror_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Secondary Mirror Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Scan Line Corrector Temp = (109.650000,-2.3891,0.029481,-1.9470E-04,6.2209E-07,-7.5546E-10) Baffle3_Tube_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Baffle2_Support Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Balllez_support_lemp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Cal_Lamp_Housing_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Cal_Shutter_Hub_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Ambient_Preamp_HighCh_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Ambient_Preamp_LowCh_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Postamp_Temp_B4 = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Cold Preamp B7 Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Pan_Band_Postamp_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Telescope Housing_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Primary_Mirror_Mask_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Secondary_Mirror_Mask_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Telescope_Baseplate_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Mem_Heat_Sink_Power_Supply1_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Mem_Heat_Sink_Power_Supply2_Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10)

Mux1_Power_Supply_Temp = (109.484000,-2.42279,0.0286100,-1.9000E-04,6.1400E-07,-7.7500E-10) Mux1_Electronics_Temp = (109.484000,-2.42279,0.0286100,-1.9000E-04,6.1400E-07,-7.7500E-10) END_GROUP = THERMISTOR_COEFFS GROUP = LAMP_CURRENTS

Tec_Lamp_i1 = (95.449,-0.041194) Tec_Lamp_i2 = (95.449,-0.041194)

END_GROUP = LAMP_CURRENTS

 $GRO\overline{U}P = FILL_PAT\overline{T}ERNS$

 $Band_Fill_Pattern = (0, 255)$ END GROUP = FILL PATTERNS

END

References

Please see <u>http://landsat.usgs.gov/resources/acronyms.php</u> for a list of acronyms.

A useful ODL document is the Jet Propulsion Laboratory (JPL), California Institute of Technology's Planetary Data System Standards Reference, Version 3.2, Chapter 12. Object Description Language Specification and Usage, July 24, 1995. This document is online at <u>http://pds.jpl.nasa.gov</u>.