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ABSTRACT

The purpose of this investigation is to determine the in-plane thermal stresses for a
symmetrically laminated, 50"x 12"xO.19"composite plate with temperature dependent
material properties. For this study only in-plane stresses are investigated. The in-plane
equations of motion are solved exactly using a stress function, and the resulting compati-
bility equation is solved approximately using the Galerkin method. This investigation also
serves as proof of concept for the variational method. This method produces accurate
results while being less rigorous in a computational sense than the high degree of free-
dom finite element model required to solve the same problem. Variations with lamina ori-
entation and multiple layered laminates are investigated. Results are given in terms of the
in-plane force resultant. The baseline case for this study was aluminum and the in-plane
force resultant at the center of the plate was calculated to be 60.251 lb/in. The exact solu-
tion for the in-plane force resultant at the center of the plate is 59.667 lb/in, a difference of
less than 1 percent. Based on these results additional investigations were accomplished
for composite plates. The results from this study will be used as parametric data by
NASA-Dryden in verifying finite-element codes and will aid in experimental analysis of
thermal loading on composite plates. Furthermore, this study should serve as a reference
to an investigation that considers thermally stressed laminates with bending and exten-
sional coupling.
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1. INTRODUCTION

1.1 MOTIVATION

Hypersonic atmospheric vehicle research is again becoming an area of great interest.
The push to develop a vehicle which can take-off, land, and be operated in a fashion simi-
lar to current aircraft is one of the interests in this area. Current concepts incorporate com-
posite materials (possibly ceramic and/or metal matrix) as one of the principal structural
components. Studies at NASA-Dryden are being conducted to verify the capabilities of
composite materials in such an application. The results of this study and others in this area
will be used by NASA-Dryden as an analytical tool to verify finite element methods for
heated structures and to aid in experimental investigations.

In addition to the mechanical stresses present in composite materials, the thermal
stresses must also be investigated, especially for hypersonic flight applications. For com-
posite plates, coupling of the extensional and bending deformations is usually present.
However, for this study only extensional deformations are investigated. The purpose of
this study is to develop a mathematical model for the in-plane thermal stresses of a sym-
metrically laminated, rectangular, composite plate with stress free boundary conditions.

For the present study, the classical Kirchoff thin-plate theory is used and the in-plane
equation of motion is expressed in terms of a stress function. The resulting partial differ-
ential equation is solved using Galerkin's method. The temperature distribution for this
study is symmetrical and the relation of the material properties to temperature is assumed
to be linear.

1.2 THEORETICAL BACKGROUND

1.2.1 Stress-Strain Relations for Composite Plates

Laminated, fibrous composite plates are typically made of stacked layers of fibers,
each layer having all its fibers aligned in the same direction. However, the alignment most
often varies with each layer. In order to characterize the stiffness of the resulting plate, it
is important to be able to write the stress-strain relation for each layer. In particular the
stress-strain relationship must be known with respect to an axis system which is not neces-
sarily aligned in the same direction as any of the fibers in any given layer.

The generalized Hooke's Law relating stresses to strains can be written as

i  = C ijcj  i,j = 1...6 (EQ 1)

where Cij is the stiffness matrix and the a i are the stress components and, ej are the strain
components. The stiffness matrix has 36 constants, however, due to symmetry the stiff-
ness matrix is populated by 21 independent constants (REF 2). Thus, in simplest terms the
stress-strain relations for any linear elastic material is given by the general expression



1 C11 C12 C13 C14 C15 C16 El
02 C12 C C3 C2 4 C25 C26 e2

03 C13 C23 C33 C34 C35 C36  3 (EQ 2)

T23 C 14 C24 C34 C44 C45 C46 Y2 3

C31 C15 C25 C35 C45 C55 C56 '31
112 _C16 C26 C36 q46 C56 C66 Y'12

The relations in (EQ 2) are referred to as characterizing anisotropic materials since
there are no planes of symmetry for the material properties. An example of this is a thick
laminated plate (REF 1).

If there are three orthogonal (mutually perpendicular) planes of symmetry, such as for
a single layer of fibers, the material is said to be orthotropic. The stress-strain relation for
an orthotropic material is similar to (EQ 2), however, now there are only 9 independent
constants instead of 21. The remaining constants are zero. The nonzero constants are C11,
C12, C13 , C22, C23, C33, C44, C55, C66. Furthermore, in work done by Lempriere it was
shown that the stiffness matrix must be positive-definite (Cij>0 for CJ * 0). This condi-
tion is a consequence of the requirement that the sum of the work done by all stress com-
ponents must be positive in order to avoid the creation of energy (REF 2).

1.2.2 Two Dimensional State of Stress

Two dimensional stress or plane stress is an area of great interest in many different
fields. One concept of plane stress is a flat plate. Flat plates are used as a model in a vari-
ety of analytical approximations for otherwise untractable problems. In many problems,
choosing the z-direction to be normal to the plate surface, the stresses a, z , and tzx are
small with respect to the other stresses. Thus, the stress-strain relationship for an orthotro-
pic material in a state of plane stress is:

CF [C11 C12 0 1exl
ay=C 12 C22 0 Cy (EQ 3)

J L 0 0 C6Y
This is the relationship relevant to a layer of fibers in a composite laminate, the fibers
being aligned in the x-direction (REF 1).

Instead of considering the fibers to be oriented along the (x,y) axis system, let us con-
sider the principal axes of a given lamina, with the 1-direction parallel to the fibers and the
2-direction perpendicular to the fibers. In doing this the C's in (EQ 3) are replaced with
Q's and are now referred to as reduced stiffnesses. Furthermore, x and y are replaced with
one and two respectively. In terms of engineering constants the reduced stiffnesses are:
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El E21  E12
Q1l1 -v12v2-2 1 I -- VI = 12_12V21 -v21V12

- _ Q 6 = G 1 2

Q2 1 -1 2 v21 (EQ 4)

Where E1 is the modulus in the 1-direction, v12 is the Poisson's ratio for contraction in the
2-direction due to extension in the I-direction, and G12 is the shear modulus relating shear
stress in the 2-direction to shear strain in the 1-direction.

The preceding stress-strain relations are the basis for the stiffness and stress analysis
of an individual lamina subjected to forces in its own plane. These relations are essential
in the analysis of laminates (REF 2).

1.2.3 Stress-Strain Relations for a Lamina of Arbitrary Orientation

In most problems it is necessary t(, solve for the stress-strain relationship in a direction
other than the principal material coordinates. An example is a laminated plate consisting
of lamina oriented at different angles relative to the plate axis system. The stress-strain
relationship for a lamina in the principal, (1,2), system transformed to a global (x,y) sys-
tem is given by:

FlX 22i os 20 sir 20 -2sin~cosO a1l
Oy = sin 20 cos20 2sin0cos0 02 (EQ 5)

sin0cos -sin0cos0 cos 20 - sin 2 0 12

where 0 is the angle from the x-axis to the 1-axis (REF 2). In some tr,:atments of the sub-
ject the quantity exy=l/2yxy is introduced and is termed the tensor expression for shear
strain (REF 1). In compact form the stress-strain relationship for a lamina oriented at any
angle is:

= dk {£xY (EQ 6)

where Qiis the transformed reduced stiffnesses instead of the reduced stiffnesses Qij, and
k is the k layer of a multilayered laminate. The equations for Qj are given in References
1, and 2. Also note that the transformed reduced stiffness matrix has terms in all nine
positions instead of the zeros present in the stiffness matrix

1.2.4 Mechanical Properties of Laminated Composite Plates

In the preceding section the stress-strain relations for a lamina of an orthotropic mate-
rial under plane stress oriented at any angle were developed. These relations are useful
when dealing with laminated plates because of the arbitrary orientation of the lamina.
Equation 6 can be thought of as the stress-strain relations of the kth layer of a multilayered

3



laminate. The next step is to develop the stress and strain variations through the thickness
of a laminate.

1.2.5 Strains for a Laminated Plate

The laminate is presumed to consist of perfectly bonded lamina which are not allowed
to slip relative to another. Furthermore, the bonds are presumed to be very thin as well as
non-shear deformable. Additional assumptions of the behavior of the laminate are given
by the Kirchhoff theory of plates (REF 2).

The development of the strains for a laminated plate are given in Reference 2. Ulti-
mately, the laminate strains are reduced to Ex, cy, and xy, (i-e-xz,--yz,=-z =0 ) by virtue of
the Kirchhoff-Love hypothesis. Using the derived displacements u and v for the x and y
directions respectively, the strains in matrix form are

au0  WOaS

u0 a axw CO
Ex-V + XL_[e]w - WO Oj +z 1

th a x a [E ] [K ] ( Q 7

Here cox, eo 0, are the "midplane strains", icx and Kc are the "curvatures" and Kxy is
the "twist" (IUEF 1). Now applying (EQ 6) and (EQ 7) one can determine the stresses in
the kth layer in terms of the midplane strains, curvawres, and twist using the relation:

- ~ OKC 1

0+ z ic (EQ 8)

YX-k L X -xyj

In this problem only in-plane stresses are investigated so the curvatures and twists are
neglected.

1.2.6 Resultant Laminate Forces and Moments

Typically a designer deals with forces and moments instead of stresses. The resultant
in-plane forces are calculated by integrating the stresses over the thickness of the plate.
The common load parameters for a plate are the edge force intensities, N., N. and NxY in
units (lb/in), which are obtained using the following equation:

4



h I

Nzk fjYo)4 Y f 7 dz (EQ 9)

Y XY L XY 1k

Here N is the total number of layers, h is the total plate thickness and k is the kth layer.
Since the transformed reduced stiffness matrix in (EQ 8) is constant for each lamina, upon
substitution into (EQ 9), it can be pulled outside the integral, however, it must remain
within the summation of force resultants for each layer. In addition, the middle surface
strains are not dependent on z so they can be removed from under the integral and summa-
tion signs (REF 2). If one defines a matrix

N

[A] = I [Ql ktk (EQ 10)
k=l

then the in-plane loads for a laminated plate can be expressed as

[N] =[A][-] (EQ1)

where [A] is referred to as the "extensional stiffness" matrix. Since only in-plane force
resultants are evaluated: [sO] = [e] (REF 2).

1.2.7 Stress-Strain Temperature Relations

As stated in the introduction, the purpose of this project was to determine the thermal
stresses in a laminated composite plate. The equations developed to this point include
only the mechanical stresses and do not account for the thermal stresses. Thermal stresses
arise from the expansion and contraction of fibers in a solid material. "For the solid to
remain continuous, a system of thermal strains and corresponding thermal stresses may be
induced, depending on the characteristics of the solid and its temperature distribution"
(REF 4).

For plane stress of an orthotropic material in principal material coordinates the stress-
strain-temperature relation in terms of the stiffness matrix is given by: (REF 2)

[a1  [l e-a 1AT

[2 = [Q] Le2 -a 2AT 
(EQ 12)

Here a is the coefficient of thermal expansion in the principal material directions and AT
is the relative changc ir. temperature from a datum temperature. For an arbitrary orienta-
tion the coordinate transformation accomplished in (EQ 5) must be performed. After the
transformation to laminate coordinates a thermal shear term, cxy, is present where only the
extensional strains were present before:

5



CFX EX- CIAT
= Ek -aAT (EQ 13)

k [- XY]AT k

Substituting (EQ 13) into (EQ 9) and defining the following thermal load vectorNii T cc
N T ikY (EQ 14)

= f] k (X A Tdz Q4

one can derive the following in-plane resultant forces:

[1 l X
N = [A] C - NT (EQ 15)NVy = x y NXy

The thermal forces, NT, are true thermal forces only when the total strains and curvatures
are zero (REF 2).

Rearranging (EQ 15) to solve for the strains results in the following contracted matrix
equation

[E Y= [a] [N] XY+[a] [N T] XY(EQ 16)

Here [a) is the inverse of the extensional stiffness matrix [A].

This is a relatively short description of the classical laminated plate theory required for
the present study.

6



~SOLUION

The purpose of this section to take a step by step approach to the solution, for in-plane
loads, of a thermally stressed composite plate.

2.1 FORCE EQUILIBRIUM EQUATIONS

"To obtain the exact stress field in any given solid under the action of external loads,
the equations of equilibrium, compatibility equations, and the boundary conditions must
all be satisfied" (REF 4). Therefore, in developing the equation for thermal stresses it is
wise to start with the equilibrium equations.

The force equilibrium equations for a 2-dimensional state of plane stress with zero
body forces are:

aNx aNxax y=

aNy
DNxy N Y= 0_j +Y(Q17)

where Nx, NY, and Nxy, are in-plane loads with units of force/length.

The "Airy" stress function F defined such that:

[NxLay2' vx' N =xPyj (EQ 18)

identically satisfies the equilibrium equations.

2.2 COMPATIBILITY EQUATION

The compatibility equation is an equation that gives a relationship between the deriva-
tives of the strain components (REF 5). The compatibility equation for a two dimensional
strain field can be derived from the strain displacement relations given in section 1.2.5.
Differentiate the third equation in (EQ 7) with respect to x and y to obtain

- + (EQ 19)
jxay ay2aX ax 2y

Substituting the first two equations from (EQ 7) into (EQ 19) one can obtain the compati-
bility equation for a two dimensional strain field:

xy - + x (EQ 20)
aXay ay2  DX2
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Substitution of (EQ 16 &18) into (EQ 20) results in the partial differential equation form
of the compatibility equation:

2( 2F -2 _ 2F 2( 2F 3F
(y any + at-x- a6- + 2 a2- + a22a2 - a26-

(EQ 21)

a2  _2F a2F 2
ax~ Y 5__ a66-X D a t2' a6U2

X2 (a 12NT + a22N +a26NT ) + + (a,6Nx +a26Ny+a66Nx,)

2.3 VARIATIONAL METHOD

The phrase 'variational methods' refers to methods that make use of variational princi-
ples to determine approximate solutions to partial differential equations. In this investiga-
tion, a variational formulation, which will be recognized as the principle of minimum
complementary potential energy, is used to approximate a solution to the compatibility
equation described in section 2.2.

2.3.1 Variational Formulation

The first step in the variatonal formulation is to multiply (EQ 20) with all the terms on
one side of the equality with the variation 8F and integrate over the domain:

JF (ex, y + ey, zX-Yxy XY)da = 0 (EQ22)
A

where it is understood that all the strains are expressed in terms of the stress function F

Equation 22 can be written in an alternative form by applying the Green-Gauss theo-
rem twice to trade the differentiation between F and 8F so they both have the same order
derivatives (REF 5). In applying the Green-Gauss theorem the first step is to rewrite (EQ
22) in the form:

fV.AdA =fh*AdS (EQ 23)
A S

where

1 1A=8F (E~y~x-2 y ,y) 1 + 8F ( 'x, y- 2,xy, J)

h = nxt + n) (EQ 24)

Applying the Green-Gauss theorem twice results in

- - -. u = mnmnn nnnmum inmnuunm nu m unmm nl ~ MI m~m



f (SF Y + BFyy - 8Fxyyy ) dA = 0 (EQ 25)
A

Expanding (EQ 25) for the strains results in the equation:

f 8Fy (a1 1 F,yy + F a F + alNT + a12Ny+ a16Ny)

A

-4- SF (a12 Fy + a22F - a26F, + a12N + a22N + a26NT)

-+- F,,y(al 6F,yy+ a2 6 .- 66 FXY T 2 6  a6 6NT ) A 0 (EQ 26)

2.3.2 Galerkin's Method

The integral equation, (EQ 25), is the variational equivalent of the in-plane compati-
bility equation, (EQ 20), and essentially represents a Galerkin solution for the partial dif-
ferential equation shown explicitly in (EQ 21).

The first step in the Galerkin method is to approximate the unknown function with a
suitable set of admissible functions. For the present formulation the stress function F is
approximated as:

n
F= XFkljkTl (EQ 27)

where k and T1l are required to satisfy the following three conditions:

a) be continuous, as required by the variational principle being used

b) satisfy the specified essential boundary conditions

c) be linearly independent and complete (REF 5)

For this problem the essential boundary conditions are zero and a series of polynomials
were chosen as the approximating function because polynomials can satisfy arbitrary
boundary conditions, and Fkl are the coordinates or components of the approximation.

The assumed solution in (EQ 27) is in the form of a finite linear combination of unde-
termined parameters. Approximating the continuous function in (EQ 25) by a finite linear
combination of functions introduces some error. Therefore, the solution obtained is an
approximation of the true solution for the equation of motion described in (EQ 25 & 26).

The variation of (EQ 27) is given by

8F = i. SF. i.j (EQ 28)
ijli

4i= 1

9



2.3.3 Matrix Form of the Compatibility Equation

Taking the variation of (EQ 18) it is clear that I 5Nx,5Ny,5Nxy} = I 5Fyy, Fxx,-8Fxy .
Thus, the matrix form of (1EQ 25) is

J{N} T{C}dA = 0 (EQ 29)

A

where {BNT) is the transpose of the matrix in (EQ 18). Substituting (EQ 16) into (EQ 29)
to obtain the matrix equation

f[ { N}T [a] {N} + {SN}T [a] {NTj]dA = 0 (EQ 30)
A

Since (EQ 30) is in matrix form it is necessary to put (EQ 28) into matrix form also.
This is accomplished by using a row vector of length N, where N=(n+l)*(n+l) and n is
the order of the polynomial in (EQ 27) and (EQ 28), and a column vector of length N in
the following fashion

F = I, 11 2 1 ;Tj2,'" 
°

j
,  

...
n ;n 

j
' n '  ;2 ....nT l

'.j = I

x[Foo, Fo, F02, ..., F Fl , , 12 ....F. F20, ...F.1T (EQ 31)

Here the row vector can be denoted by [H] and the column vector by {F). However, since
(EN) is composed of second order derivatives, and it relates directly to ISF), it is neces-
sary to differentiate F in (EQ 31) according to the relation in (EQ 25). Only [H] needs to
be differentiated since IF) does not depend on x and y, therefore

F yy =[H],YY {F}
(EQ 32)

F= [H] {F}

If a matrix, [B], is defined to contain the three row vectors, [H],yr [H],xx, and [H],x,
then [B] would be a 3xN matrix, and (N}=[B]{ F). Similarly {5N)=[B]{BF). From this
relation it is clear that (SN)T={SF)T[B] . If these results for (Niand (SN) are substi-
tuted in (EQ 29) the matrix equation is given by

f({SF}T[B]T[a] [B] {F} + {SF}T[B]T[a] {NT})dA = 0 (EQ33)
A

Since (SF) T is common in both factors of the integrand it can be factored to one side. In
addition, for arbitrary and linearly independent Fij (ij=l,n) it follows that the remaining

10



integrand must be equal to zero. If the thermal terms are brought to the right hand side of
the equation and the stress function component matrix is brought outside the integral
because it is constant then

( [B]T [a]) [B])dA{F} [B] T [a] {NT} )dA -Q 34)
A A

Thus we obtain N linearly independent simultaneous equations for the N unknowns in
(F). Once the coefficients (F) are determined the in-plane force resultants can be deter-
mined at any point within the plate by using the relation (N)=[B]{F}.

2.4 NUMERICAL INTEGRATION

In order to evaluate the [A] ({x)= (b ) problem shown in (EQ 34) it is necessary to inte-
grate the [A] and (b) matrices. The integration could be done explicitly, however, an
alternate method that yields exact results for polynomial functions is Gaussian quadrature.

Most numerical integration schemes are based on predetermined x-values. However,
Gauss observed that if we remove the requirement that the function be evaluated at prede-
termined x-values, then a three term formula will contain six parameters: the three
unknown x-values and the three weights (REF 7). This should correspond to an interpo-
lating polynomial of degree 5. In addition, the tabulated values for the Gaussian quadra-
ture procedure are derived for a symmetric interval of integration from -1 to 1. Clearly,
Gaussian quadrature formulas can only be applied when the function is explicitly known.
Since the integrand in (EQ 34) is approximated by a polynomial it can be calculated at any
point and is readily suited to this method of numerical integration.

For this problem the limits of integration were not from -1 to 1. The [B] matrices are
in terms of and il, with the origin of this axis system placed at the center of the plate.
The limits of integration for this axis system were from -a/2 to a/2, and -b/2 to b/2, where
a and b are the length and width of the plate respectively. Therefore and 1 were set
equal to 2x/a and 2y/a. Now the limits of integration are from -1 to 1 and a factorplaced
in front of the integral accounts for the change of variable effects for dA=dxdy= a, d~dTl.

II



3. TESTING & ANALYSIS

The purpose of this section is to explain how the program to calculate the coefficients
in (EQ 34) was tested and verified. In addition, the dependence of the material properties
on temperature will be discussed.

3.1 PROGRAM VERIFICATION

This phase in any program intensive application is critical because only through care-
ful checking and the use of multiple test procedures can one be sure that the program is
doing what it was designed to do. Typically, a known problem is solved by some method
other than the method used in the program and compared to the results of the program. In
this section, verifications with hand calculations and verification with an exact integration
program will be presented.

3.1.1. Verification With Hand Calculations

The program "Polystress" was checked by hand for a second order polynomial
approximation of the integrand in (EQ 34). For a second order polynomial the [B] matrix
is:

002002,0 0 2C21
[B] 0 0 0 0 0 2 i 2122 (EQ35)

0 000 1 210 2C 4CTIj

Note that [B] is a 3xN where (N=(n+1)2). The transpose of [B] was multiplied by an
assumed inverted extensional stiffness matrix [a]. The resulting matrix was then multi-
plied with [B] and exactly integrated over the interval -I to 1. This matrix was then com-
pared to the results of numerically integrating the same equation and they were identical to
the sixth significant figure. The same procedure was followed for the thermal load vector
on the right hand side of (EQ 34) and again the results were identical to the sixth signifi-
cant figure.

3.1.2 Comoarison with Exact Integration Program

This program was written as a supplement for an exact integration code that would
calculate not only the in-plane resultant forces but also the out-of-plane resultant moments
for a thermally loaded fibrous composite plate. At the present time the code was exactly
integrating the extensional stiffness matrix with no temperature dependent relations
included. Thus, I could compare my results with the exact integration program. Clearly,
the hand calculations and the results from the numerical integration could be used to ver-
ify the exact integration program as well. As it turned out all three methods produced the
same results and thus the numerical and exact integration phases of the respective pro-
grams had been verified.

12



3.2 TEMPERATURE DEPENDENT MATERIAL PROPERTIES

The modulus of elasticity, E, and the coefficient of thermal expansion, a, are not tem-
perature independent. In data given by (REF 8) the modulus of elasticity decreases almost
linearly with increasing temperature and the coefficient of thermal expansion increases
almost linearly with increasing temperature. References 9 and 10 also use this type of lin-
ear relationship for their temperature dependent properties.

In (REF 10) the temperature dependence of the modulus of elasticity is expressed in
the form

El(T) = E'(1-y) = ElE(1-3T) )

E2 (T) = E' (I1 - YF) = E2 ( 1 - T () )
2 T (EQ 36)

where .---y 1 and E0
1 and E0

2 are the values of the moduli of elasticity along the 1 and 2
directions at the reference temperature T.. Here T denotes the temperature excess above
the reference temperature at any point and P denotes the percent change of the modulus of
elasticity over the specified temperature interval (To<T<T 1) Values of y were calculated
for a 25%, and 50% reduction in the modulus of elasticity. These same values were used
for the corresponding increase of the thermal expansion coefficient. For changes of 25%
and 50% the values for y are: 0.0005, and 0.001 respectively, for To=75 and T1=550
degrees Fahrenheit.

Since the variational method allows for a continuous solution, a quadratic curve fit
which very closely matches an experimental temperature distribution obtained from
NASA-Dryden was employed (REF 11). Figure 1 displays the temperature distribution
used for this study which is given by the relation T(x)= dT(x) + 75.0. A one dimensional
curve fit was accomplished due to time constraints and because this is a parametric study
to give baseline theoretical results on very specific problem to be used for a more general
problem at NASA. The curve fit used in the program is from Reference 12.
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FIGURE 1. Computational Temperature Distribution

The materials scheduled for testing were Graphite/Epoxy, Boron/Epoxy, E-Glass/
Epoxy, and Aluminum. Properties for these materials were taken from References 2 and
8. These materials have certain temperature limitations. However, since this was a pre-
liminary parametric study of the trends for a thermally loaded composite plate this limita-
tion was overlooked. The materials selected could have been changed, or the temperature
distribution reduced, but the materials are typical for test cases studied in most applica-
tions.

3.3 CONVERGENCE

In most approximation routines it is necessary to show that the computer code is con-
verging to a single solution, whether or not this is a true solution depends on the method
and comparison with experimental data. For the present study, the solution should con-
verge as the order of the polynomial approximation increases.

For the present study, convergence was verified by taking the square root of the sum of
squares for the in-plane loads at a specified number of points within the plate and sum-
ming them for the entire plate. This process was repeated for different order polynomials.
Since this method is dependent on the number of points, the same number of points was
used for all the test cases: 77 grid points, with 11 in the x-direction and 7 y locations for
each x location. Contour plots for eighth and tenth order approximating polynomials are
shown in Attachment 1. Clearly, the results for the two different order of polynomials are
very close and would appear to support the premise that the solution is converging. How-
ever, additional orders of polynomial approximations were done to verify that conver-
gence had been reached. Using the sum of the square root of the sum of squares, a
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percent difference of 2.5 was calculated for the entire plate for polynomial approximations
of 8 and 10 respectively. The difference between an eighth and tenth order approximation
at the center of the plate, x=25 inches and y=6 inches, is approximately 2%.

Additional convergence test cases were accomplished for hiher order polynomials.
However, the coefficient matrix [A] which is equivalent to [B] [a][B] in (EQ 35)
becomes ill-conditioned upon inversion, thus the accuracy is reduced. The difference
between a tenth and twelfth order approximation was approximately 1.8%, and the differ-
ence between higher order polynomials was slightly worse because the [A] matrix became
too ill-conditioned. A tenth order polynomial approximation was chosen for the test cases
because it was the best trade-off between time and percent convergence.

The results from the contour plots closely matched experimental data from Reference
11 on similar test cases. This analysis has shown the verification of the program
"Polystress". Finally, the program has solved a problem with a known solution quite
accurately, and it can now be applied to problems whose solutions are unknown with some
validity.

3.4 TEST MATRIX

Typically a test matrix is set up prior to the test period for any project. This is to
ensure that the actual testing time is used efficiently. If something peculiar is found while
processing the data additional testing can be accomplished, but usually only after the ini-
tial matrix is completed.

The test matrix for this problem is shown in Table 1. The tests in Table 1 will be per-
formed for a fibrous, laminated, composite plate with dimensions: length= 50 in, width=
12 in, thickness=.19 in. A tenth order polynomial will be used to approximate the solu-
tion, and an eighth order polynomial will be used to verify convergence and input as
required.
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TABLE 1. Test Matrix

Material LaUn # Layers Theta Range

Graphite/Epoxy [(01 1 0.00 ----

Boron/Epoxy [0] 1 0.00 ----

E-Glass/Epoxy [01 1 0.00

Aluminum [0] 1 0.00 ---

Graphite/Epoxy [0] 1 0.0005 0 to 90

Boron/Epoxy [0] 1 0.0005 0 to 90

E-Glass/Epoxy t0] 1 0.0005 0 to 90

Aluminum [0] 1 0.0005 ----

Graphite/Epoxy [+0/-0/+0] 3 0.0005 0 to 90

Boron/Epoxy [+0/-0/+0] 3 0.0005 0 to 90

E-Glass/Epoxy [+O-0/+0] 3 0.0005 0 to 90

E-Glass/Epoxy [+0/-0/+0/-0/+0] 5 0.0005 0 to 90

Graphite/Epoxy [0] 1 0.001 ----

Boron/Epoxy [0] 1 0.001 ----

E-Glass/Epoxy [0] 1 0.001 ----

Aluminum [01 1 0.001 ----

Here y is the factor applied to the modulus of elasticity and the coefficient of thermal
expansion. The cases investigated are all for symmetric laminates since there is no cou-
pling between extensional and bending stiffnesses for this layup.

Two types of symmetric laminates are studied: 1) laminates with (single/multiple) spe-
cially orthotropic layers, and 2) laminates with multiple generally orthotropic layers.
Specially orthotropic implies that the stiffness matrix [Q] and the reduced stiffness matrix
[Q] are identical, (i.e. the principal material coordinates of the lamina is aligned with glo-
bal laminate axis for the plate) (REF 2). Item 2 contains the special classification: regular
symmetric angle-ply laminate. This specification refers to orthotropic lamina, of equal
thicknesses, with opposite signs of the angle of orientation of the principal material axis
relative to the laminate axis system for the problem.
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4. RESULTS & DISCUSSION

The primary purpose of this study is to perform a parametric investigation of the prin-
cipal in-plane force resultants for a symmetrically laminated, 50"x 12"xO.19"cotiposite,
plate for a thermal loading condition. The boundary conditions for the middle surface
stresses for this study are free-free. This condition implies that both the midsurface stress
components normal to the boundary and tangential to the boundary are zero. This is the
conventional stress configuration (REF 6). Four different materials were investigated.

TABLE 2. Material Properties

Property Graphite/Epoxy Boron/Epoxy E-Glass/Epoxy Aluminum

El  30e6 psi 30c6 psi 7.8c6 psi 10.3e6 psi
E2  0.75e6 psi 3.0c6 psi 2.6c6 psi 10.3e6 psi

V12  0.25 0.30 0.25 0.33
G12  1.3c6 psi 1.0e6 psi .375e6 psi Isotropic
a I  -0.21e-6/F' 3.5e-6 /F' 3.5e-6/F' 12.8e-6/FO
(X2  16.0e-6 /FO 11.4c 6/F0  11.4e-6 /FO 12.8e-6 /FO

Properties were taken from ReferenLCes 1,2, and 8.

4.1 COMPARISON OF PRINCIPAL IN-PLANE FORCE RESULTANTS

Variations in lamina orientation angles and number of layers are considered for the
free-free, laminated, composite, plate. The principal, in-plane force resultants for a single-
lamina and a three-layered, regularly symmetric angle ply laminate as a function of orien-
tation angle are shown in Figures 2, and 3 respectively. Principal in-plane force resultant,
is essentially the maximum in-plane force resultant for the plate regardless of whether it is
NX, Ny, Nx. In addition, the positive and negative principal in-plane force resultants
were graphed separately to aid in analysis.
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FIGURE 2. Principal Win-plane force resultant for a single lamina.
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FIGURE 3. Principal (+) in-plane force resultant for a 3-layered laminate.

In both Figures 2 and 3 the magnitude of the principal resultant force is greatest at 0, and

conversely at 180 degrees. This is a result of the one dimensional thermal loading applied
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to the plate. When the lamina is aligned with the load the in-plane stresses are the greatest
because the modulus of elasticity for the lamina is aligned with the load instead of being
at an angle relative to the load.

Furthermore, the relation between the material properties, Table 1, and the relations
expressed in Figure 2 is pronounced. Initially, Boron/Epoxy has a higher force resultant
than any of the other materials because the moduli of elasticity for Boron/Epoxy are as
high or higher than any of the other materials. Also as the orientation angle exceeds
approximately 45 degrees the force resultants for Boron/Epoxy and E-Glass/Epoxy are
nearly identical. This result is due to the same coefficients of thermal expansion being
used for both materials, and the relative decline in importance of E1 and the increasing
importance of E2 as the orientation angle approaches 90 and E2 is aligned in the x-direc-
tion of the laminate. Note the similarity in the values for E2 for both materials. The iso-
tropic case for aluminum was shown on both grapis as a reference for the other values.
Tabular values for this case and the other test cases are in Attachment 2. Similar results to
Figures 2 and 3 are given in Reference 2.

Figure 3 illustrates the same trends as Figure 2, however, the magnitude of the princi-
pal resultant forces is greater at ten degrees than at zero for all the composite materials
except E-Glass/Epoxy. Another interesting observation involves the comparison of the
unidirectional lamina at different orientations in Figure 2 with the angle-ply data in Figure
3. For angles larger than 00 but less than 450, the angle-ply has about a 50 to 60 percent
higher resultant force than does the unidirectional lamina. However, at approximately 40
to 45 degrees and higher, the single lamina has a greater resultant force. Again, E-Glass/
Epoxy exhibits the same trends but on an order of magnitude lower. The trends for higher
loads at 100 than at 00, and the differences between the data for the single ply and the data
for the multi-layer angle ply, are the results of mechanical and thermal interactions
between the layers (REF 2).

The results for Graphite/Epoxy are more dramatic than any of the other cases. This is
because the coefficient of thermal expansion in the 1 principal direction is less than zero
(REF 1). This implies that the expansion in the 2 principal direction is large enough to
cause a contraction in the 1-direction. This reaction produces thermal reactions between
the layers which causes the resultant forces to be larger than normal. As the angle is
increased, the contribution of the x2 term is reduced, and the relatively low value of elas-
tic moduli in the 2-direction causes the rapid decline of the resultant forces.

The relative invariant behavior of E-Glass/Epoxy is a result of the relatively small
change between the elastic moduli in the I and 2 principal material directions. Compared
to the other materials, except of course Aluminum, the difference between El , and E2 , is
order of magnitudes lower. This difference explains the results in Figures 2 and 3.

Figures 4 and 5 illustrate the principal negative force resultants for the same layup as
Figures 2 and 3.
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FIGURE 4. Principal ()in-plane force resultant for a single lamina.

The trends for the data in Figure 4 are the same as those presented for Figure 1.
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The data in Figures 4 and 5 follows the same trends as described earlier for the principal,
positive, force resultant.

4.2 E-GLASS/EPOXY MULTI-LAYER COMPARISON

A comparison of the effect of the number of layers on the principal in-plane force
resultants was accomplished for the free-free, E-Glass/Epoxy, laminated plate. Figures 6,
and 7 show the results for 1, 3, and 5 layer angle ply laminates as a function of lamina ori-
entation angle.

As discussed earlier for the comparison between the single lamina in Figure 2 and the
3-layered laminate in Figure 3, the interlaminar mechanical and thermal interactions
account for the multi-layered laminate having larger in-plane resultant forces than the uni-
directional lamina for orientation angles greater than 00 and less than approximately 450
degrees. For angles greater than 450 the single-layered lamina has higher force resultants.
The interlaminar effects explanation is also valid for Figures 6 and 7. From 00 to approxi-
mately 400 the resultant forces for the 3 and 5 layer laminates are higher than those for the
single layer case. For angles greater than 400, the single-layer forces are greater. Also the
difference between the force resultants for the 3 and 5 layer laminates is much less than
that for the 1 and 3 layer laminates. One would expect the difference for each successive
layer to get smaller and smaller based on these assumptions.

To verify this assumption a test case was ran for a [20/-20/20/-20/20/-20/20] E-Glass/
Epoxy laminate. The principal in-plane force resultants are: 45.129 lb/in and -92.251 lb/in
respectively. The previous results for the E-Glass/Epoxy 1-layer, 3-layer, and 5-layer
laminate are: 39.998 & -85.159, 44.433 & -91.055, and 45.030 & -92.128 lb/in respec-
tively. These results are shown graphically in Figure 8.
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° 40 y.0005
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S20 5 Layer

~10
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FIGURE 6. E-Glass/Epoxy multiple layer comparison (+).
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4.3 EFFECT OF GAMMA ON IN-PLANE FORCE RESULTANTS

Recall that y is the factor applied to the moduli of elasticity and the coefficient of ther-
mal expansion to account for temperature dependency. Figure 9 displays the results for
the investigation of the four different materials as specially orthor-opic single lamina.

The magnitudes of the principal in-plane force resultants increased as y increased.
However, according to Hooke's Law, (EQ 1), the stress is directly related to the moduli of
elasticity. Thus it would seem that the stress should decrease with an increase in y since y
is the temperature degradation factor applied to the moduli of elasticity. But, y is also
applied to the coefficient of thermal expansion, a, which increases with temperature.
Therefore, the effects of (x on the thermal load vector must be great enough to overcome
the effects of y on the moduli of elasticity.

-.--- Graphite/Epoxy
---- Boron/Epoxy

e E-Glass/Epoxyr_180.00 - Aluminum

0
S140.007

120.oo

80.00
S60.00 .. .

- 40.

0 0.00025 0.0005 0.00075 0.001

Gamma

FIGURE 9. Effects of gamma on principal in-plane force resultant.

4.4 CONTOUR PLOTS FOR THE FOUR DIFFERENT MATERIALS

Contour plots for the four different materials investigated during this study are pre-
sented in Attachment 3. The plots shown are the force resultant in the x-direction, Nx, for
zero y, and are presented to give the basic characteristics of each material in a graphical
instead of tabular method. In addition, the contour plot for each material is symmetrical
because the gradient of the temperature distribution used for this study was symmetrical.

The contour plot for Graphite/Epoxy exhibits the largest range of force resultants for
any of the materials, and E-Glass/Epoxy exhibits the smallest range. These results are
functions of the material properties given in Table 2.
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5. CONCLUSION & RECOMMENDATIONS

An analytical approach for determining the in-plane force resultants for symmetrically
laminated, composite plates, subjected to a one dimensional thermal loading has been pre-
sented. The Galerkin method was used to approximately solve the compatibility equa-
tion. A linear response of the material properties with temperature was employed. The
results for the baseline case of aluminum for this study were within 1 percent of an exact
solution for the same case. In addition, the results demonstrate the dependency of the in-
plane force resultants with orientation angle, and the relation between single-layer laminas
and multi-layer laminates. The inter-lamina effects for the multi-layered laminate resulted
in higher force resultants up to an orientation angle of 45 degrees as compared to the force
resultants for the unidirectional laminate. The temperature dependency of the engineer-
ing constants resulted in higher force resultants for an increase in y, the temperature
dependency factor. These investigations should provide an excellent database for experi-
mental studies of composite plates at NASA-Dryden. Further studies will investigate out-
of-plane motion, for a two dimensional temperature distribution using exact integration
techniques.
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Attachment 1. Convergence Contour Plots
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Attachment 2. Table of Results
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Principal In-Plane Force Resultant

Length=50 in, Width=12 in, Thickness= .19 in, n=10

Case # Material Layup Gamma Pos Neg

1 Graphite/Epoxy [01 0.00 95.078 -297.794

2 Graphite/Epoxy t0] 0.0005 123.255 -389.614

3 Graphite/Epoxy 10] 0.001 141.107 -458.437

4 Boron/Epoxy 10] 0.00 116.701 -264.507

5 Boron/Epoxy [0] 0.0005 152.819 -365.965

6 Boron/Epoxy [0] 0.001 177.907 -434.965

7 E-Glass/Epoxy [01 0.00 40.120 -80.860

8 E-Glass/Epoxy [0] 0.0005 56.615 -118.856

9 E-Glass/Epoxy [0] 0.001 67.984 -143.959

10 Aluminum [0] 0.00 60.251 -121.167

11 Aluminum [0] 0.0005 92.166 -191.157

12 Aluminum [01 0.001 111.402 -229.105

13 Graphite/Epoxy [10] 0.0005 93.460 -185.353

14 Graphite/Epoxy [20] 0.0005 37.331 -71.444

15 Graphite/Epoxy [30] 0.0005 15.573 -32.953

16 Graphite/Epoxy [40] 0.0005 9.033 -17.200

17 Graphite/Epoxy [50] 0.0005 3.989 -9.216

18 Graphite/Epoxy [60] 0.0005 2.366 -4.844

19 Graphite/Epoxy [70] 0.0005 0.936 -2.327

20 Graphite/Epoxy [801 0.0005 0.147 -0.432

21 Graphite/Epoxy [90] 0.0005 0.340 -0.109

22 Boron/Epoxy [10] 0.0005 106.450 -245.463

23 Boron/Epoxy [201 0.0005 61.323 -120.464

24 Boron/Epoxy [301 0.0005 34.410 -66.828
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Case# Material Layup Gamma Pos Neg

25 Boron/Epoxy [40] 0.0005 27.406 -41.508

26 Boron/Epoxy [50] 0.0005 15.297 -30.075

27 Boron/Epoxy [60] 0.0005 11.202 -23.153

28 Boron/Epoxy [701 0.0005 8.803 -19.325

29 Boron/Epoxy [80] 0.0005 7.520 -18.562

30 Boron/Epoxy [90] 0.0005 7.197 -18.305

31 E-Glass/Epoxy [101 0.0005 51.472 -106.982

32 E-Glass/Epoxy [20] 0.0005 39.998 -85.159

33 E-Glass/Epoxy [30] 0.0005 28.629 -59.117

34 E-Glass/Epoxy [40] 0.0005 21.013 -41.738

35 E-Glass/Epoxy [50] 0.0005 15.249 -30.594

36 E-Glass/Epoxy [60] 0.0005 11.183 -22.900

37 E-Glass/Epoxy [70] 0.0005 8.500 -17.514

38 E-Glass/Epoxy [80) 0.0005 6.959 -15.043

39 E-Glass/Epoxy [901 0.0005 6.455 -14.364

40 Graphite/Epoxy [10/-10/10] 0.0005 189.613 -433.888

41 Graphite/Epoxy [20/-20/20] 0.0005 134.863 -263.107

42 Graphite/Epoxy [30/-30/30] 0.0005 41.275 -78.245

43 Graphite/Epoxy [40/-40/401 0.0005 6.474 -11.168

44 Graphite/Epoxy [50/-50/501 0.0005 3.513 -1.765

45 Graphite/Epoxy [60/-60/60] 0.0005 7.723 -2.227

46 Graphite/Epoxy [70/-70/70] 0.0005 4.835 -1.266

47 Graphite/Epoxy [80/-80/801 0.0005 1.386 -0.378

48 Graphite/Epoxy [90/-90/90] 0.0005 0.340 -0.109

49 Boron/Epoxy [10/-10/10] 0.0005 165.984 -365.550

50 Boron/Epoxy [20/-20/20] 0.0005 135.700 -279.620

51 Boron/Epoxy [30/-30/30] 0.0005 71.374 -141.720
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Case # Material Layup Ganima Pos Neg

52 Boron/Epoxy [40/-40/40] 0.0005 26.095 -47.760

53 Boron/Epoxy [50/-50/50] 0.0005 7.792 -14.778

54 Boron/Epoxy [60/-60/60] 0.0005 4.753 -13.693

55 Boron/Epoxy [70/-70/70] 0.0005 5.826 -18.869

56 Boron/Epoxy [80/-80/80] 0.0005 6.962 -20.227

57 Boron/Epoxy [90/-90/90] 0.0005 7.197 -18.304

58 E-Glass/Epoxy [10/-10/10 0.0005 53.408 -111.120

59 E-Glass/Epox) [20/-20/20] 0.0005 44.433 -91.055

60 E-Glass/Epoxy [30/-30/30] 0.0005 31.244 k64.33

61 E-Glass/Epoxy [40/-40/40] 0.0005 19.760 39.684

62 E-Glass/Epoxy [50/-50/501 0.0005 11.991 -24.000

63 E-Glass/Epoxy [60/-60/60] 0.0005 8.193 -16.454

64 E-Glass/Epoxy [70/-70/70] 0.0005 6.853 -14.559

65 E-Glass/Epoxy [80/-80,/80] 0.0005 6.494 -14.346

66 E-Glass/Epoxy [90/-90/90] 0.0005 6.421 -14.289

67 E-Glass/Epoxy [10/-10/10/-10/101 0.0005 53.866 -112.070

68 E-Glass/Epoxy [20/-20/20/-20/20] 0.0005 45.030 -92.128

69 E-Glass/Epoxy [30/-30/30/-30/301 0.0005 31.627 -64.973

70 E-Glass/Epoxy [40/-40/40/-40/40] 0.0005 19.790 -39.812

71 E-Glass/Epoxy [50/-50/50/-50/50] 0.0005 11.849 -23.661

72 E-Glass/Epoxy [60/-60/60/-60/60] 0.0005 8.047 -16.102

73 E-Glass/Epoxy [70/-70/70/-70i70] 0.0005 6.770 -14.471

74 E-Glass/Epoxy [80/-80/80/-80/80] 0.0005 6.495 -14.375

75 E-Glass/Epoxy [90/-90/90/-90/90] 0.0005 6.455 -14.364

76 E-Glass/Epoxy [251-25/251 0.0005 38.807 -78.003

77 E-Glass/Epoxy [32/-32/321 0.0005 28.533 -58.944

78 E-Glass/Epoxy [33/-33/331 0.0005 27.333 -56.304
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Case # Material Layup Gamma Pos Neg

79 E-Glass/Epoxy [45/-45/45] 0.0005 15.340 -30.713

80 E-Glass/Epoxy [65/-65/65] 0.0005 7.325 -14.921

81 E-Glass/Epoxy [75/-75/75] 0.0005 6.612 -14.413

82 E-Glass/Epoxy [95/-95/95] 0.0005 6.438 -14.305

83 E-Glass/Epoxy f110/-110/110] 0.0005 6.853 -14.559

84 E-Glass/Epoxy [125/-125/1251 0.0005 9.671 -19.382

85 E-Glass/Epoxy [135/-135/135] 0.0005 15.340 30.713

86 E-Glass/Epoxy [145/-145/145] 0.0005 25.059 -51.184

87 E-Glass/Epoxy [150/-150/150] 0.0005 31.244 -64.339

88 E-Glass/Epoxy [165/-165/165] 0.0005 49.659 -102.502

89 E-Glass/Epoxy [175/-175/175] 0.0005 55.603 -116.328

90 E-Glass/Epoxy [180/-180/180] 0.0005 56.615 -118.856
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Attachment 3. Contour Plots For Different Materials
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Attachment 4. Program Listing
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PROGRAM POLYSTRESS
c

c * POLYNOMIAL RITZ SOLUTION FOR IN PLANE STRESS *
c **EVALUATION WITH A THERMAL LOADING CONDITION *
C *

c **THE IN PLANE FORCE RESULTANTS ARE WRITTEN TO *
c **FILE CALLED SDISTRIBUTION.DAT
C *

c * Darren Knipp*

implicit real*8 (a-h,o-z)
parameter (in=200)
dimension am(in,in), bm(in,in), cm(in,in), av(in), bv(in)
dimension bmat (in, in) ,bmgrid(in, in)
dimension amd(in,in),avd(in),tk(25),theta(25)
dimension x(9),T(9),TE(9),break(9),tcoef(4,9)
common /worksp/rwksp
real rwksp(2*in**2+3*in)
call iwkin (2*in**2+3*in)

c * open output data files

open (unit=9, file=' extstiff .dat' ,status=' unknown')
open (unit=l0, file='thermload.dat' ,status~' unknown')
open (unit=ll, file=' stressf .dat' ,status=' unknown')
open (unit=12, file='distrib.dat' ,status='unknown')

c Temperature data
C *

c * dT(x) = 0.2*x^'2, T(x)=dT(x)+75.***********
data xIO., 6.25,12.5,18.75,25.,31.25,37.5,43.75,50./
data T/75., 82.81,106.25,145.3l,,200.,270.31,356.25,457.81. 575.!
data TE/75., 82.81,106.25,145.31,200. ,270.31,356.25, 457.81, 575.!

c DATA INPUT

call input (a,b,h,ip,nf,nx,ny,nl,tk,theta,tfactor,gfac)

c ** scale the room temperature wrsp to room temp. of 75 deg. *

do 5 i=1,9
5 T(i)=tfactor*(T(i)-75.)+75.

c ** curve fit the temperature data *

call dcsakm(9,x,T,break,tcoef)

c COMPUTE THE STRESS FUNCTION COEFFICIENTS**

call sfunction(a,b,h,nf,tk,theta,nl,amlbm,cm,av,bv,bmat,
+ amd, avd, break, tcoef, ip, gfac)

c * calculate the stress distribution and write to output file

call sdistribution (a, bnf, nx, ny, av, bmgrid)

stop

end

subroutine input(a,b,h,ip,nf,nx,ny,nlayer,tlayer,theta,
+ tfactor,gfactor)

c *

c * This subroutine prompts the user for the problem information.
c *

implicit real*8 (a-h,o-z)
character*30 namel ,mat
dimension tlayer (25) ,theta (25)
pi-3. 141592653589793

C * Define the problem *

print*.' Define material properties: 1, Graphite/Epoxy' d2



prinlt*,' 2, Boron/Epoxy'
print*,' 3, E-Glass/Epoxy'
print*,' 4, Aluminum'
read(5, *)ip
print*,'
print*,' input the output data filename within single quotes
read(5,*) namel
open (unit=3, file=namel, status=' unknown')
print*,'
print*,' input order of polynomial for stress function'
read(S,*) nf
print*,' Input the plate length and width
read(S,*) a,b
print*,'Input the number of layers: nl (nl max=25)
read(5,*) nlayer
print*,'For each layer input: thickness and theta
do 10 i=l,nlayer
read(5,*) tlayer(i) ,theta(i)

10 continue
print*,'Input factor to apply to temperature distribution'
print*,' (0.0 = room temp., 1.0 = actual lab temp.)'
read(5,*) tfactor
print*,'Input factor to apply to property variance with temp.'
print*,' (0<= gfactor =<1)'
read(5,*) gfactor
print*,'Dimension of your grid for the stress distribution:x,y'
read (5, *) nx, ny

if (ip .eq. 1) then
mat=' Graphite/Epoxy'
endif
if (ip .eq. 2) then
mat=' Boron/Epoxy'
endif
if Uip -eq. 3) then
mat=' E-Glass/Epoxy'

endif
if (ip -eq. 4) then
mat=' Aluminum'

endif
c * echo input data *

write (3, 100)
write(3,150) mat
write (3,*)

write(3,*)
write(3,*) --- Input Data------
write (3,*)

write(3,*)
write(3,200) nlayer
write (3, 3 00)
do 20 i=1,nlayer
write(3,400) i,tlayer(i),theta(i)

20 continue

c * compute total thickness and transform ply angles to radians *

h=0.0
do 30 i=1,nlayer
theta (i) =theta (i) *pi/180
h-h+tlayer (i)

30 continue
write(3,450) h

return

100 format(/' Composite Laminate Stiffness'/)
150 format(' Material: l,a20/)
200 format(' Number of Layers - ',13/)
300 format(' Laminate Geometry '/,' Layer t theta')
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400 format(i4,4x,2f9.4)
450 forrnat(/'Laminate Thickness = ',f9.4)

end
C

subroutine sfunction(a,b,h,n,tk,theta,nl,rm,rmb,tm,rv,rvb,bmat,
+ rind, rvd, break, tcoef, ip, gfac)

c *

c * This subroutine calculates the stress function
c * coefficients: Fij.
C *

c ** variables:
c * input:
c * a -- plate length x direction
C **b -plate length y direction
C **n -order of stress function polynomial
o * h -- plate thickness
C **output:

c * rin - Bltrans*Eal*[B] order N*N
o * rv -- row vector containing the coefficients

implicit real*8 (a-h,o-z)
dimension rm((n+l)*(n+l), (n+l)*(n+l))
dimension rid(n+1)*(n+l), (n+l)*(n+1))
dimension rv( (n+l) *(n+l))
dimension rvd( (n+l)* (n+1))
dimension tm((n+l)*(n+l), (n-3)*(n-3))
dimension rmb ((n-3) *(n-3), (n-3) *(n-3))
dimension rvb( (n-3) *(n-3))
dimension bmat(3, (n+l)*(n+l)),amat(3,3),amvC3),tk(25)
dimension point(10),weight(l0),break(9),tcoef(4,9),theta(25)
nn= (n+l) * (n+1)
m= 3
nnb= (n-3) *(n-3)
rmfac=a*b/4
rvfac=-a*b/4
ng=10

c * initialize rin matrix to zero

do 10 i=1,nn
rv (i) =0.0

do 10 j=l,nn
rin(i, j)0O.0

10 continue

c ** call subroutine for numerical integration points and weights

call gquad (point, weight)

C ** evaluate matrices at integration point

do 30 i=1,ng
zeta=point (i)
wz=weight (i)
call astiff(a,zeta,tk,theta,nl,break,tcoef,ip,gfac,amat,amv)
j=0
do 30 j=1,ng
eta=point (j)
we=weight (j)
call bmatrix(a,b,n,zeta,eta,bmat)
call btab(amat,bmat, rmd,m,nn)
call bta(l,nn,m,amv,bmat, rvd)
ii=0
do 20 ii=1,nn
rv(ii)=rv(ii)+rvd(ii) *wz*we
j j=0
do 20 jj-l,nn
rin(ii, jj)-rm(ii, jj)+rmd(ii, jj) *wz*we

20 continue
30 continue

d4



do 40 i=l,nn
rv (i) =rvf ac* rv (i)
do 40 j=1,nn
rm(i, j)=rmfac*rm(i, j)

40 continue

c * write rm(stiffness matrix) & rv(load vector) to output data file

write(l0,100) (rv(i),i=1,nn)
do 50 j=1,nn
write(9,100) (rm(i,j),i=1,nn)

50 continue
100 format(6e12.5)

o * solve matrix equation including the linear transformation

call transform(n,tm)
call btab (rm, tin,rmb, nn, nnb)
call bta (l,nnb,nn, rv,tm, rvb)

call dlslsf (nnb, rmb, nnb, rvb, rvb)
call mply (tn, rvb, rv, nfl,,nnb)

C ** write rv to data file (fcoefficients)

write(1l,100) (rv(i),i=l,nn)

return
end

C

SUBROUTINE GQUAD (POINT, H)
c *

c * This subroutine provides the integration points and
c * weights for the Gaussian Quadrature procedure.
C *

c * variables:
o * ouput:
c * point -- location for numerical integration
o * weight -- weight for each point
c *

o * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

REAL*8 H(10), POINT(l0)
C ** INTEGRATION POINTS AND WEIGHTS**

POINT (1)=973906528517172
POINT (2)=. 865063366688985
POINT (3)=.679409568299024
POINT (4)=.433395394129247
POINT (5)=.148874338981631
POINT(6)=-.973906528517172
POINT(7)=-. 865063366688985
POINT (8)=-679409568299024
POINT(9)=-. 433395394129247
POINT(10)=-.14887433898i631
H (1)=066671344308688
H (2)=.149451349150581
H (3)=.219086362515982
H (4) =. 269266719309996
H(S) =.295524224714753
H (6)=.066671344308688
H (7)=.149451349150581
H (8)=.219086362515982
H (9) =.269266719309996
H (10) =295524224714753
RETURN
END

o * * * * * * * * * * * * * * * * * * * * * * * * * * * *

subroutine bmatrix(a,b,nzeta,eta,bm)
o **

o * This subroutine forms the binatrix. The bmatrix consists
C * of three row vectors ((Hfyy]/(Hfxxl/EH,xy]). d



C **
C ** variables:
C ** input:
c ** a -- plate length (in)
c ** b -- plate width (in)
c ** zeta -- nondimensionalized x-location
C ** eta -- nondimensionalized y-location
C ** output:
C ** bm -- bmatrix of order 3xN N=(n+l)*(n+l)
C ************************************************************

implicit real*8(a-h,o-z)
dimension bm(3, (n+l)*(n+l))

C ** initialize constants *

rl=4/b**2
r2=4/a**2
r3=4/(a*b)
icol=0

c ** begin loop to formulate the bmatrix *

do 10 i=0,n
do 10 j=0,n
icol=icol+l
iyy=j * (j-l)
ixx=i*(i-1)

ixy=i*j
if (iyy .eq. 0) then

bm(1, icol) =0.0
else

bm(1,icol)=iyy*eta**(j-2)*zeta**i*rl
endif
if (ixx .eq. 0) then

bm(2,icol)=0.0
else

bm(2,icol)=ixx*zeta**(i-2)*eta*wj*r2
endif
if (ixy .eq. 0) then

bm(3, icol) =0.0
else

bm(3,icol)=ixy*zeta**(i-1)*eta**(j-1)*r3
endif

10 continue
return
end

c **********************************************************
subroutine astiff(a,zeta,tk,theta,nl,break,tcoef,ip,gfac,
+ ainv,aintv)

C **
c ** This subroutine calculates the extensional stiffness
c ** matrix for a specially orthotropic, isotropic plate.
c **
c ** variables:
c ** input:
c ** theta -- orientation angle
c ** nl -- number of layers
c ** tk -- lamina thickness
c **
c ** output:
C ** ainv -- inverted stiffness matrix
c ** aintv -- [ai]*(Nthermal]
c ***********************************************************

implicit real*8(a-h,o-z)
dimension ainv(3,3),aintv(3),therm(3),break(9),tcoef(4,9)
dimension tk(25),theta(25),amat(3,3),q(3,3),f(3)
pi=3.141592653589793

c ** convert zeta position to x position and evaluate temperature

c ** curve fit at the x position
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x=.5*a* (zeta+1.)
temp=dcsval (x, 8,break,tcoef)
dt=temp-75.

C ** call property routine *

call prop(dt,ip,gfac,el,e2,al,a2,rnul2,g12)
print*,dt,ip,gfac,el,e2,al,a2, rnul2..g12

c * initialize stiffness matrix and thermal load vectors *

do 10 i=1,3
f(i)-0.0
do 10 j=1,3
amat(i,j)=0.0

10 continue

C **form stiffness matrices
do 50 ic=1,nl
c=dcos (theta (ic))
c2=c *c
c3=c2*c
c4=c2*c2
s=dsin (theta (ic))
s2=s* S
s3=s2*s
s4=s2*s2

C ** compute reduced stiffnesses *
rnu2l= (e2/el) *rnul2
qll~el/ (l-rnul2*rnu2l)
ql2-rnul2*e2/ (l-rnul2*rnu2l)
q22-e2/ (l-rnul2*rnu2l)
q66=gl2

C ** compute transformed reduced stiffnesses *

q(l,l)=-q11*c4+2* (q12+2*q66) *s2*c2+q22*s4
q(1, 2) =(q11+q22-4*q66) *s2*c2+q12* (s4+c4)
q(2,2)=qll*s4+2* (q12+2*q66) *s2*c2+q22*c4
q(L, 3) =(q11-ql2-2*q66) *s*c3+ (q12-q22+2*q66) *s3*c
q(2, 3) =(q11-ql2-~2*q66) *s3*c+ (ql2-q22+2*q66) *s*c3
q(3, 3) =(qll+q22-2*ql2-2*q66) *s2*c2+q66* (s4+c4)
q(2, l)=q(1,2)
q(3,l) =q(l, 3)
q (3, 2)=q (2, 3)

c * compute transformed thermal expansion coefficients *

ax=al*c2+a2*s2
ay=al*s2+a2*c2
axy-2*s*c* (al-a2)

c * compute terms for thermal forces *

therm(l)=(q(l,1)*ax+q(1,2)*ay+q(1,3)*axy)*tk(ic)*dt
therm(2)-(q(2, 1) *ax+q(2,2) *ay+q(2, 3) *axy) *tk(ic) *dt
therm(3)-(q(3, 1) *ax+q(3,2) *ay+q(3, 3) *axy) *tk (ic) *dt

c * form stiffness matrix and thermal load vector ntv *

do 20 i=1,3
f (i)=f (i) +therm(i)
do 20 j-1,3
amat(i, j)=amat(i,j)+q(i, j)*tkc(ic)

20 continue

50 continue
do 15 i-1,3

15 print*, (amat (i, j), J=l j3)
print*, (f(i),i=1,3)

o * invert the stiffness matrix *

call nv (amat, amy)

C * calculate ai*f *

call rply(ainv,f,aintv,3,1,3)

return
end W7
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subroutine prop(Qt,ip,gfac,el,e2,al,a2,rnul2,gl2)
C **
C * This subroutine accounts for the material property
C ** variation wrsp to temperature.
c **
C ** variables:
C ** input:
C ** dt -- change in temperature
C ** ip -- material property specification
C ** gfac -- material property variation with
C ** temperature factor
c **
c ** output:
C ** el -- modulus of elasticity (fiber direction)
c ** e2 -- modulus of elasticity (perp. to 1)
c ** al -- coefficient of thermal expansion (1)
C ** a2 -- coefficient of thermal expansion (2)
c ** rnul2 -- Poisson's ratio
c ** q12 -- shear modulus

implicit real*8(a-h,o-z)

c ** specify which material properties to use **
c ** properties taken from Jones 'Mechanics of Composite **
c ** Materials' p.70 & 199.

if (ip .eq. 1) then

c ** Graphite/Epoxy material properties **

elrt=30.0e6
e2rt-.75e6
rnul2=.25
gl2rt=.375e6
alrt=-0.21e-6
a2rt=16.0e-6
fac=l.0-gfac*dt
fac2=1.0+gfac*dt
el=elrt*fac
e2=e2rt*fac
al=alrt*fac2
a2=a2rt*fac2
gl2=gl2rt*fac

endif

if (ip .eq. 2) then

c ** Boron/Epoxy material properties **

elrt=30.0e6
e2rt=3.Oe6
rnul2=.30
gl2rt=l.0e6
alrt=3.5e-6
a2rt=11.4e-6
fac=1.0-gfac*dt
fac2=l.0+gfac*dt
el=elrt*fac
e2=e2rt*fac
al=alrt*fac2
a2=a2rt*fac2
gl2=gl2rt*fac

endif

if (ip .eq. 3) then

c ** E-Glass/Epoxy material properties **
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elrt=7. 8e6
e2rt=2.6e6
rnul2-=.25
gl2xt=1.25e6
alrt=3. 5e-6
a2rt-l114e-6
fac=l. O-gfac*dt
fac2=l O+gfac*dt
el-elrt*fac
e2=e2rt*fac
al~alrt*fac2
a2=a2rt*fac2
g12=gl2rt*fac

endif

if (ip .eq. 4) then

c * Aluminum material properties (isotropic case) *

elrt=lO. 3e6
rnul2=. 33
gl2rt=elrt/ (2* (l+rnul2))
alrt=12. 8e-6
fac=1.O-gfac*dt
fac2=l . +gfac*dt
el=el rt* fac
e2=el
al=alrt*fac2
a2=al
gl2=gl2rt*fac

endif

return
end

C
SUBROUTINE INV (XM, XINV)

c *

c **This subroutine computes the inverse of a 3x3 matrix.

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XMr(3,3),XINV(3,3),C(3,3)

c ** XI=ADJ(X)/DET(X) **
c ** ADJ(X)-TRANSPOSE OF COFACTOR MATRIX *

C(1,1)=XM(2,2)*XM(3,3)-XM(2,3)*XM(3,2)

c **account foi - when taking the det of x by switching order
c * of multiplication for the odd sum i+j of x(i,j)

C(2,l)=XMt1,3)*XM(3,2)-XM(1,2)*XM(3,3)
C(3,l)=XM(1,2)*XM(2,3)-XM(1,3)*XM(2,2)
C(1,2)=XM(2,3)*XM(3,1)-XM(2,l) *XM(3,3)

C(1,3)=XM(2,1)*XM(3,2)-XM(2,2)*XM(3,1)
C(2,3)=XM(1,2)*XM(3,1).XM(l,1) *XM(3,2)
C(3, 3) =XM(1, 1) *XM(2, 2) -XM(1, 2) *XM(2, 1)

DET=XM(l..1)*C(1,l)+XM(2,1)*C(2,1)+XM(3,l)*CC3,l)

DO 10 I=1,3
DO 10 J=1,3
XINV(I,J)=C(J,I) /DET

10 CONTINUE

RETURN

END



c ******************************

subroutine sdistribution(a,b,n,nx,ny,fcoef,bgrid)
o *

c * This subroutine determines the stress distribution for
c * the requested grid parameters.
C *

C ** variables:
C **input:

c * a -- plate length
C **b -plate width
C **n -order of polynomial
C **nx -- # of grid points in x-direction
C **ny #- of grid points in y-direction
C **fcoeff -- stress function coefficients

o * output:
C *

C
implicit real*8 (a-h,o-z)
dimension bgrid(3, (n+l)*(n+l))
dimension fcoef ((n+1) *(n+l)) ,eload(3)
nn= (n+1) * (n+1)

c * put origin of the grid in the center of the plate to utilize
** the symmetry of the problem

C dx=a/(2*(nx-1))
C dy=b/ (2 *(ny-1))
C xloc=a/2-dx
c yloc=b/2

c * to verify symmetry put the origin of the grid at the left edge

dx=a/ (nx-1)
dy~b/ (ny-i)
xloc=-0. 0-dx
yloc=0 .0

c * calculate the load intensities (N) for each grid point

do 10 i=1,nx
xloc=xloc+dx
zeta= (2*xloc/a) -1
yloc=0.0
do 10 j=1,ny
eta= (2*yloc/b) -1
call bmatrix(a,b,n, zeta,eta,bgrid)
call mply (bgrid, fcoef, eload, 3,1,n)

yloc=yloc+dy
10 continue

100 format (lx, f7.3, f7. 3, 2x, 3f18.6)

return
end

o
SUBROUTINE BTAB(A,B,R,M,N)

c *

C **This subroutine calculates [Bltrans*Ea]*(B] matrix.
o *

C **variables:

c * input:
o * A -- matrix of order M*M
o * B -- matrix of order M*N
o * N -- order (n+1) *(n+1)
o * output:d1



C R -- matrix of order N*N
C **

C

implicit real*8(a-h,o-z)
DIMENSION A(M,M), B(M,N),R(N,N)

DO 40 I=I,N
DO 30 J=I,N

DY=0.0
DO 20 K=1,M
IF (B(K,I) .EQ. 0.0) GO TO 20
CY=0.0
DO 10 L=I,M
IF (B(L,J) .EQ. 0.0) GO TO 10
CY=CY+A (K, L) *B (L, J)

10 CONTINUE
DY=DY+CY*B (K, I)

20 CONTINUE
R(I, J) =DY

30 CONTINUE
40 CONTINUE

RETURN
END

C

SUBROUTINE BTA(L,M,N,A,B,C)
C **
C ** This subroutine calculates [Bltranspose*[A].
c **
c ** variables:
C ** input:
C ** A -- matrix of order N*L
C ** B -- matrix of order N*M
C ** output:
c ** C -- matrix of M*L
c

INTEGER I, J, K, L, M, N
REAL*8 A(N,L),B(N,M),C(M,L),DY

DO 10 I=1,M
DO 10 J=1,L
DY=0.0
DO 20 K=l,N

20 DY=DY+B(K,I)*A(K,J)
C (I, J) =DY

10 CONTINUE
RETURN
END

C *************************************************************
SUBROUTINE MPLY (A, B, R, M, N, L)

C **
C * This subroutine calculates [aI*(bj and stores it in (r].
c **
c ** variables:
c ** input:
c ** A -- matrix of order M*L
c ** B -- matrix of order L*N
c ** output:
c ** R -- matrix of order M*N
C ************************************************************

IMPLICIT RFAL*8 (A-H,O-Y)
DIMENSION A(M,L), B(L,N), R(M,N)

DO 20 I-1,M
DO 20 J=1,N
Y=0.0
DO 10 K=I,L

10 Y=Y+A (I, K) *B (K, J)
R(I, J)-Y

20 CONTINUE
RETURN dli



END

C **********************************************************

SUBROUTINE TRANSFORM (N, TM)
C **

C ** This subroutine calls the transformation matrix subroutine.
C **

c ** variables:
c ** input:
C ** N -- order of stress function polynomial
C * output:
C ** TM -- transformation matrix
C ************************************************************

IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION TM((N+I)*(N+I), (N-3)*(N-3))
II=0
DO 10 I=0,N
DO 10 J=0,N
II=II+1

JJ= 0
DO 10 K=4,N
DO 10 L=4,N
JJ=JJ+l

CALL TMAT(I,K,AFAC)
CALL TMAT(J,L,BFAC)
TM(II, JJ) =AFAC*BFAC

10 CONTINUE
RETURN
END

C *************************************************************
SUBROUTINE TMAT(Il,I2,FAC)

c **
C ** This subroutine forms the linear transformation matrix
c ** to account for the zero edge boundary conditions.
c **
C ** variables:
C ** input:

c ** Ii --

c*2 --
C ** output:
C ** FAC --
C ************************************************************

IMPLICIT REAL*8(A-H,O-Z)
ICOUNT=I 1+1
GOTO (10,20,30,40) ICOUNT
IF (II.EQ.I2) THEN
FAC=1 .0
ELSE
FAC=0.0
END IF
RETURN

10 N2=(-l)**I2
N4(-1) ** (I2-1)
FAC=(-2* (I+N2)+12* (I-N4))/4.
RETURN

20 N2-(-I)**I2
N4-(-1) ** (12-1)
FAC-(3* (N2-1)+I2* (1+N4))/4.
RETURN

30 N4- (-1) ** (12-1)
FAC-12* (N4-1)/4
RETURN

40 N2"(-I)**I2
N4-(-I)** (I2-I)

FAC=(I-N2-I2* (1+N4))/4
RETURN
END
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