

Engineered Resilient Systems A DoD Science and Technology Priority Area

Overview Presentation June 2012

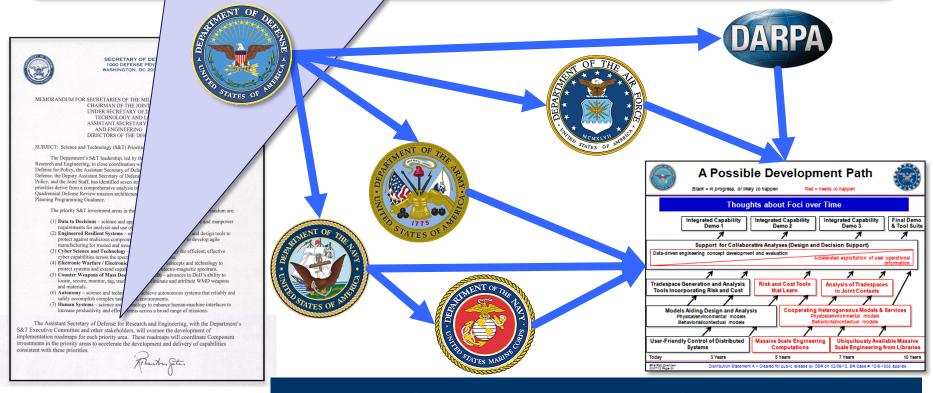
Robert Neches

Director, Advanced Engineering Initiatives / ERS PSC Lead Office, Deputy Assistant Secretary of Defense, Systems Engineering

Secretary of Defense Guidance on Science & Technology (S&T) Priorities FY13-17

	Ρ
	P
	ŕ
Y/	•
<i>x</i>	0
	_
	2
	J
	-т
	_
	られ
	J
	~
	ค
	U
	- 7
	-
L	

Priority S&T Investment Areas:


- 1. Data to Decisions
- 2. Engineered Resilient Systems
- 3. Cyber Science and Technology
- Electronic Warfare / Electronic Protection
- 5. Counter Weapons of Mass Destruction
- 6. Autonomy
- 7. Human Systems

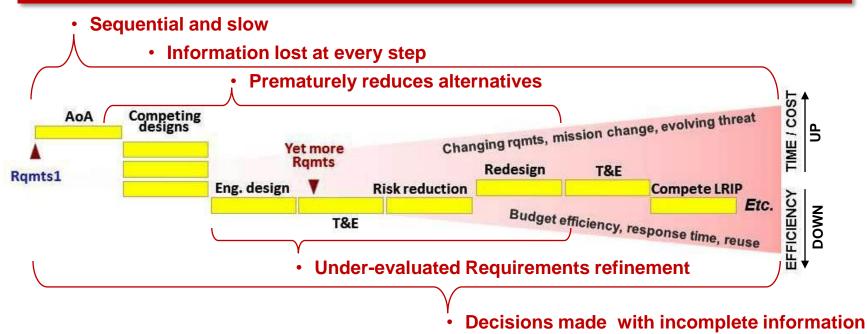
Engineered Resilient Systems: A DoD-wide Activity

The Assistant Secretary of Defense for Research and Engineering, with the Department's S&T Executive Committee and other stakeholders, will oversee the development of implementation roadmaps for each priority area. These roadmaps will coordinate Component investments in the priority areas...

Working Toward A DoD-Wide Roadmap

IEEE Collaboration Systems and Technologies 5/23/12 | Page-3

A resilient system is trusted and effective out of the box in a wide range of contexts, easily adapted to many others through reconfiguration or replacement, with graceful and detectable degradation of function.

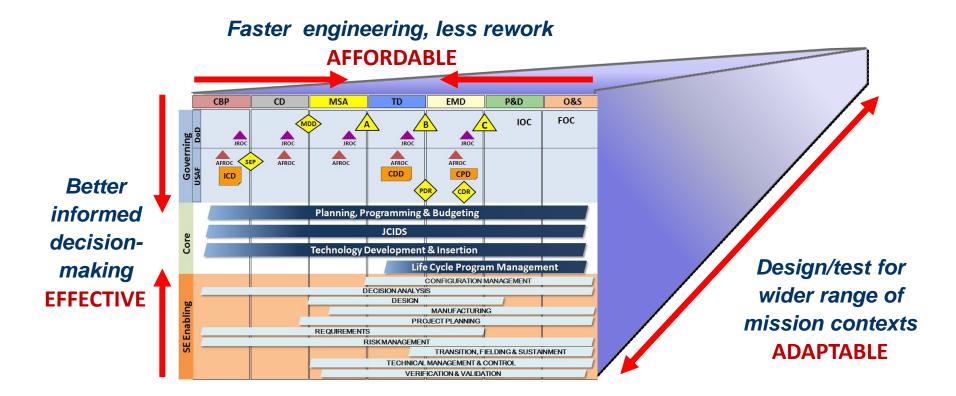

Research in Engineered Resilient Systems focuses on agile and cost-effective design, development, testing, manufacturing, and fielding of trusted, assured, easily- modified systems

Conventional Engineering Practice

50 years of process reforms haven't controlled time, cost and performance

Engineering practice must meet new challenges:

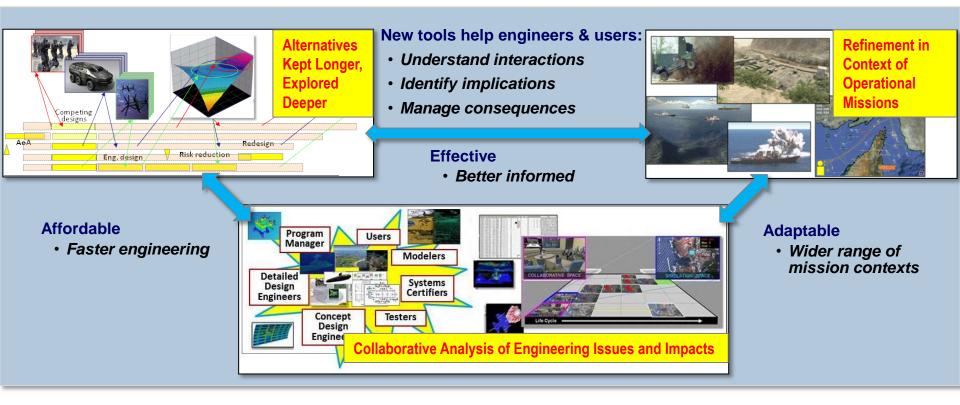
- Pace of technology development
- Uncertain sociopolitical futures
- Global availability of technology to potential competitors



Transforming Engineering of Complex Systems

Engineering for resilience: robust systems with broad utility

- In a wide range of joint operations
- Across many potential alternative futures

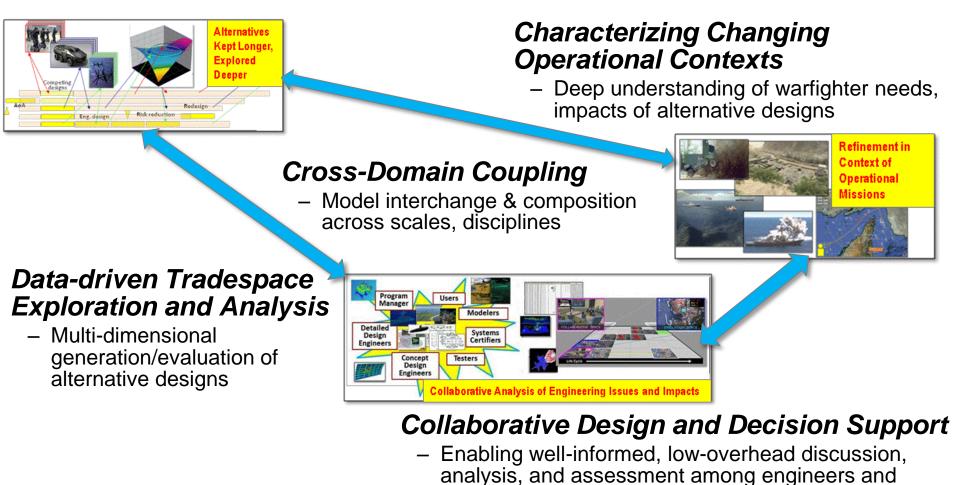


Engineered Resilient Systems *Transformational Engineering Practices*

Increased computational power and availability allow more flexibility in data exploitation and application of services

ERS envisions an ecosystem in which a wide range of stakeholders continually cross-feed multiple types of data that inform each other's activities

IEEE Collaboration Systems and Technologies 5/23/12 | Page-7



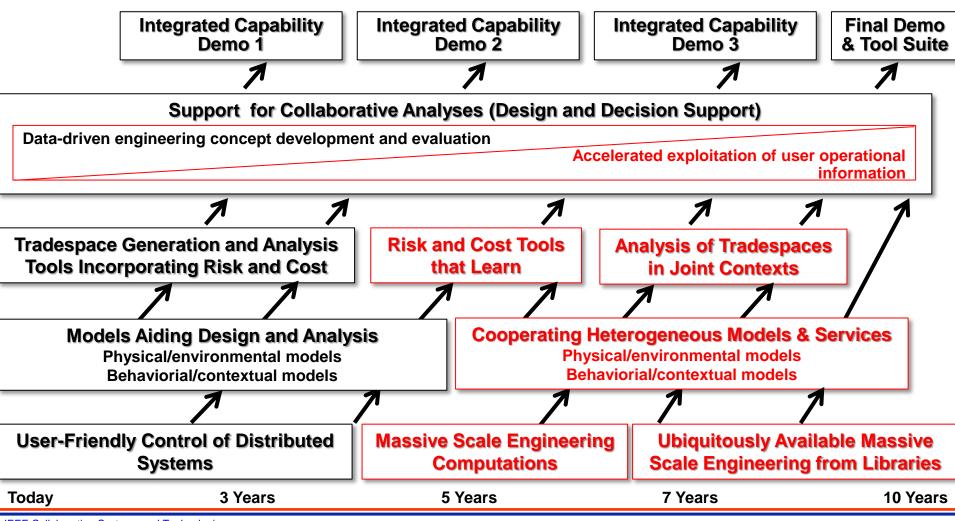
Key Technical Thrust Areas

Systems Representation and Modeling

- Physical, logical structure, behavior, interactions, interoperability...

Distribution Statement A - Cleared for public release by OSR, SR Case #s 12-S-0258, 0817, 1003, and 1854 apply.

decision-makers


A Possible Development Path

Black = in progress, or likely to happen

Red = needs to happen

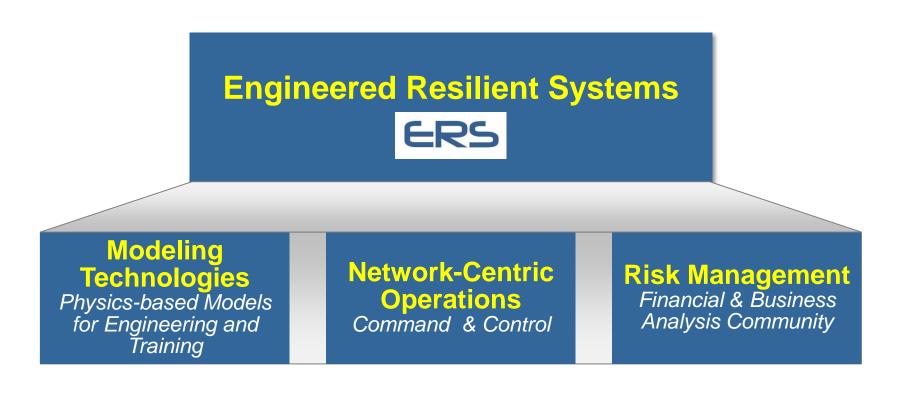
Thoughts about Foci over Time

IEEE Collaboration Systems and Technologies 5/23/12 | Page-9

Who Owns the Tools?

No Single Winning Answer

Looking for a Win-Win


- Tools for Government
 - Better understanding and specifier of needs
 - Better evaluator of offerings
- Tools for Systems Providers
 - Risk mitigation through better understanding of customer
 - Ability to pre-qualify offerings, present meaningful opportunities
- Tool Vendors: New Products to Sell Both

Key Connectors are Data Exchange Protocols and Architectures

Leverage and build upon promising technologies to transform engineering capabilities

Improved Engineering and Design Capabilities

- More environmental and mission context
- More alternatives developed, evaluated and maintained
- Better trades: managing interactions, choices, consequences

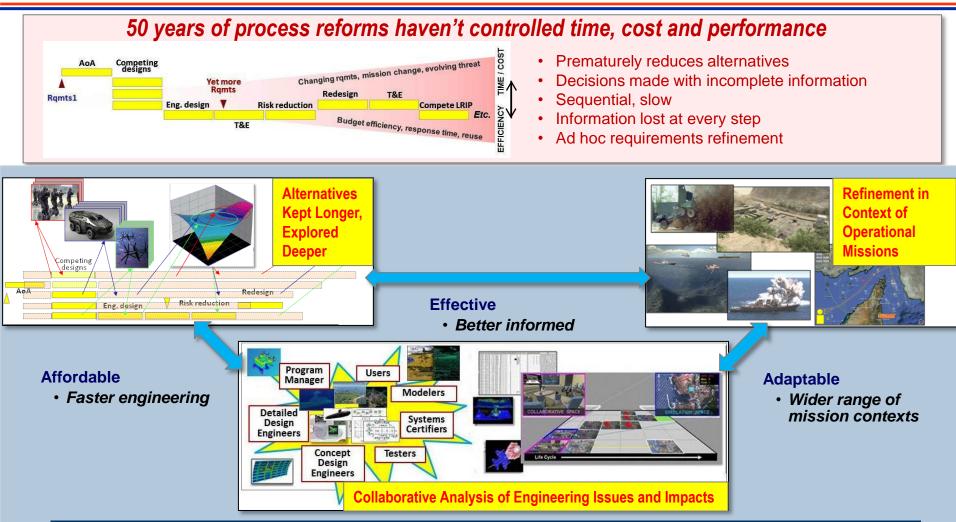
Improved Systems

- Highly effective: better performance, greater mission effectiveness
- Easier to adapt, reconfigure or replace
- Confidence in graceful degradation of function

Improved Engineering Processes

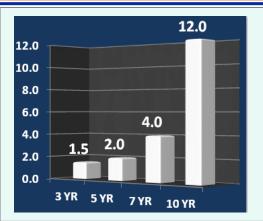
- Fewer rework cycles
- Faster cycle completion
- Better managed requirements shifts

IEEE Collaboration Systems and Technologies 5/23/12 | Page-12


SUPPLEMENTAL MATERIAL

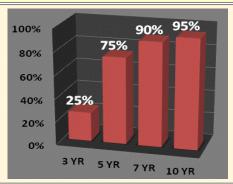
ERS Overview April 2012 | Page-13

Engineered Resilient Systems (ERS) More effective, affordable, adaptable


ERS envisions an ecosystem in which a wide range of stakeholders continually cross-feed multiple types of data that inform each other's activities

ERS Overview April 2012 | Page-14

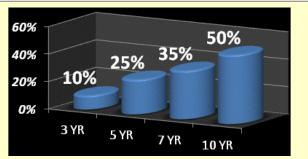
What Constitutes Success?



Faster, more efficient engineering iterations

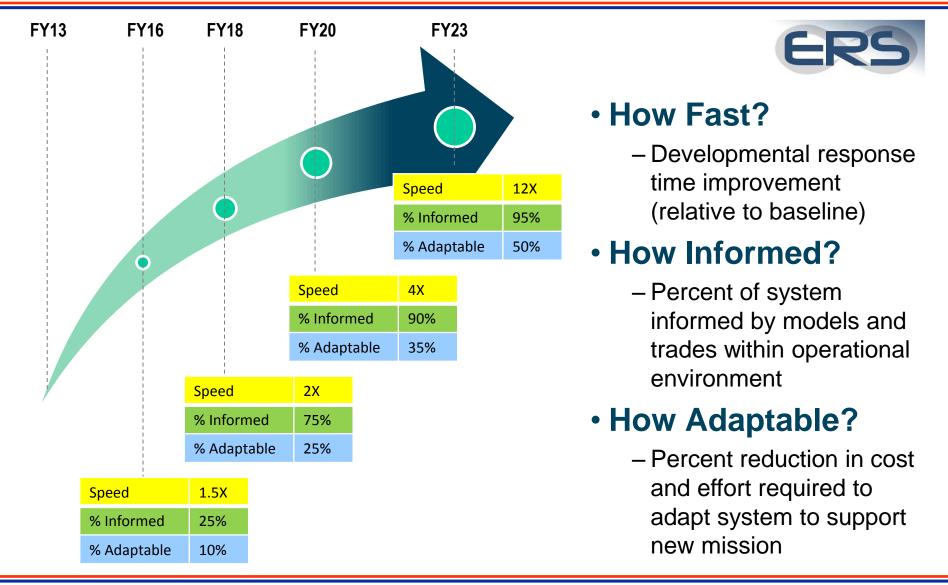
- Virtual design integrating 3D geometry, electronics, software
- Find problems early:
 - Shorter risk reduction phases with prototypes
 - Fewer, easier redesigns
 - Accelerated design/test/build cycles
- Target: 12x speed-up in development time

Adaptable (and thus robust) designs


- Diverse system models, easily accessed and modified
- Potential for modular design, re-use, replacement, interoperability
- Continuous analysis of performance, vulnerabilities, trust
- Target: 50% of system is modifiable to new mission

Decisions <u>informed</u> both ways (engineering by mission needs, missions by engineering opportunities/risks)

- More options considered deeply, broader trade space analysis
- Interaction and iterative design among collaborative groups
- Ability to simulate & experiment in synthetic operational environments
- Target: 95% of system informed by trades across ConOps/env.



Potential High-level Goals and Metrics over 10 Years

Potential Detailed Goals and Metrics

	FY13	3 Yrs / F	Y16	5 Yrs / FY	18	7 Yrs / FY	20		10 Yrs / FY	23
System Representation &	Breadth25% of whole sys/subsys&Fidelity*±20% error limit				•	90% of whole sys/subsys \pm 5% error limit		95% of whole sys/subsys \pm 2% error limit		-
Modeling, plus Cross-Domain	Degree of Integration			Cross-scali (swap micro-proc	•	Software and mic (change oper sy			ility to swap major emodel without rec	•
Coupling	* = Predict behav	viors accurately								
Characterizing the Changing	Breadth Fidelity*	25%** of whole sys/subsys $\pm 20\%$ error limit		75% of whole sys/subsys \pm 10% error limit		90% of whole sys/subsys $\pm 5\%$ error limit		95% of whole sys/subsys $\pm 2\%$ error limit		-
Operational Context	Degree of Integration	Single model sys embedded in simple realistic env		Single model sys embedded in complex realistic env		Mult modeled systems integrated in a simple, realistic env		Mult modeled systems interacting in a complex realistic system		
	* = % of sys in realistic, simulated environment									
Data-driven Tradespace Exploration &Analysis		100 Trades SOA Basic algorithms Add 2 dimensions (such as affordability and reliability)		1000 Trades Cloud data Application prototype Add 1 dimension		10,000 Trad Implementat Heuristics Add 1 dimens	ion	Tr	100,000 Trade Full service radespace algorithi "think" Add 2 dimensio	ms that
Collaborative Design/ Decision Support		2 domains of expertise collaborate on a design w/o speed degradation		4 domains of expertise collaborate on a design w/o speed degradation		8 domains of expertise collaborate on a design w/o speed degradation		16 domains of expertise collaborate on a design w/o speed degradation		
		Speed	1.5X	Speed	2X	Speed	4X	S	peed	12X
ERS Capability Exercise (OSD)	4	% Informed	25%	% Informed	75%	% Informed	90%	%	6 Informed	95%
		% Adaptable	10%	% Adaptable	25%	% Adaptable	35%	%	6 Adaptable	50%

ERS Overview April 2012 | Page-17

System Representation and Modeling: Technical Gaps and Challenges

Technology	10-Yr Goal	Gaps
Capturing Physical and logical structures Behavior Interaction with the environment and other systems 	Model 95% of a complex weapons system	 Combining live and virtual worlds Bi-directional linking of physics-based & statistical models Key multidisciplinary, multiscale models Automated and semi-automated acquisition techniques Techniques for adaptable models

We need to create and manage many classes (executable, depictional, statistical...) and many types (device and environmental physics, comms, sensors, effectors, software, systems ...) of models

Characterizing Changing Operational Environments: Technical Gaps and Challenges

Technology	10-Yr Goal	Gaps
Deeper understanding of warfighter needs Directly gathering operational data Understanding operational impacts of alternatives	Military Effectiveness Breadth Assessment Capability	 Learning from live and virtual operational systems Synthetic environments for experimentation and learning Creating operational context models (missions, environments, threats, tactics, and ConOps) Generating meaningful tests and use cases from operational data Synthesis & application of models

"Ensuring adaptability and effectiveness requires evaluating and storing results from many, many scenarios (including those presently considered unlikely) for consideration earlier in the acquisition process."

Cross-Domain Coupling: Technical Gaps and Challenges

Technology	10-Yr Goal	Gaps
<section-header><text></text></section-header>	Weapons system modeled fully across domains	 Dynamic modeling/analysis workflow Consistency across hybrid models Automatically generated surrogates Semantic mappings and repairs Program interface extensions that: Automate parameterization and boundary conditions Coordinate cross-phenomena simulations Tie to decision support Couple to virtual worlds

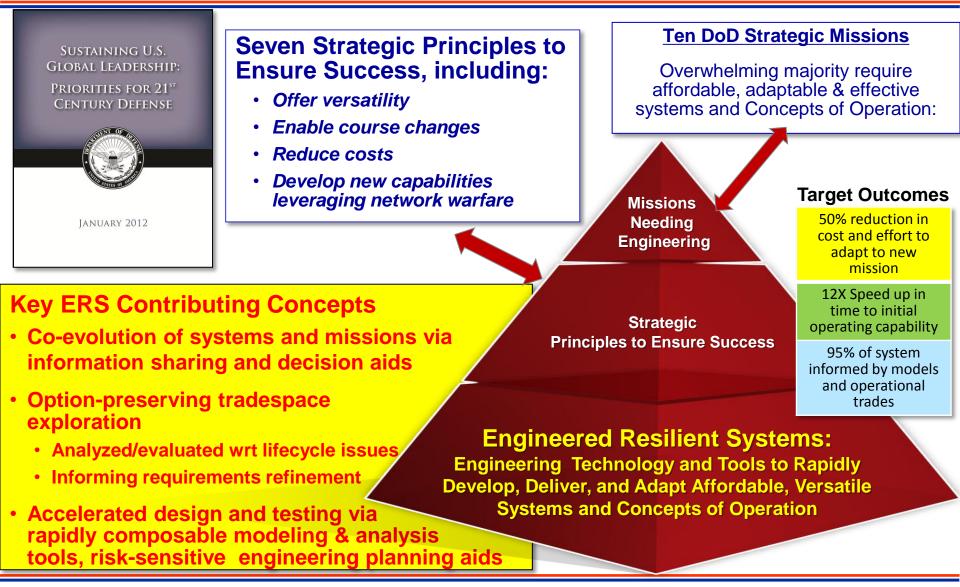
Making the wide range of model classes and types work together effectively requires new computing techniques (not just standards)

Tradespace Analysis: Technical Gaps and Challenges

rithms
ptions
tions
ns
isions
via

Exploring more options and keeping them open longer, by managing complexity and leveraging greater computational testing capabilities

Collaborative Design & Decision Support: Technical Gaps and Challenges


Technology	10-Yr Goal	Gaps
Well- informed, low- overhead collaborative decision making	Computational / physical models bridged by 3D printing <i>Data-driven</i> trade decisions executed and recorded	 Usable multi-dimensional tradespaces Rationale capture Aids for prioritizing tradeoffs, explaining decisions Accessible systems engineering, acquisition, physics and behavioral models Access controls Information push-pull without flooding
ERS requires	the transparency	for many stakeholders to be able to

ERS requires the transparency for many stakeholders to be able to understand and contribute, with low overhead for participating

ERS: *Foundational* for Defense Systems across All Mission Areas

ERS Overview April 2012 | Page-23