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1. Executive Summary

This repott is a review of the stochastic simulation model of Western Pacific leatherback
sea turtle metapopulation dynamics developed by Dr. Milani Chaloupka for the U.S.
National Marine Fisheries Services, Honolulu Laboratory, Honolulu, Hawaii. The files
examined were the Berkeley Madonna (Copyright 1997-2001, Robert L Macey and
George F. Oster) file, leatherback(User).mmd, and the associated user manual; Stochastic
simulation model of Western Pacific leatherback sea turtle metapopulation dynamzcs
User’s Guide (Janua}y 2002) Berkeley Madonna verston 8. 0 1 was used to run the
srmulatlon model »

The report examines the Chaloupka simulation model within the context of modeling in
general. Parameter uncertainty, suggested protocol to assess the i impacts of fisheries, and
sensitivity analysis of model parameters on critical endpoints are discussed. The report
concludes with a summiry and statement of research recommendgtions

The Chaloupka simulation model has the potential to serve as a key component in a suite
of analytical tools to assess the viability of sea turtle populatlons ‘We recommend that
such research address the following tasks:
~ e Perfotm external validation fo search:for points that validate and define the
boundaries and validity of the Chaloupka model. =
e Identify sentinel variables (observable indicators of trends that are sensitive to
Jparameter settings) to determine when the model can be apphed and produce
results consistent with real-world condmons b

e Perform predlcuon risk to detertnine consequences of incorrect model results-
 Construct a meta-model of model accuracy (below).

The complexrty of the Chaloupka simulation model justifies malcmg the tool ltself and
the ‘résults it products objects of study. Sensrtw:ty analyses will inform analysts and
decision makers about inherent variability in model results. In partlcular a “meta-model”
that focuses on parameter values deemed speculatrve by expert analysts is warranted to
gauge confidence in specific instantiations of the model. By varymg all of those -

speculative parameters simultaneously, this meta-model would serve as a complement fo
the simulation model to alert analysts to possible interactions among certain parameter
values that might potennally produce non- -additive effects. These synergistic effects are

' potentlally dangerous because they can’ precxpltate rapid model population declines.

While tlus model provides a good framework for heuristic evaluation of “what if”
scenarios, we strongly recommend that the research tasks listed above be completed
before the model is used to make quantitative predictions for management. This is
particularly true for leatherbacks, which are a poorly understood species, at best. It is
critical to understand how the model results are affected by parameter uncertamty and
assumptions that are mcorporated into the structure of the. model (Which are not
necessarily obvious to users), and to anticipate the potential for conflicting, yet equally
valid, results that may be generated by various stakeholders.
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2. About This Report

This short report represents the opinions of Dr. Selina Heppell, a fisheries ecologist at
Oregon State University and author of several papers on sea turtle demographic models,
and Dr. Jane Jorgensen, a private consultant with expertise in ecological models and
Bayesian belief networks. We were unable to do more than a precursory review of the
model and its potential as a management tool due to the short time frame allotted for
review (1 month). Our goal was to determine the general structure of the leatherback
model and to offer suggestions for how the model should be-used by NMFS. We did not
review the other simulation models (green and loggerhead turtles); although the general
* structure of those models is quite similar, far more empirical data exists on those species.
Nevertheless, our concerns.about the complexity of the simulation, given the available
data and the precision of those data, apply to all of the models

3. Overvxew. How Models are Created Parametenzed Analyzed, and Applied to
Management Problems

The Chaloupka sxmulatlon model 1Isa powerful tool for detectmg and prOJectmg trends in
sea turtle populations. Careful use of this model can help us heunistically evaluate the .
relative merits of alternative management programs under a range of plausible blologlcal
scenarios. It creates a common forum for discussion by creating a framework within
which to relate multlple observatlons and hypotheses.

However as with any fine tool the qualxty of the resulting product will depend in large :
part on the quality of the raw materials (input data) and the skill of the user. Levms
(1966) described models as tradeoffs among generahty, reahsm and precision. He listed
three model-building strategies:

1. Sacrfice generahty for realism and precision. Models produced using this
strategy yield piecise predxctlons for tightly constrained situations. This approach
‘has been adopted by natural resource managers to formulate precu;e testable

_ predlctlons based on the short—term behavior of orgamsms
© 2. Saciifice reahsm for genexahty and precision. This approach yields very general
" models that generate very precise predxcttons However, the equations may be
' 'unreahstlc given the conditions in the natural world. Small departures from initial

‘ assumptlons oﬁen have large effects upon predlcted outcome.

3. Sacrifice preaslon for generahty and realism. This approach produces models that
focus on change in terms of relative change among variables in complex dynamic
systems. The resuits of the models are very generalizable in terms of the
quahtatlve nature of behaviors, but do not contain numencal precision.

The Chaloupka sxmulauon is realistic because it has a sound scientific basis, and precise
because it can pmduce more or less exact results based on parameter estimates.
Generalizability i in the simulation is provxded by the user-driven input of model
‘parameter \ values using slider bars. However, as Levins noted, no modeling strategy can
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fully exploit all three strategies simultaneously. The Chaloupka simulation model most
closely adheres to Levins’s second strategy, maximization of realism and precision.

There are at least 151 user-defined parameters in the model, mcludmg survival rates,
harvest levels, penods of time 1n which harvest occurs, density-dependent effects, nesting
beach temperatures, and the level of stochastic environmental variability. This level of
biological realism has not been available in other published sea turtle models (e.g.,

Crouse et al 1987, Heppell et al 1996) and is appealing to b:ologlsts (S. Eckert,

personal commumcatzon) Input parameters-can be entered into the simulation using a
shider-bar mterface These input values may be dnvcn by observational data or by expert
opinion medlatmg these data. Because of the rmgratory habits of the sea turtles, the -
difficulties associated with obscrvmg them in their natural state, and the surreptitious .

~manner of many anthropogenic hazards (c.g., poachmg of adults and eggs), the
observational data are inadequate for the leatherback. There are many facts about sea
turtles that remain unknown, such as dwell-time in fishing areas, response of individuals
and v1tal rates (growth, survival and reproduction) to. populatton density, and quantified
data on human~mduced and natural mortality. Even age at maturity.is somewhat
speculative in leatherbacks. : : .

While uncertamty Wlthm the modcl may be contto]led and cxplored the data ﬁ'om Wthh

parameter estimates are drawn may contain substantial uncertainty. Schmitt and Klem

© {1996) ideatified four sources of uncertainty, all of which are present in the data

regarding sea turtles:

1. Missing information. Information is unavailable.. It. has not been receivedior has-
been received but cannot be located when needed; for cxample mformathn about
dwell-times 1n fishing areas.

2. Unreliable information. The credibility of the source is low, or is pcrccwed to be

~ low even if the information is highly accurate; for example, by-catch by noni-US
longline fisheries and nesting beach data from several Pacific locales.

3. Amblguous or conflicting information. It is difficult to integrate the different
facets of the data; for example; radio-transmitter data for migratory patterns of
individuals and migratory routes by genetlc stocks.

4. Complex information. It is difficult to integrate different facets of data for

_example, the estlmated abundance of nesting. females may be dependent upon a
host of associated factors, mcludmg sampling error.

. Sea tmtles partlcularly leatherbacks, suffer from all four of these sources of uncertainty.
Itis crucnal to accept and incorporate that uncertainty into any assessment, regardless of
how precise the model output from 1nd1v1dual simulations may be. Unfortunately,
uncertainty in the covariance of these parameters may, be impossible to assess.

Analyses using this model will produce a wealth of “data” that may be used to formulate

and prionitize management actions as altenative. hypotheses The flexible modeling

framework invites the creation of alternative models for discussion and analysis.

Managers should be aware, however, that the end result of this mcreascd modeling and

analysis actlvﬁy may nof be increased clanty Shenk (1997) refers to this phenomenon as
the “Sixth Law of Data Smog Too many experts spoil the clarity™. The New York
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Times calls the plethora of models generated by opposing experts “volleys.of data.”
Managers should prepare for extended argumentation that although scientifically sound,
is not definitive. Communication of the reasons for management activities to
stakeholders may likewise become more difficult as the complexxty of the arguments
driving these activities’ mcreases.

The User’s Manual is well Writte'h, at least for ecologists moderately familiar with
modeling terminology, and provides an excellent introduction to the simulation model. .
The graphical interface is intuitive enough to allow naive users access to the model. As
an accessible model that may be used to evaluate management altematives, the
Chaloupka simulation may encourage relatively inexperienced decision makers to
approach the formulation of management plans by ‘adjusting parameters until a ‘desirable
output is produced: 'Glover et al. (1997) found that structured aids influenced these
novice analysts to approach aided tasks “mechanistically, without becoming actively
involved in the task or Jjudgment.” Paradoxically, while this tool has been designed to
enhance understanding of sea tulﬂe ‘population dynamics, as a’ decnslon making aid it may
have the opposite effect on some subset of user analysts. This phenomenon applies to all
structured decision making aids and in not unique fo natural resource management
models. However, in a supervised learning environment, the simulation model may
prove immensely valuable as a didactic tool to: demonstrate the way that. complex effects
are coherently related through an expext s eyes- :

4. Appropriate Constderatlon of Parameter Uncertainty for Assessment of Management
Alternatives .

The complexity of the Chaloupka simulation model justifies making the tool itself and
the results it produces objects of study. The tool, as described in the User’s Guide allows
for the incorporation of 100s of parameters: There are over 150 easily modified (user-
defined) parameters alone, and many more within the program itself. - The model
incorporates environmental‘and demographic stochasticity by adding temporal variability
within stocks and probabilistic variability in fecundity and survival probabilities. The
choice of paraméter values and the perceived precision of the result encourage a very
mechanistic approach to management of these species. When results about the numbers
of individuals that might be impacted are derivéd from ‘very small changes in parameter
values, the tendency to trust these numbers as reflective 6f more than a general trend may
atise. An analogy familiar to biologists would be the tendency of novice data analysts to
run through a list of available models in 2 Windows-based statlstxcal program until the

“p-value” generated for the data was <0.05.

For example, as a tool for monitoring and detecting current change to support
management decisions that seek to optimize human activity while maintaining sea turtle
populations; the sifnutation model may produce results from the model that are perceived
to be preciseand encourage generation of targets that are percewed to be equally as:
precxse In reahty, given the amount of information that remairis unknown about this -
species, such narrow targets may be inappropriate. At minimum, users of this model and
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its results must be aware that any statement such as “Given these risk crteria, it is
apparent that the Western Pacific leatherback sea turtle stock would most hkely be well
on the way to extinction given harvestmg of 15%of adults each year for 100 years or
more” (Users Guide, p 34) must be prefaced with, “The model results, -given user-defined
parameter set A, are...” because any result will depend on that parameter set (as well as’
those parameters set by‘ Dr. Chaloupka in the program code). Parameter sets should be
included explicitly wherever quantitative results are presented, and effort should be made
to assure that results are consistent over a wide range of plausible parameter sets.

As a tool for guiding restoration efforts, such as habitat restoration, where both
management activities and their concomitant effects on sea turtle populations will
become manifest at some fiture date, the Chaloupka simulation model provides a
valuable structure for prioritizing and evaluating the relative impacts of alternative
management strategies. However, the recovery of sea turtle populations will also be
affected by influences that cannot be incorporated into the model, and the response of the
population to a management strategy may be entirely unexpected; This is a problem with
any model, and 1s one of the reasons why continuous updates and modifications are
needed as-new data are acquired. Even if the population behaves exactly as theorized in~
the model, the environment may vary in such a way to make predictions inaccurate. ‘It i is
important to monitor the environment as the context for the simulation model, and to -
incorporate them expeditiously, as forecasts may be affected: Assessment of prediction
nisks should be integrated into any management decision taken.

The development of new and sophisticated analytical tools has been anticipated fdft many
years.. Walters and Holling (1990) cautioned that even with the advent of these tobls,

“we must not pretend that process research and diligent data analysis alone will provide
answers:that resource managers can trust”” Likewise, in his'seminal paper on the future of
conservation biology, Caughley (1994) stressed that over-parameterized models for
poorly-known species giveis a “false sense of precision” that may overstep our
understandmg of how populations respond to perturbatlons

5. Suggested Protocol for Use of the Chaloupka Modcl to Assess the Imipacts of
Fxshenes

Levins (1995) admonishes us to prepare for surpn'se. Holling (1995) cautions: “
knowledge of the system we deal with is always incomplete. Surprise is'inevitable. Not
only is the science incomplete, but the system itself is a moving target, evolving because
of the impact of management and the progressive expansxon of the scale of human
influences on the planet.” .
We recommerid that: ‘
¢ management decisions be supported by several modeling approaches whenever
possible, including approaches that reflect coarser granularity (ie, Levins’s third
modeling strategy, maximize generality and realism at the ‘expense of precision),
such as life history perturbation analysis models (Heppell et al. 2000), qualitative
-community models (Puecia and Levms 1985) and coarser-gramed temporal
stochastic models. .



Review of Chaloupka Model.doc - 08/03/02

e prediction risks (risks of incorrect predictions) should be assessed when
comparing management alternatives.

« multiple reference points should be evaluated for each set of alternative scenarios,
including short-and long-term reference points that may be used in decision-
makmg

e sensitivity of the model to reasonable.changes in parameter inputs: should be
.carefully examined. These are discussed in greater detail in.(6.) following. .

e clusters of model inputs should be evaluated as variables themselves.. Conflicting
models may be reducible to a small set of scenarios more amenable to other types
of models.

Furthermore we suggect that two general questlons be con51dered each txme the model is
used in decision-making:
Questxon 1. How do two reference pomts (one short-term, one long-term) change wnth
varying input parameters?

‘ Questlon 2. Under what range of i mput condmons can we achleve the same endpoint?

We s_t_rongly; adwse _tha,t each user groupczu’eﬁxlly review the entire list.of parameters.
Only a subset of user-defined parameters is included in the default list for the slider
toolbox; at minimum, the list of user-defined parameters should be understood and
assecsed using available data..-

In a summary review of the model, Donald Kobayashi of the NMFS Honolulu Lab
describes a simulation scenario for determining the effects of the Hawaiian longliné.
fishery on loggerhead populations. The number of adult turtlesin 2085 was used-asia
reference point, and the effects of all possible anthropogenic hazards available inthe -
.model were evaluated by removing each hazard individually and recording chariges in the
model endpont. This analysis suggested that the Hawaiian fishery has little or no effect
on the number of mature loggerheads in 2085 regardless of the intensity.ofiits effect
when the other hazards were included — “a minor component of the aggregate
anthropogenic hazard”. While the loggerhead model is quite likely more reliable than the
leatherback model, given that the range of inputs for-¢ach parameter is grounded in
empirical data, this analysis is insufficient for policy guidance. The analysis was only
performed with one set of possible input parameters, and should be repeated for a range
of potential input sets. Without such an analysis, far too much faith is put on the user’s.
available input data and the preset “defaults” of the model, and there is no. guarantee that
a different group of model users would come to the same conclusions.

6. Sensitivity Analysis of Model Parameters on Critical Endpoints

Sensitivity analyses will inform analysts and decision makers about inherent variability in
model results. The goal of such.an-analysis can be to locate: ,
1. A single point that produces an inconsistent or 1mplaus1ble result
2. Proximal points that produce very different results. : :
The systematic study of the Chaloupka model by changing one parameter atatime is
physicaily impractical due to large number of parameters that may be included in any one.
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model. A factorial analysis of the changes in model output following systematic changes .
in multiple parameters is out of the question. Nevertheless, we encourage the use of
sensitivity analyses to assure that results are robust to a wide range of plausible inputs.

Sensitivity of clusters of parameter values could be accomplished by construction of a
meta-model of model accuracy, a knowledge-engineered model that describes parameter

regions that produce valid results and that can be used to-identify plausible and
 implausible clusters of parameter values. Pearl (1988) has referred to this approach of
representing confidence in terms of higher-order probabilities as ‘probabilities of
probabilities.” - In this approach, the'event P(A) = p is a'random variable thit ‘depends on
the occurrence or nonoccurrence of some other event in the wodel. For'example, the
parameter settings for the scenario shown in Figure 3 of the User’s Manual (at'risk group
adults; constant annual harvest rate = 0.15; harvest duration = 100 years staiting from
1975) might fall in one cluster of input paramieters. Annual hiarvest rates of 0.2 or greater
might be deemed speculative by expert analysts, reducing confidence in that instantiation
of the model. Probabilities regarding confidence can be assembled-into a Bayesian belief
network(BBN) that, like the simulation model; serves as a framework within which to
relate multiple observations and hypotheses. - As new eviderice about the biology,
ecology, environment and anthropogenic hazards to sea tustle species isidiscovered, it can |
be applied incrementally to the BBN of model confidence.

Such a model would be an attempt to circumscribe the state of knowledge inthe field: It
defines regions of parameter space where experts feel comfortable and Cari:ze)fc:-p:res‘§'fthéi'rf ‘
level of comfort with their belief that what is. known -accurately represents: matural
processes. It incorporates ranges of parameter values with which:wehave experichce,” -
ranges of values with. which we have little of no.experience, but.are confident thatoverall
behaviors within this range will not change, and ranges of parameter values where-there
is significant uncertainty. The contribution of this model-over the paraméter processing
provided by the Chaloupka simulation is. that it can alert-analysts to: possible interactions
aniong certain parameter values that can produce non-additive effects: These synergistic
effects are potentially dangerous because they can precipitate rapid:population declines:
Construction of the belief model is a nontrivial task, but it may be a potentially valuable
complement to the Chaloupka simulation model.

The Chaloupka model simulation is a sensitive tool for predicting trends in the present
and future. It is important to remember, however, that any result produced by the model
will be mediated by current environmental conditions and anthropogenic hazards. The
granularity of proposed management actions must acknowledge the uncertainty contained
1n the model and in the surrounding context of the model. One strategy to monitor
context would be to identify sentinel variables (observable indicators of trends that are
sensitive to parameter settings) to determine when ranges of parameter values can be
applied to produce results consistent with real-world conditions.
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7. Conclusions and Research Recommendaﬁons

The Chaloupka simulation model has the potential to serve as a key component in:a suite -
of analytical tools to assess the viability of sea turtle populations. The interactive method
by which human analysts can adapt the model to specific scenarios increases its potential
for extended use. While the simulation models the behavior of sea turtle populations, the
complexity of the model is sufficient motivation for the study of the behavior of the
model itself. We recommend. that such research address the followmg tasks:

3 Perform external vahdauon to search for pomts that valndate and defme the
_boundaries and validity of the Chaloupka model. . : G
. Identlfy sentinel variables (observable indicators.of trends. that are sensitive: to
. parameter settings) to determine when the model can be: apphed and produce
results consistent with real-world conditions. SH
e Perform prediction risk to determine consequences of incorrect model results:
Constriict a meta-model of model-accuracy: Construct a kxmwledge—engmeered”
model (a Bayesian network) that describes parameéter regions that produce-valid
results. ‘Use to identify plaus1ble and nnplau51ble reglons of parame er values
‘singly and in’ combmatlon : S

Dr. Chaloupka himself has stressed that the primary use of this model is to learn how sea
turtle populations might behave under various scenarios — heuristic; rathier than:
predictive; analyses. The User Guide for.the Dermochelys Modeltuns throug
of examples in its tutorial that emphasize the heuristic nature of the simulation’ The'
primary.task for users of this-model is to determine how robust thie various ‘model”
endpoints are to a wide range of user inputs and- parameter uncertainty. It is perhaps
unsuzprising that, relative to:the many potential sources of mortality experienced by sea
turtles, the small fleet of Hawaiian longliners are not-to blame for pepulation dechnes At
ameeting:in Honolulu in. 1995, many different modéls, both simple-and complex came'
to the same. conclusion (Bolten et al. 1996).Thus, this result IS hkely to’ be robust to e
many model formulatxons but others will not be
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