LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION Version 6.0 May 2007 # LANDSAT 7 (L7) SYSTEM CALIBRATION PARAMETER FILE (CPF) DEFINITION ### May 2007 | Prepared By: | | Approved By: | | |---|------|---|-----------------| | E. Micijevic
Calibration Analyst
SAIC | Date | R. Hayes
CalVal Task Lead
SAIC | Date | | Reviewed By: | | Approved By: | | | D. Strande
IAS Systems Engineer
SAIC | Date | C. Torbert
Landsat Ground Segment
SAIC | Date
Manager | | Reviewed By: | | Approved By: | | | R. Lamb
CalVal Systems Engineer
SAIC | Date | J. Lacasse
Mission Management Offi
USGS | Date
cer | | Reviewed By: | | | | | C. Engebretson
Software Project Lead
SAIC | Date | | | EROS Sioux Falls, South Dakota ### **Executive Summary** This document describes the contents of the Calibration Parameter File (CPF) generated by the Enhanced Thematic Mapper Plus (ETM+) functionality of the Image Assessment System (IAS). The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with applicability dates and is sent to the Landsat Archive Manager (LAM) for storage and eventual bundling with outbound Level 0 Reformatted Products (L0Rp). The CPF is also sent to International Ground Stations (IGSs) via the Landsat 7 (L7) Mission Operations Center (MOC). The CPF supplies the radiometric and geometric correction parameters required during Level 1 (L1) processing to create superior products of uniform consistency across the L7 system. ## **Document History** | Document
Number | Document
Version | Publication
Date | Change
Number | |--------------------|---------------------|---------------------|---| | 430-15-01-002-0 | Version 1.0 | February 1998 | | | 430-15-01-002-2 | Version 2.0 | July 1998 | IAS980070
IAS980071
IAS980078
IAS980080
IAS980098 | | 430-15-01-002-3 | Version 3.0 | June 1999 | GS CCR 60
GS CCR 106
GS CCR 110 | | IAS-207 | Version 4.0 | January 2000 | DHF CCR 1171 | | IAS-207 | Version 5.0 | August 2005 | CCR 1819
CCR 3921 | | IAS-207 | Version 6.0 | May 2007 | CCR 4788 | ## Contents | Executiv | ve Summary | iii | |-----------|------------------------------------|-----| | | ent History | | | | ts | | | | Tables | | | | 1 Introduction | | | 1.1 | Document Organization | 1 | | | File Structure | | | | Calibration Parameter File Updates | | | | .1 Effective Dates | | | | .2 File-Naming Conventions | | | | File Content Description | | | Section 2 | 1 2 CPF Parameters | 5 | | Section : | 13 CPF ODL | 92 | | 3.1 | Introduction | 92 | | | Sample ETM+ CPF ODL File | | | | nces | | ## **List of Tables** | Table 1-1. Data Types in CPF | 4 | |-------------------------------------|----| | Table 2-1. Landsat 7 CPF Parameters | 91 | #### Section 1 Introduction This document describes the contents of the Calibration Parameter File (CPF) generated by the Image Assessment System (IAS). The Landsat 7 (L7) functionality of the IAS is responsible for offline assessment of image quality to ensure compliance with the radiometric and geometric requirements of the L7 spacecraft and the Enhanced Thematic Mapper Plus (ETM+) sensor throughout the life of the mission. In addition to its assessment functions, the IAS is responsible for the radiometric and geometric calibration of the L7 satellite and ETM+ sensor. The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with applicability dates and is archived at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) and eventually bundled with outbound Level Zero Reformatted Products (L0Rp). The CPF is also sent to the Landsat 7 Processing System (LPS), Level 1 (L1) production systems within EROS, and to International Ground Stations (IGSs) via the L7 Mission Operations Center (MOC). The CPF supplies the radiometric and geometric correction parameters required during L1 processing to create superior products of uniform consistency across the L7 system. #### 1.1 Document Organization Section 1 introduces the CPF. It describes the CPF structure and language, the CPF updates, time stamps, and file-naming conventions, as well as the attributes used to characterize the calibration parameters. Section 2 contains a table that lists and describes the CPF parameters. The actual prelaunch and postlaunch CPFs contain the most recent and accurate values available for these parameters. Section 3 presents the syntax of the CPF Object Description Language (ODL) and provides a CPF example to illustrate the actual appearance of the file. #### 1.2 File Structure All parameters are stored as American Standard Code for Information Interchange (ASCII) text using the ODL syntax developed by Jet Propulsion Laboratory (JPL). ODL is a tagged keyword language developed to provide a human-readable data structure to encode data for simplified interchange. The ODL interpreter developed by JPL may, in certain cases, provide for the handling of lexical elements (for example, building blocks) that are included in the Consultative Committee for Space Data Systems (CCSDS) specification of the Parameter Value Language (PVL). PVL is a superset of ODL. The IAS CPF is a pure ODL implementation without any PVL extensions. The body of the file is composed of two statement types: - 1. Attribute assignment statement used to assign values to parameters - 2. Group statements used to aid in file organization and enhance parsing granularity of parameter sets The Planetary Data System Standards Reference contains ODL details. #### 1.3 Calibration Parameter File Updates The IAS regularly releases and distributes CPFs at the beginning of each calendar quarter. In addition to a new CPF for the coming calendar quarter, a CPF delivery also includes new versions of all CPFs for time periods affected by the most recent calibration update. Only the most recent available CPFs should be used in ETM+ data processing. Prior to switching to bumper operational mode, CPFs needed to be released on a regular quarterly basis, primarily because of the Universal Time Code (UTC) corrected (UT1) time corrections and pole wander predictions included in the file. However, the CPFs could be updated at any given time, if needed, and released for the time periods shorter than a calendar quarter. Following the ETM+ switch to bumper operational mode (April 1, 2007), multiple version updates can be expected during any given quarter due to a hardly predictive nature of the scanning mirror bumper parameters. The irregular (mid-quarter) updates do not affect the three-month CPF release schedule. #### 1.3.1 Effective Dates Each CPF is time-stamped with an effective date range. The third and fourth parameters in the file—Effective_Date_Begin and Effective_Date_End—designate the range of valid acquisition dates and are in YYYY-MM-DD format. After the Effective_Date_End, the file is without applicable UT1 time predictions. EROS maintains a database of CPF names and their effective dates for associating product orders with the appropriate parameter files. The parameter file that accompanies an order has an effective date range that includes the acquisition date of the ordered image. #### 1.3.2 File-Naming Conventions Through the course of the mission, a serial collection of CPFs is generated and sent to the Landsat Archive Manager (LAM) for distribution with L0Rp products. The probability exists that a CPF will be replaced due to improved calibration parameters for a given period, or perhaps due to file error. The need for unique file version numbers becomes necessary as file contents change. The unique 00 version number is reserved for the original CPF, created before the satellite's launch. Version numbers for all quarterly CPFs released after the launch begin with 01. The IAS uses the following file-naming procedure to name the CPF: $L7CPFy_1y_1y_1m_1m_1d_1d_1_y_2y_2y_2y_2m_2m_2d_2d_2.nn$ where L7 = constant for Landsat 7 CPF = 3-letter CPF designator $v_1v_1v_1v_1 = 4$ -digit effectivity starting year ``` m_1m_1 = 2-digit effectivity starting month ``` d_1d_1 = 2-digit effectivity starting day = effectivity starting/ending date separator $y_2y_2y_2y_2 = 4$ -digit effectivity ending year m_2m_2 = 2-digit effectivity ending month d_2d_2 = 2-digit effectivity ending day . = Ending day/version number separator nn = version number for this file (starts with 01) For example, if the IAS created four CPFs at three-month intervals, and then updated the first file twice and the second and third files once, the assigned file names would be as follows: | File 1 | L7CPF20000101_20000331.01 | |--------|---------------------------| | | L7CPF20000101_20000331.02 | | | L7CPF20000101_20000331.03 | | File 2 | L7CPF20000401_20000630.01 | | | L7CPF20000401_20000630.02 | | File 3 | L7CPF20000701 20000930.01 | | | L7CPF20000701 20000930.02 | | File 4 | L7CPF20001001 20001231.01 | This example assumes that the effective date ranges do not change. The effective date range for a file can change, however, if a specific problem (e.g., detector outage) is discovered somewhere within the nominal effective range. Assuming this scenario, two CPFs with new names and effective date ranges are spawned for the period under consideration. The Effective_Date_End for a new pre-problem CPF would change to the day before the problem occurred and the Effective_Date_Begin remains unchanged. A post-problem CPF with a new file name would be created with the Effective_Date_Begin corresponding to the imaging date when the problem occurred and the Effective_Date_End corresponding to the original Effective_Date_End for the period under consideration. Both new CPFs, although they appeared for the first time for given effective dates, would a
have version number for one higher than the CPF for the quarter they originated from. New versions of all other CPFs affected by the updated parameters also would be created. Suppose, for example, that it was discovered that a detector stopped responding on July 25, 2000. Two new CPFs need to be created that supersede the period represented by file number three, version 2, and a new version of file number four. The new file names and version numbers become: L7CPF20000701_20000725.03 L7CPF20000726_20000930.03 File 4 L7CPF20001001_20001231.01 L7CPF20001001_20001231.02 #### 1.4 File Content Description Table 2-1**Error! Reference source not found.** lists all CPF parameters. Within this table, each parameter entry is characterized by five attributes: - 1. Parameter Group—identifies a related set of parameters. - 2. Parameter Name—uniquely identifies and describes the content of each parameter. - 3. Value Type—describes the parameter as either static or dynamic. A static value generally remains unchanged over the life of the mission. A dynamic value changes or has the potential to change over the life of the mission. Significant changes to dynamic values trigger a CPF update. - 4. Data Type—referred to using Hierarchical Data Format (HDF) number type nomenclature, type#, where type is either char (character), int (integer), or float (floating point), and # is a decimal count of the number of bits used to represent the data type. The type mnemonics int and char may be preceded by the letter u, indicating an unsigned value. For example, the data type uint32 refers to an unsigned 32-bit integer value. Table 1-1 shows the data types relevant to the CPF. | Data Type | HDF Nomenclature | |------------------------------|------------------| | 8-bit character | char8 | | 8-bit unsigned integer | uint8 | | 16-bit signed integer | int16 | | 32-bit signed integer | int32 | | 32-bit floating point number | float32 | | 64-bit floating point number | float64 | Table 1-1. Data Types in CPF 5. Description—briefly describes the parameter, its format, and its nominal, expected, or sample value(s). The valid parameter format for numeric data is described using letters S, N, and E. S stands for the sign and can assume values "+" or "-"; if no sign is specified, the "+" sign is assumed. N stands for any digit between 0 and 9. The letter "E" is used in scientific (exponential) notation to represent the 'multiplication by 10 raised to the power' specified by the value following the letter E. For example, the valid format "SNNN.NNNNESNN" can assume any positive or negative value with a significant ranging from 0.0000 to 999.9999 multiplied by 10 raised to the power of any whole number between -99 and +99. ## **Section 2 CPF Parameters** Table 2-1 lists the L7 CPF parameters. | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--------------------|---|---------------|--------------|---| | FILE_ATTRIBUTES | Spacecraft_Name (available in all CPFs with effective dates of January 1, 2007 and thereafter) | Static | char8 | Descriptor used to identify the spacecraft for which the calibration parameters are applicable. Valid format: Landsat_7 | | FILE_ATTRIBUTES | Sensor_Name (available in all CPFs with effective dates of January 1, 2007 and thereafter) | Static | char8 | Descriptor used to identify the sensor for which the calibration parameters are applicable. Valid format: Enhanced_Thematic_Mapper_Plus | | FILE_ATTRIBUTES | Effective_Date_Begin | Dynamic | char8 | Effective start date for this file
Valid format: yyyy-mm-dd, where
yyyy = 1998-2050, mm = 01-12, and dd = 01-31 | | FILE_ATTRIBUTES | Effective_Date_End | Dynamic | char8 | Effective end date for this file Valid format: yyyy-mm-dd, where yyyy = 1998-2050, mm = 01-12, and dd = 01-31 | | FILE_ATTRIBUTES | CPF_File_Name | Dynamic | char8 | Original file name assigned by IAS Valid format: L7CPFyyyymmdd-yyyymmdd.nn where yyyymmdd = effective start date and effective end date, respectively, and nn = incrementing version for within a quarter (01-99) | | EARTH_CONSTANTS | Ellipsoid_Name | Static | char8 | Name of the ellipsoid used to represent the semi-major and semi-minor axes of the Earth Valid format: TTTTT, where TTTTT = WGS84 | | EARTH_CONSTANTS | Semi_Major_Axis | Static | float64 | Earth semi-major axis; distance in meters from the center of the Earth to the equator Valid format: NNNNNNN.NNN, where NNNNNNN.NNN = 6378137.000 | | EARTH_CONSTANTS | Semi_Minor_Axis | Static | float64 | Earth semi-minor axis; distance in meters from the center of the Earth to the poles Valid format: NNNNNNN.NNNN, where NNNNNNN.NNNN = 6356752.3142 | | EARTH_CONSTANTS | Ellipticity | Static | float64 | Ratio describing polar flattening or Earth's deviation from an exact sphere (WGS84 standard) Valid format: N.NNNNNNNNNNNNNNNN, where N.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | | EARTH_CONSTANTS | Eccentricity | Static | float64 | Number describing the Earth ellipsoid eccentricity squared (WGS84 standard) Valid format: N.NNNNNNNNNNNNNNN, where N.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | | EARTH_CONSTANTS | Earth_Spin_Rate | Static | float64 | Earth's diurnal spin rate in radians per second Valid format: NN.NNNNNNNNESNN, where NN.NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN | | EARTH_CONSTANTS | Gravity_Constant | Static | float64 | Universal gravitational constant times the mass of the Earth. This parameter is given in units of meters cubed per second squared (m3/s2). Valid format: N.NNNNNENN, where N.NNNNNENN = 3.986005E14 | | EARTH_CONSTANTS | J2_Earth_Model_
Term | Static | float64 | Term that describes Earth's spherical harmonic Valid format: NNNN.NNESNN, where NNNN.NNESNN = 1082.63E-06 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |------------------------|------------------------------|---------------|--------------|--| | ORBIT_PARAMETERS | WRS_Cycle_Days | Static | uint8 | Time period, in days, required for the satellite to view Earth once Valid format: NN, where NN = 16 | | ORBIT_PARAMETERS | WRS_Cycle_Orbits | Static | uint8 | Number of orbits or paths in a complete World
Reference System (WRS) cycle
Valid format: NNN, where NNN = 233 | | ORBIT_PARAMETERS | Scenes_Per_Orbit | Static | uint8 | Number of scenes or row locations per orbit
Valid format: NNN, where NNN = 248 | | ORBIT_PARAMETERS | Orbital_Period | Static | float64 | Time required, in seconds, to complete one orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 5933.0472 | | ORBIT_PARAMETERS | Angular_Momentum | Static | float64 | Angular momentum in orbit, specified in meters squared per second Valid format: NN.NNNNNNEN, where NN.NNNNNEN = 53.136250E9 | | ORBIT_PARAMETERS | Orbit_Radius | Static | float64 | Nominal distance in km from the Earth's center to the spacecraft track Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457 | | ORBIT_PARAMETERS | Orbit_Semimajor_Axis | Static | float64 | Nominal semi-major axis in km of the satellite's orbit | | | | | | Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4457 | | ORBIT_PARAMETERS | Orbit_Semiminor_Axis | Static | float64 | Nominal semi-minor axis in km of the satellite's orbit Valid format: NNNN.NNNN, where NNNN.NNNN = 7083.4408 | | ORBIT_PARAMETERS | Orbit_Eccentricity | Static | float64 | Nominal eccentricity of the satellite's orbit Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.00117604 | | ORBIT_PARAMETERS | Inclination_Angle | Static | float64 | Angle in degrees formed by Earth's equatorial and satellite plane Valid format: NN.NNNN, where NN.NNNN = 98.2096 | | ORBIT_PARAMETERS | Argument_Of_Perigee | Static | float32 | Nominal angle in degrees of point nearest Earth in orbit as measured from ascending node in the direction of satellite motion Valid format: NN.N, where NN.N = 90.0 | | ORBIT_PARAMETERS | Descending_Node_
Row | Static | uint8 | Row corresponding to the Earth's equator Valid format: NN, where NN = 60 | | ORBIT_PARAMETERS | Long_Path1_Row60 | Static | float32 | Longitude in degrees west of the point at which path 1 crossed the equator (row 60) Valid format: SNN.N, where SNN.N = - 64.6 | | ORBIT_PARAMETERS | Descending_Node_
Time_Min | Static | char8 | Minimum local solar time of descending node in a.m. hours and minutes Valid format: HH:MM, where HH:MM = 09:45 | | ORBIT_PARAMETERS | Descending_Node_
Time_Max | Static | char8 | Maximum local solar time of descending node in a.m. hours and minutes Valid format: HH:MM, where HH:MM = 10:15 | | ORBIT_PARAMETERS | Nodal_Regression_
Rate | Static | float64 | Rate in degrees per day that the orbital plane rotates with respect to the Earth Valid format: N.NNNNNNNNN, where N.NNNNNNNNN = 0.985647366 | | SCANNER_
PARAMETERS | Lines_Per_Scan_30 | Static | uint8 | Detectors per scan for Bands 1-5 and 7 Valid format: NN, where NN = 16 | | SCANNER_
PARAMETERS | Lines_Per_Scan_60 | Static | uint8 | Detectors per scan for Band 6 Valid format: N, where N = 8 | | SCANNER_
PARAMETERS | Lines_Per_Scan_15 | Static | uint8 | Detectors per scan for Band 8 Valid format: NN, where NN = 32 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |------------------------|-------------------------|---------------|--------------|--| | SCANNER_
PARAMETERS | Scans_Per_Scene | Static | int16 | Scans per
nominal WRS scene
Valid format: NNN, where NNN = 375 | | SCANNER_
PARAMETERS | Swath_Angle | Dynamic | float32 | Object space angle in radians of scan mirror travel during active scan time Valid format: N.NNNNN, where N.NNNNN = 0.26868 (after measurement of as-built ETM+) | | SCANNER_
PARAMETERS | Scan_Rate | Static | float32 | Angular scan velocity in radians per second of scan mirror Valid format: N.NNNNN, where N.NNNNN = 2.21095 | | SCANNER_
PARAMETERS | Dwell_Time_30 | Static | float64 | Detector sample time in microseconds for Bands 1-5 and 7 Valid format: N.NNNNNNN, where N.NNNNNNN = 9.6110206 | | SCANNER_
PARAMETERS | Dwell_Time_60 | Static | float64 | Detector sample time in microseconds for Band 6 Valid format: N.NNNNNN, where N.NNNNNN = 19.222041 | | SCANNER_
PARAMETERS | Dwell_Time_15 | Static | float64 | Detector sample time in microseconds for Band 8 Valid format: N.NNNNNNN, where N.NNNNNNN = 4.8055103 | | SCANNER_
PARAMETERS | IC_Line_Length_30 | Static | int16 | Nominal number of detector samples for the Internal Calibrator (IC) for Bands 1-5 and 7 Valid format: NNNN, where NNNN = 1150 | | SCANNER_
PARAMETERS | IC_Line_Length_60 | Static | int16 | Nominal number of detector samples for the internal calibrator for Band 6 Valid format: NNN, where NNN = 575 | | SCANNER_
PARAMETERS | IC_Line_Length_15 | Static | int16 | Nominal number of detector samples for the internal calibrator for Band 8 Valid format: NNNN, where NNNN = 2300 | | SCANNER_
PARAMETERS | Scan_Line_Length_30 | Static | int16 | Nominal number of detector samples during active scan time for Bands 1-5 and 7 Valid format: NNNN, where NNNN = 6320 | | SCANNER_
PARAMETERS | Scan_Line_Length_60 | Static | int16 | Nominal number of detector samples during active scan time for Band 6 Valid format: NNNN, where NNNN = 3160 | | SCANNER_
PARAMETERS | Scan_Line_Length_15 | Static | int16 | Nominal number of detector samples during active scan time for Band 8 Valid format: NNNNN, where NNNNN = 12640 | | SCANNER_
PARAMETERS | Filter_Frequency_30 | Static | float32 | Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Bands 1-5 and 7 Valid format: NN.NN, where NN.NN = 52.02 | | SCANNER_
PARAMETERS | Filter_Frequency_60 | Static | float32 | Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Band 6 Valid format: NN.NN, where NN.NN = 26.01 | | SCANNER_
PARAMETERS | Filter_Frequency_15 | Static | float32 | Bandwidth in kHz of detector presample filter (defined by 3-dB roll-off point) for Band 8 Valid format: NNN.NN, where NNN.NN = 115.00 | | SCANNER_
PARAMETERS | IFOV_B1234 | Static | float32 | Angle in µrad subtended by a detector in Bands 1, 2, 3, and 4 when the scanning motion is stopped Valid format: NN.N, where NN.N = 42.5 | | SCANNER_
PARAMETERS | IFOV_B57_along_
scan | Static | float32 | Along-scan angle in µrad subtended by a detector in Bands 5 and 7 when the scanning motion is stopped Valid format: NN.N, where NN.N = 39.4 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-----------------------------|---------------|--------------------------------|--| | SCANNER_
PARAMETERS | IFOV_B57_across_
scan | Static | float32 | Across-scan angle in µrad subtended by a detector in Bands 5 and 7 when the scanning motion is stopped Valid format: NN.N, where NN.N = 42.5 | | SCANNER_
PARAMETERS | IFOV_B6 | Static | float32 | Angle in µrad subtended by a Band 6 detector when scanning motion is stopped Valid format: NN.N, where NN.N = 85.0 | | SCANNER_
PARAMETERS | IFOV_B8_along_scan | Static | float32 | Along-scan angle in µrad subtended by a Band 8 detector when the scanning motion is stopped Valid format: NN.N, where NN.N = 18.5 | | SCANNER_
PARAMETERS | IFOV_B8_across_
scan | Static | float32 | Across-scan angle in µrad subtended by a Band 8 detector when scanning motion is stopped Valid format: NN.NN, where NN.NN = 21.25 | | SCANNER_
PARAMETERS | Scan_Period | Static | float64 | Time in milliseconds of a complete scan cycle, including forward and reverse scans Valid format: NNN.NN, where NNN.NN = 143.58 | | SCANNER_
PARAMETERS | Scan_Frequency | Static | float32 | Number of scans in 1 second (Hz) Valid format: N.NNNNN, where N.NNNNN = 6.96476 | | SCANNER_
PARAMETERS | Active_Scan_Time | Static | float32 | Time in µs required for the scan mirror to travel from its scan-line-start to End-Of-Line (EOL) Valid format: NNNNN.NNN, where NNNNN.NNN = 60743.346 | | SCANNER_
PARAMETERS | Turn_Around_Time | Static | float32 | Time in milliseconds from EOL to next scan-
line-start, during which scan mirror motion
reverses direction
Valid format: NN.NNN, where:
NN.NNN = 11.055 | | SPACECRAFT_
PARAMETERS | ADS_Interval | Static | float32 | Time in milliseconds between Attitude Displacement Sensors (ADS) samples Valid format: N.N, where N.N = 2.0 | | SPACECRAFT_
PARAMETERS | ADS_Roll_Offset | Static | float32 | Amount of time in milliseconds from the start of a Payload Correction Data (PCD) cycle to roll axis measurement Valid format: N.NNN, where N.NNN = 0.375 | | SPACECRAFT_
PARAMETERS | ADS_Yaw_Offset | Static | float32 | Amount of time in milliseconds from the start of a PCD cycle to the yaw axis measurement Valid format: N.NNN, where N.NNN = 0.875 | | SPACECRAFT_
PARAMETERS | ADS_Pitch_Offset | Static | float32 | Amount of time in milliseconds from the start of a PCD cycle to the pitch axis measurement Valid format: N.NNN, where N.NNN = 1.375 | | SPACECRAFT_
PARAMETERS | Data_Rate | Static | float32 | ETM+ output bit rate in Mbps Valid format: NN.NNN, where NN.NNN = 74.914 | | GROUP:
MIRROR_PARAMETERS | Error_Conversion_
Factor | Static | float32 | First half and second half scan mirror error measurement units in microseconds Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.18845139 (5.306437 MHz) | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Along_
SME1_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the departure from linearity of forward along scan mirror motion; Scan Angle Monitor (SAM) mode with Scan Mirror Electronics (SME) number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Cross_
SME1_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-----------------------------|---------------|--------------------------------|--| | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Angle1_
SME1_SAM | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in forward direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67166.9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Angle2_
SME1_SAM | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67145.9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Reverse_Along_
SME1_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Reverse_Cross_
SME1_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Reverse_Angle1_
SME1_SAM | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67142.8 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Reverse_Angle2_
SME1_SAM | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 1 Valid format: NNNNN.N, where NNNNN.N = 67169.9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Along_
SME2_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward along scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Cross_
SME2_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward cross scan mirror motion from linear; SAM mode with SME number 2 Valid format for
each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Angle1_
SME2_SAM | Static | float32 | Angle in µrad from the start of the scan to mid-
scan point in forward direction; SAM mode with
SME number 2
Valid format: NNNNN.N, where
NNNNN.N = 67162.7 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Forward_Angle2_
SME2_SAM | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in forward direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_SAM | Reverse_Along_
SME2_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|--|---------------|---|---| | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_SAM | Reverse_Cross_
SME2_SAM | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_SAM | Reverse_Angle1_
SME2_SAM | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.8 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_SAM | Reverse_Angle2_
SME2_SAM | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N, where NNNNN.N = 67162.7 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Forward_Along_
SME1_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward along scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_
PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Forward_Cross_
SME1_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of forward cross scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP: | Forward_Angle1_ | For CPFs | with effective | ve dates prior to April 1, 2007 | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | SME1_Bump | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 1. Valid format: NNNNN.N, where NNNNN.N = 67156.3 | | | | For CPFs | with effective | ve dates of April 1, 2007 and thereafter | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | GROUP: | Forward_Angle2_ | For CPFs | with effective | ve dates prior to April 1, 2007 | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | SME1_Bump | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 1. Valid format: NNNNN.N, where NNNNN.N = 67156.7 | | | | For CPFs | with effective | ve dates of April 1, 2007 and thereafter | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Forward_FHSERR_SME1
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | First-half error of the forward scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|--|---------------|---|--| | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Forward_SHSERR_SME1
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | Second-half error of the forward scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Reverse_Along_
SME1_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse along the scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Reverse_Cross_
SME1_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; Bumper mode with SME number 1 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP: | Reverse_Angle1_ | For CPFs | with effective | ve dates prior to April 1, 2007 | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | SME1_Bump | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; Bumper mode with SME number 1. Valid format: NNNNN.N where NNNNN.N = 67156.7 | | | | For CPFs | with effective | ve dates of April 1, 2007 and thereafter | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the start of the scan to the mid-scan point in reverse direction; Bumper mode with SME number 1. Array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | GROUP: | Reverse_Angle2_ | For CPFs | with effective | ve dates prior to April 1, 2007 | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | SME1_Bump | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; Bumper mode with SME number 1. Valid format: NNNNN.N where NNNNN.N = 67156.3 | | | | For CPFs | with effective | ve dates of April 1, 2007 and thereafter | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the mid-scan point to the end of the scan in reverse direction; Bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Reverse_FHSERR_SME1
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | First-half error of the reverse scan angle; Bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME1_BUMP | Reverse_SHSERR_SME1
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | Second-half error of the reverse scan angle; bumper mode with SME number 1. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Forward_Along_
SME2_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe deviation of forward along scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | | |---|--|---|---|--|--| |
GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Forward_Cross_
SME2_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of the forward cross scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | | GROUP: | Forward_Angle1_ | For CPFs | with effective | ve dates prior to April 1, 2007 | | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | SME2_Bump | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in forward direction; bumper mode with SME number 2. Valid format: NNNNN.N where NNNNN.N = 67162.7 | | | | | For CPFs | with effective | ve dates of April 1, 2007 and thereafter | | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | | GROUP: | Forward_Angle2_ | For CPFs | with effective | ve dates prior to April 1, 2007 | | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | SME2_Bump | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 2. Valid format: NNNNN.N where NNNNN.N = 67162.8 | | | | | For CPFs with effective dates of April 1, 2007 and thereafter | | | | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the mid-scan point to the end of the scan in forward direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Forward_FHSERR_SME2
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | First-half error of the forward scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Forward_SHSERR_SME2
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | Second-half error of the forward scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Reverse_Along_
SME2_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse along scan mirror motion from linear; Bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Reverse_Cross_
SME2_Bump | Static | float64
array
(6 values) | Fifth-order polynomial coefficients that describe the deviation of reverse cross scan mirror motion from linear; Bumper mode with SME number 2 Valid format: for each term: SN.NNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|--|---------------|---|--| | GROUP: | Reverse_Angle1_ | For CPFs | with effecti | ve dates prior to April 1, 2007 | | MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP | SME2_Bump | Static | float32 | Angle in µrad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2. Valid format is NNNNN.N where NNNNN.N = 67162.8 | | | | For CPFs | with effecti | ve dates of April 1, 2007 and thereafter | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the start of the scan to the mid-scan point in the reverse direction; Bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | GROUP: | Reverse_Angle2_ | For CPFs | with effecti | ve dates prior to April 1, 2007 | | MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | SME2_Bump | Static | float32 | Angle in µrad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2. Valid format is NNNNN.N where NNNNN.N = 67162.7 | | | | For CPFs | with effecti | ve dates of April 1, 2007 and thereafter | | | | Dynamic | float32
array of
flexible
length | Angle in µrad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.N, where N = 0 to 9. | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Reverse_FHSERR_SME2
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | First-half error of the reverse scan angle;
Bumper mode with SME number 2. The array
contains daily values over one CPF interval.
Valid format for each term: SNNNN, where S =
"+" or "-" and N = 0 to 9 | | GROUP:
MIRROR_PARAMETERS
GROUP:
ANGLES_SME2_BUMP | Reverse_SHSERR_SME2
_Bump
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | int16
array of
flexible
length | Second-half error of the reverse scan angle; bumper mode with SME number 2. The array contains daily values over one CPF interval. Valid format for each term: SNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperA_Dwell_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from the bumper A pickoff signal to the start of the reverse scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperA_Pickoff_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to the bumper A pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperA_Offset_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--------------------------------------|---|---------------|---|--| | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians. Valid format: SNNNNN.N, where SNNNNN.N = -68665.0 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperB_Dwell_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperB_Pickoff_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to the bumper B pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperB_Offset_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME1_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - mirror field
angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians. Valid format: SNNNNN.N, where SNNNNN.N = 68607.0 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME2_BumperA_Dwell_
Time
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME2_BumperA_Pickoff_
Time (available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from the end of the forward scan linear motion to bumper A pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME2_BumperA_Offset_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - time from bumper A pickoff signal to the start of the reverse active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00 | | GROUP: BUMPER_MODE_ PARAMETERS | SME2_BumperA_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians. Valid format: SNNNNN.N, where SNNNNN.N = -68665.0 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|--|---------------|---|--| | GROUP: BUMPER_MODE_ PARAMETERS | SME2_BumperB_Dwell_
Time (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward scan linear motion in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP: BUMPER_MODE_ PARAMETERS | SME2_BumperB_Pickoff_
Time (available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Dynamic | float32
array of
flexible
length | "Physical" bumper mode mirror model parameter - time from the end of the reverse scan linear motion to bumper B pickoff signal in microseconds. The array contains daily values over one CPF interval. Valid format for each term: NNNNN.NN, where N = 0 to 9 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME2_BumperB_Offset_
Time
(available in all CPFs with
effective dates of April 1,
2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - time from bumper B pickoff signal to the start of the forward active scan in microseconds. Valid format: NNNNN.NN, where NNNNN.NN = 10110.00 | | GROUP:
BUMPER_MODE_
PARAMETERS | SME2_BumperB_Angle (available in all CPFs with effective dates of April 1, 2007 and thereafter) | Static | float32 | "Physical" bumper mode mirror model parameter - mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians. Valid format: SNNNNN.N, where SNNNNN.N = 68607.0 | | GROUP:
SCAN_LINE_CORRECTOR | Primary_Angular_
Velocity | Static | float32 | Angular velocity in radians per second of the primary scan line corrector Valid format: N.NNNNN, where N.NNNNN = 0.00966 | | GROUP:
SCAN_LINE_CORRECTOR | Secondary_Angular_
Velocity | Static | float32 | Angular velocity in radians per second of the secondary scan line corrector Valid format: N.NNNNN, where N.NNNNN = 0.00960 | | GROUP:
SCAN_LINE_CORRECTOR | Primary_Corrector_
Motion | Static | float32
array
(6 values) | Fifth-order polynomial coefficients that describe the motion of the primary scan line corrector Valid format for each term: N.NNNNN, where N = 0 to 9 | | GROUP:
SCAN_LINE_CORRECTOR | Secondary_Corrector_
Motion | Static | float32
array
(6 values) | Fifth-order polynomial coefficients that describe the motion of the secondary scan line corrector Valid format for each term: N.NNNNN, where N = 0 to 9 | | GROUP:
SCAN_LINE_CORRECTOR | Unpowered_Pointing_Bias (available in all CPFs with effective dates of July 14, 2003 and thereafter) | Dynamic | Float32 | The best estimate of the pointing angle of the scan line corrector in its unpowered, "at-rest" pointing position Valid format: N.NNNNNNN, where N.NNNNNNN = 0.0000427 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP: BAND_OFFSETS | Along_Scan_Band_
Offsets | Static | float32
array
(8 values) | Nominal displacement in μ rad from the center of the focal plane to each band's optical axis Valid format: SNNNN.NNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP: BAND_OFFSETS | Across_Scan_Band_
Offsets | Static | float32
array
(8 values) | Nominal displacement in μ rad from the center of the focal plane to each band's scan motion axis Valid format: SNNNN.NNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP: BAND_OFFSETS | Forward_Focal_
Plane_Offsets | Static | float32
array
(8 values) | Offset in Instrument Fields of View (IFOVs) for focal plane forward scans Valid format: SNNN.N, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|---| | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP: BAND_OFFSETS | Reverse_Focal_
Plane_Offsets | Static | float32
array
(8 values) | Offset in IFOVs for focal plane reverse scans Valid format: SNNN.N, where S = "+" or "-" and N = 0 to 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B1 | Static | float32
array
(16 values) | Forward along scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B1 | Static | float32
array
(16 values) | Reverse along scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B2 | Static | float32
array
(16 values) | Forward along scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B2 | Static | float32
array
(16 values) | Reverse along scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B3 | Static | float32
array
(16 values) | Forward along scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B3 | Static | float32
array
(16 values) | Reverse along scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B4 | Static | float32
array
(16 values) | Forward along scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B4 | Static | float32
array
(16 values) | Reverse along scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B5 | Static | float32
array
(16 values) | Forward along scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B5 | Static | float32
array
(16 values) | Reverse along scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B6 | Static | float32
array
(8 values) | Forward along scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B6 | Static | float32
array
(8 values) | Reverse along scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B7 | Static | float32
array
(16 values) | Forward along scan detector
offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B7 | Static | float32
array
(16 values) | Reverse along scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------------------|---------------|---------------------------------|--| | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Along_
Scan_DO_B8 | Static | float32
array
(32 values) | Forward along scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Along_
Scan_DO_B8 | Static | float32
array
(32 values) | Reverse along scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR OFFSETS | Forward_Across_
Scan_DO_B1 | Static | float32
array
(16 values) | Forward across scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B1 | Static | float32
array
(16 values) | Reverse across scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_
Scan_DO_B2 | Static | float32
array
(16 values) | Forward across scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B2 | Static | float32
array
(16 values) | Reverse across scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_
Scan_DO_B3 | Static | float32
array
(16 values) | Forward across scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B3 | Static | float32
array
(16 values) | Reverse across scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_
Scan_DO_B4 | Static | float32
array
(16 values) | Forward across scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B4 | Static | float32
array
(16 values) | Reverse across scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_
Scan_DO_B5 | Static | float32
array
(16 values) | Forward across scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 | | FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B5 | Static | float32
array
(16 values) | Reverse across scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_Scan_
DO_B6 | Static | float32
array
(8 values) | Forward across scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B6 | Static | float32
array
(8 values) | Reverse across scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_
Scan_DO_B7 | Static | float32
array
(16 values) | Forward across scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B7 | Static | float32
array
(16 values) | Reverse across scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Forward_Across_
Scan_DO_B8 | Static | float32
array
(32 values) | Forward across scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
DETECTOR_OFFSETS | Reverse_Across_
Scan_DO_B8 | Static | float32
array
(32 values) | Reverse across scan detector offsets in IFOV for each detector in Band 8 Valid format: N.NNN, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
ODD_EVEN_OFFSETS | Forward_Even_
Detector_Shift | Static | float32
array
(8 values) | Adjustments in IFOVs to compensate for forward band offsets, even detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
ODD_EVEN_OFFSETS | Forward_Odd_
Detector_Shift | Static | float32
array
(8 values) | Adjustments in IFOVs to compensate for forward band offsets, odd detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
ODD_EVEN_OFFSETS | Reverse_Even_
Detector_Shift | Static | float32
array
(8 values) | Adjustments in IFOVs to compensate for reverse band offsets, even detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9 | | GROUP: FOCAL_PLANE_
PARAMETERS
GROUP:
ODD_EVEN_OFFSETS | Reverse_Odd_
Detector_Shift | Static | float32
array
(8 values) | Adjustments in IFOVs to compensate for reverse band offsets, odd detector layout geometry and multiplexer sampling for Bands 1 through 8 Valid format: NNN.N, where N = 0 TO 9 | | GROUP:
ATTITUDE_PARAMETERS | Gyro_To_Attitude_
Matrix | Static | float32
array
(9 values) | Matrix describing the relationship of the gyro axis to the attitude control reference axis Valid format: SN.NNNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
ATTITUDE_PARAMETERS | ADSA_To_ETM_
Matrix | Static | float32
array
(9 values) | Matrix describing the relationship of the Attitude Displacement Sensor Assembly (ADSA) to the ETM+ optical axis Valid format: SN.NNNNNNNNESNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
ATTITUDE_PARAMETERS | Attitude_To_ETM_
Matrix | Static | float32
array
(9 values) | Matrix describing the relationship of the attitude control reference axis to the ETM+ optical axis Valid format: SN.NNNNNNNNSNN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
ATTITUDE_PARAMETERS | Spacecraft_Roll_Bias | Static | float32 | Spacecraft roll bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN = 0.00000000E+00 | | GROUP:
ATTITUDE_PARAMETERS | Spacecraft_Pitch_
Bias | Static | float32 | Spacecraft pitch bias in radians Valid format: N.NNNNNNNESNN, where N.NNNNNNNNESNN = 0.00000000E+00 | | GROUP:
ATTITUDE_PARAMETERS | Spacecraft_Yaw_Bias | Static | float32 | Spacecraft yaw bias in radians Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNESNN = 0.00000000E+00 | | GROUP:
ATTITUDE_PARAMETERS | IMU_Drift_Bias_XA | Static | float32 | Inertial Measurement Unit (IMU) XA axis drift bias in radians per second. Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN = -2.23500000E-06 | | GROUP:
ATTITUDE_PARAMETERS | IMU_Drift_Bias_YA | Static | float32 | IMU YA axis drift bias in radians per second. Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNNESNN = -2.23500000E-06 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|------------------------------|---------------|---------------------------------|---| | GROUP:
ATTITUDE_PARAMETERS | IMU_Drift_Bias_ZA | Static | float32 | IMU ZA axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN = 1.68230000E-06 | | GROUP:
ATTITUDE_PARAMETERS | IMU_Drift_Bias_XB | Static | float32 | IMU XB axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN = 186665000E-06 | | GROUP:
ATTITUDE_PARAMETERS | IMU_Drift_Bias_YB | Static | float32 | IMU YB axis drift bias in radians per second. Valid format: SN.NNNNNNNNESNN, where SN.NNNNNNNNESNN = -6.35100000E-07 | | GROUP:
ATTITUDE_PARAMETERS | IMU_Drift_Bias_ZB | Static | float32 | IMU ZB axis drift bias in radians per second. Valid format: N.NNNNNNNNESNN, where N.NNNNNNNNNESNN =
4.84810000E-08 | | GROUP:
TIME_PARAMETERS | Scan_Time | Static | float32 | Nominal scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 60743.0 | | GROUP:
TIME_PARAMETERS | Forward_First_Half_
Time | Static | float32 | Nominal forward first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4 | | GROUP:
TIME_PARAMETERS | Forward_Second_
Half_Time | Static | float32 | Nominal forward second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6 | | GROUP:
TIME_PARAMETERS | Reverse_First_Half_
Time | Static | float32 | Nominal reverse first half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.6 | | GROUP:
TIME_PARAMETERS | Reverse_Second_
Half_Time | Static | float32 | Nominal reverse second half scan time in microseconds Valid format: NNNNN.N, where NNNNN.N = 30371.4 | | GROUP:
TRANSFER_FUNCTION
GROUP: IMU | Fn | Static | float64 | Inertial measurement unit transfer function resonant frequency (Hz) Valid format: N.NNNNNNN, where N.NNNNNNN = 3.3113091 | | GROUP:
TRANSFER_FUNCTION
GROUP: IMU | Zeta | Static | float64 | Inertial measurement unit transfer function damping coefficient Valid format: N.NNNNNNNN, where N.NNNNNNNN = 0.66882924 | | GROUP:
TRANSFER_FUNCTION
GROUP: IMU | Tau | Static | float64 | Inertial measurement unit transfer function denominator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNNESN = -1.6086176E-2 | | GROUP:
TRANSFER_FUNCTION
GROUP: IMU | P | Static | float64 | Inertial measurement unit transfer function numerator time constant (seconds) Valid format: SN.NNNNNNNESN, where SN.NNNNNNNESN = -4.1138195E-3 | | GROUP:
TRANSFER_FUNCTION
GROUP: IMU | Ak | Static | float64 | Inertial measurement unit transfer function DC gain Valid format: N.NNNNNNN, where N.NNNNNNN = 1.0103061 | | GROUP:
TRANSFER_FUNCTION
GROUP: ADS | ADS_num | Static | float64
array
(18 values) | Transfer function numerator coefficients in order a0, a1, a2, a3, a4, a5; one set of six coefficients for each of the three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNNEN, where S = "+" or "-", N = 0 to 9, and E = "E" | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------|---------------|-------------------------------------|---| | GROUP:
TRANSFER_FUNCTION
GROUP: ADS | ADS_den | Static | float64
array
(18 values) | Transfer function denominator coefficients in order b0, b1, b2, b3, b4, b5; one set of six coefficients for each of three ADS units; determined at 15 degrees C Valid format: SN.NNNNNNNEN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
TRANSFER_FUNCTION
GROUP: ADS | ADS_num_temp | Static | float64
array
(18 values) | Temperature-dependent part of the ADS transfer function numerator coefficients in order da0, da1, da2, da3, da4, da5; one set of six coefficients for each of three ADS units; change per degree C Valid format: SN.NNNNNNNESN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
TRANSFER_FUNCTION
GROUP: ADS | ADS_den_temp | Static | float64
array
(18 values) | Temperature-dependent part of the ADS transfer function denominator coefficients in order da0, da1, da2, da3, da4, da5. One set of six coefficients for each of three ADS units. Change per degree C Valid format: SN.NNNNNNNESN, where S = "+" or "-", N = 0 to 9, and E = "E" | | GROUP:
TRANSFER_FUNCTION
GROUP: PREFILTER | ADSPre_W | Static | float64
array
(5 values) | ADS prefilter transfer function quadratic term resonant periods (Note: Given as period instead of frequency so that the transfer function can be set to unity, if necessary, by setting all five values to zero.) Valid format: N.NNNNNNNNN, where N = 0 to 9 | | GROUP:
TRANSFER_FUNCTION
GROUP: PREFILTER | ADSPre_H | Static | float64
array
(5 values) | ADS prefilter transfer function quadratic term damping coefficients Valid format: SN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
TRANSFER_FUNCTION
GROUP: PREFILTER | ADSPre_T | Static | float64
array
(5 values) | ADS prefilter transfer function linear term time constants Valid format: N.NNNNNNN, where N = 0 to 9 | | GROUP:
UT1_TIME_PARAMETERS | UT1_Year | Dynamic | int16 array
(180
values) | Year of UT1 time correction prediction; values span 180 days Valid format: YYYY, where YYYY = 1998-2020 | | GROUP:
UT1_TIME_PARAMETERS | UT1_Month | Dynamic | char8
array
(180
values) | Month of UT1 time correction prediction; values span 180 days Valid format: MMM, where MMM = Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec | | GROUP:
UT1_TIME_PARAMETERS | UT1_Day | Dynamic | uint8 array
(180
values) | Day of UT1 time correction prediction; values span 180 days Valid format: NN, where NN = 1-31 | | GROUP:
UT1_TIME_PARAMETERS | UT1_Modified_Julian | Dynamic | int32 array
(180
values) | Modified Julian day; values span 180 days; MJD = Julian day - 2 400 000.5; Julian date is a running day count starting 1 January 4713 B.C. Valid format: NNNNN, where NNNNN = e.g., 50234 (for May 31, 1996) | | GROUP:
UT1_TIME_PARAMETERS | UT1_X | Dynamic | float32
array
(180
values) | X shift pole wander in arc seconds; values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g. 0.45431 | | GROUP:
UT1_TIME_PARAMETERS | UT1_Y | Dynamic | float32
array
(180
values) | Y shift pole wander in arc seconds; values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g., 0.13454 | | GROUP:
UT1_TIME_PARAMETERS | UT1_UTC | Dynamic | float32
array
(180
values) | UT1 - UTC time difference in seconds. Values span 180 days Valid format: N.NNNNN, where N.NNNNN = e.g., 0.44321 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------|---------------|---------------------------------|--| | GROUP:
DETECTOR_STATUS | Status_Band1 | Dynamic | char8
array
(16 values) | Health status of Band 1's 16 detectors Valid format: ABCDE, where A = 0 (live), 1 (dead), 2 (intermittent) B = 0 (noise in spec, low gain), 1 (noisy low signal), 2 (noisy high signal), 3 (noisy both signals), 4 (inoperable) C = 0 (noise in spec, high gain), 1 (noisy low signal), 2 (noisy high signal), 3 (noisy both signals), 4 (inoperable) D = 0 (dynamic range in spec, low gain) 1 (fail, high end), 2 (fail, low end), 3 (fail, both ends), 4 (inoperable) E = 0 (dynamic range in spec, high gain), 1 (fail, low end), 2 (fail, low end), 3 (fail, both ends), 4 (inoperable) | | GROUP:
DETECTOR_STATUS | Status_Band2 | Dynamic | char8
array (16
values) | Health status of Band 2's 16 detectors
Valid format: as above | | GROUP:
DETECTOR_STATUS | Status_Band3 | Dynamic | char8
array (16
values) | Health status of Band 3's 16 detectors Valid format: as above. | | GROUP:
DETECTOR_STATUS | Status_Band4 | Dynamic | char8
array (16
values) | Health status of Band 4's 16 detectors
Valid format: as above | | GROUP:
DETECTOR_STATUS | Status_Band5 | Dynamic | char8
array (16
values) | Health status of Band 5's 16 detectors
Valid format: as above | | GROUP:
DETECTOR_STATUS | Status_Band6 | Dynamic | char8
array (8
values) | Health status of Band 6's 8 detectors
Valid format: as above | | GROUP:
DETECTOR_STATUS | Status_Band7 | Dynamic | char8
array (16
values) | Health status of Band 7's 16 detectors
Valid format: as above | | GROUP:
DETECTOR_STATUS | Status_Band8 | Dynamic | char8
array (32
values) | Health status of Band 8's 32 detectors
Valid format: as above | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B1L_Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch low gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B1L_Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch low gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B1L_Current | Dynamic | float32
array
(16 values) | Band 1 current low gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_LOW | B2L_Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch low gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B2L_Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch low gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B2L_Current | Dynamic | float32
array
(16 values) | Band 2 current low gain in counts/W/m^2-ster-
µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP:
DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B3L_Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch low gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_LOW | B3L_Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch low gain in counts/W/m^2-
ster-μm
Valid format: NN.NNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|---------------------------------|---| | GROUP: DETECTOR_GAINS GROUP: | B3L_Current | Dynamic | float32
array
(16 values) | Band 3 current low gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | DETECTOR_GAINS_LOW GROUP: DETECTOR GAINS | B4L Prelaunch | Static | float32 | Band 4 prelaunch low gain in counts/W/m^2- | | GROUP: | D4L_I Telaunen | Static | array | ster-µm | | DETECTOR_GAINS_LOW | | | (16 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B4L_Postlaunch | Static | float32 | Band 4 postlaunch low gain in counts/W/m^2- | | GROUP: | | | array
(16 values) | ster-µm Valid format: NN.NNNNN, where N = 0 to 9 | | DETECTOR_GAINS_LOW | D4L Current | Dumamia | float32 | · | | GROUP: DETECTOR_GAINS GROUP: | B4L_Current | Dynamic | array | Band 4 current low gain in counts/W/m^2-ster-
µm | | DETECTOR_GAINS_LOW | | | (16 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B5L_Prelaunch | Static | float32 | Band 5 prelaunch low gain in counts/W/m^2- | | GROUP: | | | array
(16 values) | ster-µm | | DETECTOR_GAINS_LOW | DCI. Dacklermak | Ct-ti- | , , | , | | GROUP: DETECTOR_GAINS GROUP: | B5L_Postlaunch | Static | float32
array | Band 5 postlaunch low gain in counts/W/m^2-ster-µm | | DETECTOR_GAINS_LOW | | | (16 values) | | | GROUP: DETECTOR_GAINS | B5L_Current | Dynamic | float32 | Band 5 current low gain in counts/W/m^2-ster- | | GROUP: | | | array | µm | | DETECTOR_GAINS_LOW | DOI D 1 | 01.11 | (16 values) | | | GROUP: DETECTOR_GAINS GROUP: | B6L_Prelaunch | Static | float32
array | Band 6 prelaunch low gain in counts/W/m^2-ster-µm | | DETECTOR_GAINS_LOW | | | (8 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B6L_Postlaunch | Static | float32 | Band 6 postlaunch low gain in counts/W/m^2- | | GROUP: | _ | | array | ster-µm | | DETECTOR_GAINS_LOW | | | (8 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: | B6L_Current | Dynamic | float32
array | Band 6 current low gain in counts/W/m^2-ster-
µm | | DETECTOR_GAINS_LOW | | | (8 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B7L_Prelaunch | Static | float32 | Band 7 prelaunch low gain in counts/W/m^2- | | GROUP: | _ | | array | ster-µm | | DETECTOR_GAINS_LOW | | | (16 values) | | | GROUP: DETECTOR_GAINS GROUP: | B7L_Postlaunch | Static | float32
array | Band 7 postlaunch low gain in counts/W/m^2-ster-µm | | DETECTOR_GAINS_LOW | | | (16 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B7L_Current | Dynamic | float32 | Band 7 current low gain in counts/W/m^2-ster- | | GROUP: | | | array | μm | | DETECTOR_GAINS_LOW | 50.5. | 0 | + | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: | B8L_Prelaunch | Static | float32
array | Band 8 prelaunch low gain in counts/W/m^2-ster-µm | | DETECTOR GAINS LOW | | | (32 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B8L_Postlaunch | Static | float32 | Band 8 postlaunch low gain in counts/W/m^2- | | GROUP: | | | array | ster-µm | | DETECTOR_GAINS_LOW | Day 0 | 1 | (32 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: | B8L_Current | Dynamic | float32
array | Band 8 current low gain in counts/W/m^2-ster-
µm | | DETECTOR_GAINS_LOW | | | (32 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B1H_Prelaunch | Static | float32 | Band 1 prelaunch high gain in counts/W/m^2- | | GROUP: | | | array | ster-µm | | DETECTOR_GAINS_HIGH | 544.5 | <u> </u> | (16 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS | B1H_Postlaunch | Static | float32
array | Band 1 postlaunch high gain in counts/W/m^2-ster-µm | | GROUP: DETECTOR_GAINS_HIGH | | | (16 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR GAINS | B1H_Current | Dynamic | float32 | Band 1 current high gain in counts/W/m^2-ster- | | GROUP: | | | array | μm | | DETECTOR_GAINS_HIGH | | | (16 values) | Valid format: NN.NNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|---------------------------------|---| | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B2H_Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B2H_Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B2H_Current | Dynamic | float32
array
(16 values) | Band 2 current high gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH | B3H_Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH | B3H_Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch high gain in counts/W/m^2-ster-µm | | GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH | B3H_Current | Dynamic | float32
array
(16 values) | Band 3 current high gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B4H_Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B4H_Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B4H_Current | Dynamic | float32
array
(16 values) | Band 4 current high gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B5H_Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B5H_Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B5H_Current | Dynamic | float32
array
(16 values) | Band 5 current high gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B6H_Prelaunch | Static | float32
array
(8 values) | Band 6 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B6H_Postlaunch | Static | float32
array
(8 values) | Band 6 postlaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B6H_Current | Dynamic | float32
array
(8 values) | Band 6 current high gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: DETECTOR GAINS HIGH | B7H_Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B7H_Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS GROUP: DETECTOR_GAINS_HIGH | B7H_Current | Dynamic | float32
array
(16 values) | Band 7 current high gain in counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B8H_Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch high gain in counts/W/m^2-
ster-µm
Valid format: NN.NNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|------------------------------|---------------|---------------------------------|--| | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B8H_Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch high gain in counts/W/m^2-
ster-μm
Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: DETECTOR_GAINS
GROUP:
DETECTOR_GAINS_HIGH | B8H_Current | Dynamic | float32
array
(32 values) | Band 8 current high gain in
counts/W/m^2-ster-
µm Valid format: NN.NNNNN, where N = 0 to 9 | | GROUP: BIAS_LOCATIONS | Forward_Bias_
Location_30 | Dynamic | int16 | Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Bands 1–5 and 7 Valid format: NNN, where NNN = 143 | | GROUP: BIAS_LOCATIONS | Forward_Bias_
Length_30 | Dynamic | int16 | Number of pixels to use, per line, in calculating
bias for Bands 1-5 and 7
Valid format: NNN, where NNN = 500 | | GROUP: BIAS_LOCATIONS | Forward_IC_
Region_30 | Dynamic | int16 | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and 7 Valid format: NNN, where NNN = 814 | | GROUP: BIAS_LOCATIONS | Reverse_Bias_
Location_30 | Dynamic | int16 | Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Bands 1–5 and 7 Valid format: NNN, where NNN = 810 | | GROUP: BIAS_LOCATIONS | Reverse_Bias_
Length_30 | Dynamic | int16 | Number of pixels to use per line, in calculating bias for Bands 1-5 and 7 Valid format: NNN, where NNN = 500 | | GROUP: BIAS_LOCATIONS | Reverse_IC_
Region_30 | Dynamic | int16 | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Bands 1-5 and 7 Valid format: NNN, where NNN = 810 | | GROUP: BIAS_LOCATIONS | Forward_Bias_
Location_60 | Dynamic | int16 | Offset, per-line, in pixels, from the beginning of the data (Left Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 85 | | GROUP: BIAS_LOCATIONS | Forward_Bias_
Length_60 | Dynamic | int16 | Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275 | | GROUP: BIAS_LOCATIONS | Forward_IC_
Region_60 | Dynamic | int16 | Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 380 | | GROUP: BIAS_LOCATIONS | Reverse_Bias_
Location_60 | Dynamic | int16 | Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 6 Valid format: NNN, where NNN = 400 | | GROUP: BIAS_LOCATIONS | Reverse_Bias_
Length_60 | Dynamic | int16 | Number of pixels to use, per line, in calculating bias for Band 6 Valid format: NNN, where NNN = 275 | | GROUP: BIAS_LOCATIONS | Reverse_IC_
Region_60 | Dynamic | int16 | Length of the useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 6 Valid format: NNN, where NNN = 410 | | GROUP: BIAS_LOCATIONS | Forward_Bias_
Location_15 | Dynamic | int16 | Offset, per-line, in pixels, from the beginning of
the data (Left Hand Offset) to the bias location
starting point (start of DC Restore) for Band 8
Valid format: NNN, where NNN = 286 | | GROUP: BIAS_LOCATIONS | Forward_Bias_
Length_15 | Dynamic | int16 | Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|------------------------------|---------------|---------------------------------|--| | GROUP: BIAS_LOCATIONS | Forward_IC_
Region_15 | Dynamic | int16 | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1635 | | GROUP: BIAS_LOCATIONS | Reverse_Bias_
Location_15 | Dynamic | int16 | Offset, per line, in pixels, from the beginning of the data (Right Hand Offset) to the bias location starting point (start of DC Restore) for Band 8 Valid format: NNNN, where NNNN = 1610 | | GROUP: BIAS_LOCATIONS | Reverse_Bias_
Length_15 | Dynamic | int16 | Number of pixels to use, per line, in calculating bias for Band 8 Valid format: NNNN, where NNNN = 1000 | | GROUP: BIAS_LOCATIONS | Reverse_IC_
Region_15 | Dynamic | int16 | Length of useable IC region, in pixels, from the start of the bias region (DC Restore) to the end of the calibration pulse region for Band 8 Valid format: NNNN, where NNNN = 1646 | | GROUP:
DETECTOR_BIASES_B6
GROUP: DETECTOR_
BIASES_B6_LOW | B6L_Bias_Prelaunch | Static | float32
array
(8 values) | Band 6 prelaunch low gain bias in digital counts Valid format: NN.NN, where N = 0 to 9 | | GROUP:
DETECTOR_BIASES_B6
GROUP: DETECTOR_
BIASES_B6_LOW | B6L_Bias_Postlaunch | Static | float32
array
(8 values) | Band 6 postlaunch low gain bias in digital counts Valid format: NN.NN, where N = 0 to 9 | | GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_LOW | B6L_Bias_Current | Dynamic | float32
array
(8 values) | Band 6 current low gain bias in digital counts Valid format: NN.NNN, where N = 0 to 9 | | GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH | B6H_Bias_Prelaunch | Static | float32
array
(8 values) | Band 6 prelaunch high gain bias in digital counts Valid format: SNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH | B6H_Bias_Postlaunch | Static | float32
array
(8 values) | Band 6 postlaunch high gain bias in digital counts Valid format: SNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP: DETECTOR_BIASES_B6 GROUP: DETECTOR_ BIASES_B6_HIGH | B6H_Bias_Current | Dynamic | float32
array
(8 values) | Band 6 current high gain bias in digital counts Valid format: SNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B1L_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 1 low-gain Automated Cloud Cover
Assessment (ACCA) bias in digital counts for
detectors 1-16
Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B2L_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 2 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_LOW | B3L_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 3 low-gain ACCA bias in digital counts for detectors 1-16 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B4L_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 4 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B5L_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 5 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B6L_ACCA_Bias | Dynamic | float32
array
(8 values) | Band 6 low-gain ACCA bias in digital counts for detectors 1-8 Valid format: NN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|---------------------------------|--| | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B7L_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 7 low-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_LOW | B8L_ACCA_Bias | Dynamic | float32
array
(32 values) | Band 8 low-gain ACCA bias in digital counts for detectors 1-32 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B1H_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 1 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B2H_ACCA_Bias | Dynamic | float32
array | Band 2 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B3H_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 3 high-gain ACCA bias in digital counts for detectors 1-16 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B4H_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 4 high-gain ACCA bias in digital counts for detectors 1-16 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B5H_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 5 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES
GROUP:
ACCA_BIASES_HIGH | B6H_ACCA_Bias | Dynamic | float32
array
(8 values) | Band 6 high-gain ACCA bias in digital counts for detectors 1- 8 Valid format: SNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B7H_ACCA_Bias | Dynamic | float32
array
(16 values) | Band 7 high-gain ACCA bias in digital counts for detectors 1-16 Valid format: NN.NN, where N = 0 to 9 | | GROUP: ACCA_BIASES GROUP: ACCA_BIASES_HIGH | B8H_ACCA_Bias | Dynamic | float32
array
(32 values) | Band 8 high-gain ACCA bias in digital counts for detectors 1-32 | | GROUP:
ACCA_THRESHOLDS | Thresh_B3 | Dynamic | float32 | Band 3 ACCA threshold
Valid format: N.NNNN, where N.NNNN = 0.0800 | | GROUP:
ACCA_THRESHOLDS | Thresh_B3_Lower | Dynamic | float32 | Band 3 land reflectance threshold Valid format: NN.NN, where NN.NN = 0.07 | |
GROUP:
ACCA_THRESHOLDS | Thresh_B56_High | Dynamic | float32 | Band 5-6 high-composite threshold Valid format: NNN.NNN, where NNN.NNN = 225.000 | | GROUP:
ACCA_THRESHOLDS | Thresh_B56_Low | Dynamic | float32 | Band 5-6 low-composite threshold Valid format: NNN.NNN, where NNN.NNN = 210.000 | | GROUP:
ACCA_THRESHOLDS | Thresh_B6 | Dynamic | float32 | Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN, where NNN.NNN = 300.000 | | GROUP:
ACCA_THRESHOLDS | Thresh_B45_Ratio | Dynamic | float32 | Band 4-5 ratio threshold Valid format: N.NNNN, where N.NNNN = 1.0000 | | GROUP:
ACCA_THRESHOLDS | Thresh_B42_Ratio | Dynamic | float32 | Band 4-2 ratio threshold Valid format: N.NNNNN, where N.NNNNN = 2.16248 | | GROUP:
ACCA_THRESHOLDS | Thresh_B43_Ratio | Dynamic | float32 | Band 4-3 ratio threshold Valid format: N.NNNN, where N.NNNN = 2.3500 | | GROUP:
ACCA_THRESHOLDS | Thresh_NDSI_Max | Dynamic | float32 | Normalized Snow Difference Index (NDSI) ceiling Valid format: N.NNNN, where N.NNNN = 0.7000 | | GROUP:
ACCA_THRESHOLDS | Thresh_NDSI_Min | Dynamic | float32 | Normalized snow difference index floor
Valid format: SN.NNNN, where
SN.NNNN = -0.2500 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|----------------------|---------------|--------------|---| | GROUP:
ACCA_THRESHOLDS | Thresh_NDSI_Snow | Dynamic | float32 | NDSI threshold used to identify snow
Valid format: NN.NNNN, where
NN.NNNN = 0.8000 | | GROUP:
ACCA_THRESHOLDS | Cloud_Percent_Min | Dynamic | float32 | Minimum cloud cover percentage required for pass two Valid format: N.NNNN, where N.NNNN = 0.4000 | | GROUP:
ACCA_THRESHOLDS | Desert_Index | Dynamic | float32 | Desert index (Thresh_45_Ratio/
Thresh_42_Ratio)
Valid format: N.NNN, where N.NNN = 0.500 | | GROUP:
ACCA_THRESHOLDS | Thresh_Snow_Percent | Dynamic | float32 | Maximum snow cover percentage allowed to use looser cloud properties for pass two Valid format: N.NNNN, where N.NNNN = 1.0000 | | GROUP:
ACCA_THRESHOLDS | Thermal_Effect_High | Dynamic | float32 | Maximum allowable pass two percentage cloud cover increase allowed using looser cloud properties Valid format: NN.NNNN, where NN.NNNN = 35.0000 | | GROUP:
ACCA_THRESHOLDS | Thermal_Effect_Low | Dynamic | float32 | Maximum allowable pass two percentage cloud cover increase allowed using narrower cloud properties Valid format: NN.NNN, where NN.NNN = 25.000 | | GROUP:
ACCA_THRESHOLDS | B6Max_Maxthresh_Diff | Dynamic | float32 | Minimum difference allowed between maximum cloud temperature and maximum thermal threshold Valid format: NN.NNN, where NN.NNN = 2.000 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B1_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 1 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1969.000 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B2_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 2 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1840.000 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B3_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 3 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1551.000 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B4_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 4 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1044.000 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B5_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 5 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 225.700 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B7_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 7 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 82.070 | | GROUP:
SOLAR_SPECTRAL_
IRRADIANCES | B8_Solar_Irradiance | Static | float32 | Mean solar exoatmospheric irradiance for Band 8 in W/m^2-ster-µm Valid format: NNNN.NNN, where NNNN.NNN = 1368.000 | | GROUP:
THERMAL_CONSTANTS | K1_Constant | Static | float32 | Thermal calibration constant 1 in W/m^2-ster-
µm
Valid format: NNN.NN, where NNN.NN = 666.09 | | GROUP:
THERMAL_CONSTANTS | K2_Constant | Static | float32 | Thermal calibration constant 2 kelvin Valid format: NNNN.NN, where NNNNN.NN = 1282.71 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|--------------------------------|---| | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B1L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 1, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B2L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 2, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B3L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 3, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B4L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 4, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B5L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 5, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B6L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 6, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B7L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 7, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B8L_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 8, low gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_LOW | B1H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 1, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B2H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 2, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B3H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 3, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B4H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 4, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B5H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 5, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B6H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 6, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B7H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 7, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|--------------------------------|---| | GROUP:
SCALING_PARAMETERS
GROUP: SCALING_
PARAMETERS_HIGH | B8H_Lmin_Lmax | Static | float32
array
(2 values) | Postcalibration 8-bit dynamic range scaling factors for Band 8, high gain, W/m^2-ster-µm Valid format: SNNN.NN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B1_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan
Modulation Transfer Function Compensation (MTFC) for Band 1 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B1_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 1 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B2_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 2 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B2_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 2 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B3_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 3 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B3_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 3 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B4_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 4 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B4_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 4 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B5_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 5 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B5_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 5 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B6_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 6 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B6_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 6 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B7_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 7 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B7_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 7 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-----------------------|---------------|---------------------------------|--| | GROUP:
MTF_COMPENSATION | B8_weights_along | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute along-scan MTFC for Band 8 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
MTF_COMPENSATION | B8_weights_across | Dynamic | float64
array
(5 values) | Weighting function coefficients used to compute across-scan MTFC for Band 8 Valid format: SN.NNNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B1_ME_Magnitude | Dynamic | float32
array
(16 values) | Band 1 memory effect magnitude measured in Digital Numbers (DNs) Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B2_ME_Magnitude | Dynamic | float32
array
(16 values) | Band 2 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B3_ME_Magnitude | Dynamic | float32
array
(16 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B4_ME_Magnitude | Dynamic | float32
array
(16 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B5_ME_Magnitude | Dynamic | float32
array
(16 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B6_ME_Magnitude | Dynamic | float32
array
(8 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B7_ME_Magnitude | Dynamic | float32
array
(16 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP: ME_MAGNITUDES | B8_ME_Magnitude | Dynamic | float32
array
(32 values) | Band 3 memory effect magnitude measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B1_ME_Time_Constant | Dynamic | float32
array
(16 values) | Band 1 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B2_ME_Time_Constant | Dynamic | float32
array
(16 values) | Band 2 time constant measured in minor frames
Valid format: NNNN.NNNNNNN, where
N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B3_ME_Time_Constant | Dynamic | float32
array
(16 values) | Band 3 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B4_ME_Time_Constant | Dynamic | float32
array
(16 values) | Band 4 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B5_ME_Time_Constant | Dynamic | float32
array
(16 values) | Band 5 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B6_ME_Time_Constant | Dynamic | float32
array
(8 values) | Band 6 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B7_ME_Time_Constant | Dynamic | float32
array
(16 values) | Band 7 time constant measured in minor frames
Valid format: NNNN.NNNNNNN, where
N = 0 to 9 | | GROUP: MEMORY_EFFECT
GROUP:
ME_TIME_CONSTANTS | B8_ME_Time_Constant | Dynamic | float32
array
(32 values) | Band 8 time constant measured in minor frames Valid format: NNNN.NNNNNNN, where N = 0 to 9 | | GROUP: GHOST_PULSE | Ghost_Pulse_Endpoints | Dynamic | float32
array
(2 values) | Beginning and ending fractional minor frames that bound IC ghost pulse Valid format: NNNN.NNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-----------------------------|---------------|---------------------------------|---| | GROUP:
SCAN_CORRELATED_SHIFT | SCS_Reference_
Detectors | Dynamic | uint8 array
(7 values) | Scan correlated shift reference detector, one per band Valid format: NN, where NN = 1-16 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B1L_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 1 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B2L_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 2 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B3L_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 3 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B4L_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 4 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B5L_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 5 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B7L_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 7 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_LOW | B8L_SCS_Magnitudes | Dynamic | float32
array
(32 values) | Magnitude of Band 8 low-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B1H_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 1 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN,
where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B2H_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 2 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B3H_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 3 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B4H_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 4 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B5H_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 5 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B7H_SCS_Magnitudes | Dynamic | float32
array
(16 values) | Magnitude of Band 7 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
SCAN_CORRELATED_SHIFT
GROUP: SCS_HIGH | B8H_SCS_Magnitudes | Dynamic | float32
array
(32 values) | Magnitude of Band 8 high-gain shift in digital numbers Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|----------------------------------|---------------|--------------|--| | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B1_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 1, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B2_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 2, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B3_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 3, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B4_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 4, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B5_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 5, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B6_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 6, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B7_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 7, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_LOW | Correction_
Reference_B8_Low | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 8, low gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B1_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 1, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B2_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 2, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B3_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 3, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B4_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 4, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|----------------------------------|---------------|---------------------------------|--| | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B5_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 5, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B6_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 6, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B7_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 7, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: STRIPING
GROUP:
STRIPING_FLAG_HIGH | Correction_
Reference_B8_High | Static | uint8 | Striping correction methodology flag, relative to band average or reference detector, Band 8, high gain Valid format: N, where N = 0 (band average), 1 (reference detector), or 2 (no correction) | | GROUP: HISTOGRAM
GROUP: DETECTOR_NOISE
GROUP:
DETECTOR_NOISE_LOW | Detector_Noise_
Level_B1_Low | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 1, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW | Detector_Noise_
Level_B2_Low | Dynamic | float32
array
(16 values) | , | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW | Detector_Noise_
Level_B3_Low | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 3, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM
GROUP: DETECTOR_NOISE
GROUP:
DETECTOR_NOISE_LOW | Detector_Noise_
Level_B4_Low | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 4, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM
GROUP: DETECTOR_NOISE
GROUP:
DETECTOR_NOISE_LOW | Detector_Noise_
Level_B5_Low | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 5, low gain Valid format: N.NNNNNN, where N = 0 to 9, where NN.NNNN = CPF | | GROUP: HISTOGRAM
GROUP: DETECTOR_NOISE
GROUP:
DETECTOR_NOISE_LOW | Detector_Noise_
Level_B6_Low | Dynamic | float32
array
(8 values) | Standard deviation of image region data for each detector of Band 6, low gain Valid format: N.NNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW | Detector_Noise_
Level_B7_Low | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 7, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_LOW | Detector_Noise_
Level_B8_Low | Dynamic | float32
array
(32 values) | Standard deviation of image region data for each detector of Band 8, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B1_High | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 1, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|------------------------------------|---------------|---------------------------------|--| | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B2_High | Dynamic | float32
array
(16 values) |
Standard deviation of image region data for each detector of Band 2, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B3_High | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 3, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B4_High | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 4, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B5_High | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 5, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B6_High | Dynamic | float32
array
(8 values) | Standard deviation of image region data for each detector of Band 6, high gain Valid format: N.NNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B7_High | Dynamic | float32
array
(16 values) | Standard deviation of image region data for each detector of Band 7, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DETECTOR_NOISE GROUP: DETECTOR_NOISE_HIGH | Detector_Noise_
Level_B8_High | Dynamic | float32
array
(32 values) | Standard deviation of image region data for each detector of Band 8, high gain Valid format: N.NNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B1_Low | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 1, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE LOW | Det_Shutter_Noise_
Level_B2_Low | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 2, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B3_Low | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 3, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B4_Low | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 4, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B5_Low | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 5, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM
GROUP:
DET_SHUTTER_NOISE
GROUP:
DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B6_Low | Dynamic | float32
array
(8 values) | Standard deviation of shutter region data for each detector of Band 6, low gain Valid format: N.NNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------------|---------------|---------------------------------|--| | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B7_Low | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 7, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_LOW | Det_Shutter_Noise_
Level_B8_Low | Dynamic | float32
array
(32 values) | Standard deviation of shutter region data for each detector of Band 8, low gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B1_High | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 1, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B2_High | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 2, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B3_High | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 3, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B4_High | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 4, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B5_High | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 5, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B6_High | Dynamic | float32
array
(8 values) | Standard deviation of shutter region data for each detector of Band 6, high gain Valid format: N.NNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B7_High | Dynamic | float32
array
(16 values) | Standard deviation of shutter region data for each detector of Band 7, high gain Valid format: N.NNNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE GROUP: DET_SHUTTER_NOISE_ HIGH | Det_Shutter_Noise_
Level_B8_High | Dynamic | float32
array
(32 values) | Standard deviation of shutter region data for each detector of Band 8, high gain Valid format: N.NNNNN, where N = 0 to 9 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B1 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 1 Valid format: NN, where NN = 15 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|--------------|---| | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B2 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 2 Valid format: NN, where NN = 12 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B3 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 3 Valid format: NN, where NN = 08 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B4 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 4 Valid format: NN, where NN = 07 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B5 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 5 Valid format: NN, where NN = 14 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B6 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 6 Valid format: NN, where NN = 01 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B7 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 7 Valid format: NN, where NN = 10 | | GROUP: HISTOGRAM
GROUP:
REFERENCE_DETECTORS | Reference_Detector_B8 | Dynamic | uint8 | Detector used as a reference when computing relative detector gains and biases (least noisy), Band 8 Valid format: NN, where NN = 27 | | GROUP: HISTOGRAM
GROUP:
SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B1 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 1 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM
GROUP:
SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B2 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 2 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B3 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 3 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B4 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 4 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B5 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 5 Valid
format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B6 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 6 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM GROUP: SATURATION_THRESHOLDS | Saturation_Bin_
Threshold_B7 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 7 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM
GROUP:
SATURATION THRESHOLDS | Saturation_Bin_
Threshold_B8 | Dynamic | uint16 | Number of pixels that a bin must have to be tested as a saturation bin, Band 8 Valid format: NNNNN, where NNNNN = 1000 | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B1 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 1 Valid format: N, where N = 2 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|--------------|---| | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B2 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare possible bin as saturation bin, Band 2 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B3 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 3 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B4 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 4 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B5 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 5 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B6 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 6 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B7 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 7 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_NUMBER | Adjacent_Bin_
Number_B8 | Dynamic | uint8 | Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as saturation bin, Band 8 Valid format: N, where N = 2 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B1 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 1 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B2 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 2 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B3 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 3 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B4 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 4 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B5 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 5 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B6 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 6 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|--------------|--| | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B7 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 7 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: ADJACENT_BINS
GROUP: BIN_THRESHOLD | Adjacent_Bin_
Threshold_B8 | Dynamic | uint8 | Number of adjacent bin pixels that cannot be exceeded for the Band 8 candidate saturation bin to be a valid saturation bin Valid format: NN, where NN = 10 (default) | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B1 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 1 Valid format: NNN, where NNN = 243 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B2 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 2 Valid format: NNN, where NNN = 218 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B3 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 3 Valid format: NNN, where NNN = 193 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B4 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 4 Valid format: NNN, where NNN = 168 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B5 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 5 Valid format: NNN, where NNN = 97 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B6 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 6 Valid format: NNN, where NNN = 31 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B7 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 7 Valid format: NNN, where NNN = 123 | | GROUP: HISTOGRAM
GROUP: STARTING_PIXEL | Start_pixel_B8 | Dynamic | uint8 | Leftmost pixel in the window to be tested, Band 8 Valid format: NNN, where NNN = 536 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B1 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 1
Valid format: NNNNN, where NNNNN = 5874 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B2 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 2
Valid format: NNNNN, where NNNNN = 5874 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B3 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 3
Valid format: NNNNN, where NNNNN = 5874 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B4 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 4
Valid format: NNNNN, where NNNNN = 5874 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B5 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 5
Valid format: NNNNN, where NNNNN = 5874 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B6 | Dynamic | uint8 | Width of the window, in pixels, to be tested, Band 6 Valid format: NNNNN, where NNNNN = 2937 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B7 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 7
Valid format: NNNNN, where NNNNN = 5874 | | GROUP: HISTOGRAM
GROUP: WINDOW_WIDTH | Window_Samples_B8 | Dynamic | uint8 | Width of the window, in pixels, to be tested,
Band 8
Valid format: NNNNN, where NNNNN = 11748 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B1 | Dynamic | uint8 | Number of scans in the window to be tested, Band 1 Valid format: NNN, where NNN = 375 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------|---------------|---------------------------------|---| | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B2 | Dynamic | uint8 | Number of scans in the window to be tested,
Band 2
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B3 | Dynamic | uint8 | Number of scans in the window to be tested,
Band 3
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B4 | Dynamic | uint8 | Number of scans in the
window to be tested,
Band 4
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B5 | Dynamic | uint8 | Number of scans in the window to be tested,
Band 5
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B6 | Dynamic | uint8 | Number of scans in the window to be tested,
Band 6
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B7 | Dynamic | uint8 | Number of scans in the window to be tested,
Band 7
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP: WINDOW_LENGTH | Window_Scans_B8 | Dynamic | uint8 | Number of scans in the window to be tested,
Band 8
Valid format: NNN, where NNN = 375 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B1 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 1 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B2 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 2 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B3 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 3 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B4 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 4 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B5 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 5 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B6 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 6 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B7 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 7 Valid format: NNN, where NNN = 0 | | GROUP: HISTOGRAM
GROUP:
OVERLAPPING_SCANS | Overlap_Scans_B8 | Dynamic | uint8 | Number of overlapping scans between the windows to be tested, Band 8 Valid format: NNN, where NNN = 0 | | GROUP: IMPULSE_NOISE | Median_Filter_Width | Static | uint8 | Width of median filter Valid format: N, where N = 3 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B1L_Threshold | Dynamic | float32
array
(16 values) | Band 1 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B2L_Threshold | Dynamic | float32
array
(16 values) | Band 2 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B3L_Threshold | Dynamic | float32
array
(16 values) | Band 3 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B4L_Threshold | Dynamic | float32
array
(16 values) | Band 4 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------|---------------|---------------------------------|---| | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B5L_Threshold | Dynamic | float32
array
(16 values) | Band 5 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B6L_Threshold | Dynamic | float32
array
(8 values) | Band 6 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B7L_Threshold | Dynamic | float32
array
(16 values) | Band 7 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B8L_Threshold | Dynamic | float32
array
(32 values) | Band 8 low-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B1H_Threshold | Dynamic | float32
array
(16 values) | Band 1 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B2H_Threshold | Dynamic | float32
array
(16 values) | Band 2 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B3H_Threshold | Dynamic | float32
array
(16 values) | Band 3 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B4H_Threshold | Dynamic | float32
array
(16 values) | Band 4 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B5H_Threshold | Dynamic | float32
array
(16 values) | Band 5 high-gain noise threshold for an inequal case
Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B6H_Threshold | Dynamic | float32
array
(8 values) | Band 6 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B7H_Threshold | Dynamic | float32
array
(16 values) | Band 7 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP: IN_THRESHOLD | B8H_Threshold | Dynamic | float32
array
(32 values) | Band 8 high-gain noise threshold for an inequal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B1L_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 1 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B2L_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 2 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B3L_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 3 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD | B4L_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 4 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B5L_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 5 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD | B6L_Sigma_Threshold | Dynamic | float32
array
(8 values) | Band 6 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B7L_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 7 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|----------------------|---------------|--|--| | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B8L_Sigma_Threshold | Dynamic | float32
array
(32 values) | Band 8 low-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE GROUP: | B1H_Sigma_Threshold | Dynamic | float32
array | Band 1 high-gain noise threshold for an equal case | | IN_SIGMA_THRESHOLD GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD | B2H_Sigma_Threshold | Dynamic | (16 values)
float32
array
(16 values) | Valid format: NN.NN, where N = 0 to 9 Band 2 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B3H_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 3 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B4H_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 4 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B5H_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 5 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B6H_Sigma_Threshold | Dynamic | float32
array
(8 values) | Band 6 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B7H_Sigma_Threshold | Dynamic | float32
array
(16 values) | Band 7 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: IMPULSE_NOISE
GROUP:
IN_SIGMA_THRESHOLD | B8H_Sigma_Threshold | Dynamic | float32
array
(32 values) | Band 8 high-gain noise threshold for an equal case Valid format: NN.NN, where N = 0 to 9 | | GROUP: COHERENT_NOISE | Frequency_Components | Dynamic | uint8 | Number of frequency components derived
during waveform analysis for coherent noise
correction
Valid format: NN, where NN = 10 | | GROUP: COHERENT_NOISE
GROUP:
CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B1_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 1 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B2_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 2 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B3_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 3 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B4_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 4 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B5_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 5 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|--------------------|---------------|---------------------------------|--| | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B6_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 6 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_MEANS | B7_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 7 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS | B8_Frequency_Mean | Dynamic | float32
array
(10 values) | Band 8 frequency means measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS | B1_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 1 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS | B2_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 2 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_SIGMAS | B3_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 3 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_SIGMAS | B4_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 4 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_SIGMAS | B5_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 5 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_SIGMAS | B6_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 6 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP:
FREQUENCY_SIGMAS | B7_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 7 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS | B8_Frequency_Sigma | Dynamic | float32
array
(10 values) | Band 8 frequency sigmas measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B1_Frequency_Min | Dynamic | float32
array
(10 values) | Band 1 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|---------------------------------|---| | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B2_Frequency_Min | Dynamic | float32
array
(10 values) | Band 2 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B3_Frequency_Min | Dynamic | float32
array
(10 values) | Band 3 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B4_Frequency_Min | Dynamic | float32
array
(10 values) | Band 4 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B5_Frequency_Min | Dynamic | float32
array
(10 values) | Band 5 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B6_Frequency_Min | Dynamic | float32
array
(10 values) | Band 6 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B7_Frequency_Min | Dynamic | float32
array
(10 values) | Band 7 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MINIMUMS | B8_Frequency_Min | Dynamic | float32
array
(10 values) | Band 8 frequency minimums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B1_Frequency_Max | Dynamic | float32
array
(10 values) | Band 1 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B2_Frequency_Max | Dynamic | float32
array
(10 values) | Band 2 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B3_Frequency_Max | Dynamic | float32
array
(10 values) | Band 3 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B4_Frequency_Max | Dynamic | float32
array
(10 values) | Band 4 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B5_Frequency_Max | Dynamic | float32
array
(10 values) | Band 5 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|---------------------------------|--| | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B6_Frequency_Max | Dynamic | float32
array
(10 values) | Band 6 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B7_Frequency_Max | Dynamic | float32
array
(10 values) | Band 7 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_FREQUENCY_
PARAMETERS
GROUP: FREQUENCY_
MAXIMUMS | B8_Frequency_Max | Dynamic | float32
array
(10 values) | Band 8 frequency maximums measured in inverse minor frames Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B1_Phase_Mean | Dynamic | float32
array
(10 values) | Band 1 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B2_Phase_Mean | Dynamic | float32
array
(10 values) | Band 2 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B3_Phase_Mean | Dynamic | float32
array
(10 values) | Band 3 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP:
COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B4_Phase_Mean | Dynamic | float32
array
(10 values) | Band 4 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B5_Phase_Mean | Dynamic | float32
array
(10 values) | Band 5 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B6_Phase_Mean | Dynamic | float32
array
(10 values) | Band 6 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS | B7_Phase_Mean | Dynamic | float32
array
(10 values) | Band 7 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MEANS | B8_Phase_Mean | Dynamic | float32
array
(10 values) | Band 8 phase means measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B1_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 1 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B2_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 2 phase sigmas measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B3_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 3 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------|---------------|---------------------------------|--| | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B4_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 4 phase sigmas measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B5_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 5 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B6_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 6 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B7_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 7 phase sigmas measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_SIGMAS | B8_Phase_Sigma | Dynamic | float32
array
(10 values) | Band 8 phase sigmas measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B1_Phase_Min | Dynamic | float32
array
(10 values) | Band 1 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B2_Phase_Min | Dynamic | float32
array
(10 values) | Band 2 phase minimums measured in radians
Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B3_Phase_Min | Dynamic | float32
array
(10 values) | Band 3 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B4_Phase_Min | Dynamic | float32
array
(10 values) | Band 4 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B5_Phase_Min | Dynamic | float32
array
(10 values) | Band 5 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B6_Phase_Min | Dynamic | float32
array
(10 values) | Band 6 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MINIMUMS | B7_Phase_Min | Dynamic | float32
array
(10 values) | Band 7 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MINIMUMS | B8_Phase_Min | Dynamic | float32
array
(10 values) | Band 8 phase minimums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MAXIMUMS | B1_Phase_Max | Dynamic | float32
array
(10 values) | Band 1 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------|---------------|---------------------------------|--| | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B2_Phase_Max | Dynamic | float32
array
(10 values) | Band 2 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B3_Phase_Max | Dynamic | float32
array
(10 values) | Band 3 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B4_Phase_Max | Dynamic | float32
array
(10 values) | Band 4 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B5_Phase_Max | Dynamic | float32
array
(10 values) | Band 5 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B6_Phase_Max | Dynamic | float32
array
(10 values) | Band 6 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B7_Phase_Max | Dynamic | float32
array
(10 values) | Band 7 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP:
CN_PHASE_PARAMETERS
GROUP: PHASE_MAXIMUMS | B8_Phase_Max | Dynamic | float32
array
(10 values) | Band 8 phase maximums measured in radians Valid format: NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MEANS | B1_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 1 magnitudes means measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MEANS | B2_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 2 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS | B3_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 3 magnitudes means measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE MEANS | B4_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 4 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS | B5_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 5 magnitudes means measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS | B6_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 6 magnitudes means measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|--------------------|---------------|---------------------------------|---| | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MEANS | B7_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 7 magnitudes means measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE MEANS | B8_Magnitude_Mean | Dynamic | float32
array
(10 values) | Band 8 magnitudes means measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS | B1_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 1 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS | B2_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 2 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE SIGMAS |
B3_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 3 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS | B4_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 4 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS | B5_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 5 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_SIGMAS | B6_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 6 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_SIGMAS | B7_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 7 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_SIGMAS | B8_Magnitude_Sigma | Dynamic | float32
array
(10 values) | Band 8 magnitudes sigmas measured in DNs
Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B1_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 1 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B2_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 2 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------|---------------|---------------------------------|--| | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MINIMUMS | B3_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 3 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B4_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 4 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B5_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 5 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B6_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 6 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B7_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 7 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS | B8_Magnitude_Min | Dynamic | float32
array
(10 values) | Band 8 magnitudes minimums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MAXIMUMS | B1_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 1 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MAXIMUMS | B2_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 2 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MAXIMUMS | B3_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 3 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_ MAXIMUMS | B4_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 4 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MAXIMUMS | B5_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 5 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MAXIMUMS | B6_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 6 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|----------------------|---------------|---------------------------------|--| | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MAXIMUMS | B7_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 7 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: COHERENT_NOISE
GROUP: CN_MAGNITUDE_
PARAMETERS
GROUP:
MAGNITUDE_MAXIMUMS | B8_Magnitude_Max | Dynamic | float32
array
(10 values) | Band 8 magnitudes maximums measured in DNs Valid format: NNN.NNNNNNN, where N = 0 to 9 | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B1_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 1, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B2_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 2, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B3_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 3, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B4_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 4, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B5_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 5, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B6_low | Dynamic | uint8 array
(8 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 6, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B7_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 7, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | High_AD_Level_B8_low | Dynamic | uint8 array
(32 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 8, low gain Valid format: NNN, where NNN = 255 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-----------------------|---------------|----------------------------|---| | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B1_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 1, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B2_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 2, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B3_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 3, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B4_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end;
Band 4, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B5_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 5, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B6_low | Dynamic | uint8 array
(8 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 6, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B7_low | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 7, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_LOW | Low_AD_Level_B8_low | Dynamic | uint8 array
(32 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 8, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B1_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 1, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B2_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 2, high gain Valid format: NNN, where NNN = 255 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-----------------------|---------------|--------------------------------|---| | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B3_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 3, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B4_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 4, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B5_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 5, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B6_high | Dynamic | uint8 array
(8 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 6, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B7_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the high end; Band 7, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | High_AD_Level_B8_high | Dynamic | uint8 array
(32
values) | Digital count at which analog-to-digital converter saturates at high end; Band 8, gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B1_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 1, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B2_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 2, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B3_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 3, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B4_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 4, high gain Valid format: NNN, where NNN = 0 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|------------------------------|---------------|--------------------------------|--| | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B5_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 5, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B6_high | Dynamic | uint8 array
(8 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 6, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B7_high | Dynamic | uint8 array
(16 values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 7, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: AD_CONVERTER_ SATURATION GROUP: AD_CONVERTER_ SATURATION_HIGH | Low_AD_Level_B8_high | Dynamic | uint8 array
(32
values) | Digital count at which the analog-to-digital converter saturates at the low end; Band 8, gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B1_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B2_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B3_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B4_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B5_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B6_low | Dynamic | uint8 array
(8 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, low gain Valid format: NNN, where NNN = 255 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|------------------------------|---------------|----------------------------|--| | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B7_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, low gain Valid format: NNN, where NNN = 255
(default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | High_Analog_Level_
B8_low | Dynamic | uint8 array
(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, low gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B1_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B2_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B3_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B4_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B5_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at low end; Band 5, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B6_low | Dynamic | uint8 array
(8 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B7_low | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, low gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_LOW | Low_Analog_Level_
B8_low | Dynamic | uint8 array
(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, low gain Valid format: NNN, where NNN = 0 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------------------|---------------|----------------------------|---| | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B1_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 1, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B2_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 2, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B3_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 3, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B4_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 4, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B5_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 5, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B6_high | Dynamic | uint8 array
(8 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 6, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B7_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 7, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | High_Analog_Level_
B8_high | Dynamic | uint8 array
(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the high end; Band 8, high gain Valid format: NNN, where NNN = 255 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B1_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 1, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B2_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 2, high gain Valid format: NNN, where NNN = 0 (default) | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|------------------------------|---------------|----------------------------|--| | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B3_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 3, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B4_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 4, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B5_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 5, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B6_high | Dynamic | uint8 array
(8 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 6, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B7_high | Dynamic | uint8 array
(16 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 7, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: DETECTOR_SATURATION GROUP: ANALOG_SIGNAL_ SATURATION GROUP: ANALOG_SIGNAL_ SATURATION_HIGH | Low_Analog_Level_
B8_high | Dynamic | uint8 array
(32 values) | Digital count corresponding to the signal level at which the analog portion of the signal chain saturates at the low end; Band 8, high gain Valid format: NNN, where NNN = 0 (default) | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B1L_RTemp_Prelaunch | Static | float64 | Band 1 prelaunch low-gain calibration reference
temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B1L_RTemp_Postlaunch | Static | float64 | Band 1 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B1L_RTemp_Current | Dynamic | float64 | Band 1 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B2L_RTemp_Prelaunch | Static | float64 | Band 2 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B2L_RTemp_Postlaunch | Static | float64 | Band 2 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B2L_RTemp_Current | Dynamic | float64 | Band 2 current low-gain calibration reference
temperature in degrees C
Valid format: SNNN.NNN, where
SNNN.NNN = 25.00 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|----------------------|---------------|--------------|--| | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B3L_RTemp_Prelaunch | Static | float64 | Band 3 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B3L_RTemp_Postlaunch | Static | float64 | Band 3 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B3L_RTemp_Current | Dynamic | float64 | Band 3 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B4L_RTemp_Prelaunch | Static | float64 | Band 4 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B4L_RTemp_Postlaunch | Static | float64 | Band 4 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B4L_RTemp_Current | Dynamic | float64 | Band 4 current low-gain calibration reference
temperature in degrees C
Valid format: SNNN.NNN, where
SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B5L_RTemp_Prelaunch | Static | float64 | Band 5 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B5L_RTemp_Postlaunch | Static | float64 | Band 5 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B5L_RTemp_Current | Dynamic | float64 | Band 5 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B6L_RTemp_Prelaunch | Static | float64 | Band 6 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B6L_RTemp_Postlaunch | Static | float64 | Band 6 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B6L_RTemp_Current | Dynamic | float64 | Band 6 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B7L_RTemp_Prelaunch | Static | float64 | Band 7 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B7L_RTemp_Postlaunch | Static | float64 | Band 7 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B7L_RTemp_Current | Dynamic | float64 | Band 7 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|----------------------|---------------|--------------|---| | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B8L_RTemp_Prelaunch | Static | float64 | Band 8 prelaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B8L_RTemp_Postlaunch | Static | float64 | Band 8 postlaunch low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_LOW | B8L_RTemp_Current | Dynamic | float64 | Band 8 current low-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B1H_RTemp_Prelaunch | Static | float64 | Band 1 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B1H_RTemp_Postlaunch | Static | float64 | Band 1 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B1H_RTemp_Current | Dynamic | float64 | Band 1 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B2H_RTemp_Prelaunch | Static | float64 | Band 2 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B2H_RTemp_Postlaunch | Static | float64 | Band 2 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B2H_RTemp_Current | Dynamic | float64 | Band 2 current high-gain calibration reference
temperature in degrees C
Valid format: SNNN.NNN, where
SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B3H_RTemp_Prelaunch | Static | float64 | Band 3 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B3H_RTemp_Postlaunch | Static | float64 | Band 3 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B3H_RTemp_Current | Dynamic | float64 | Band 3 current high-gain calibration reference
temperature in degrees C
Valid format: SNNN.NNN, where
SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B4H_RTemp_Prelaunch | Static | float64 | Band 4 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B4H_RTemp_Postlaunch | Static | float64 | Band 4 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B4H_RTemp_Current | Dynamic | float64 | Band 4 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-----------------------|---------------|---------------------------------|---| | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B5H_RTemp_Prelaunch | Static | float64 | Band 5 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B5H_RTemp_Postlaunch | Static | float64 | Band 5 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B5H_RTemp_Current | Dynamic | float64 | Band 5 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B6H_RTemp_Prelaunch | Static | float64 | Band 6 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP:
REFERENCE_HIGH | B6H_RTemp_Postlaunch | Static | float64 | Band 6 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B6H_RTemp_Current | Dynamic | float64 | Band 6 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B7H_RTemp_Prelaunch | Static | float64 | Band 7 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B7H_RTemp_Postlaunch | Static | float64 | Band 7 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B7H_RTemp_Current | Dynamic | float64 | Band 7 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = -182.1 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B8H_RTemp_Prelaunch | Static | float64 | Band 8 prelaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B8H_RTemp_Postlaunch | Static | float64 | Band 8 postlaunch high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: REFERENCE_
TEMPERATURES
GROUP: REFERENCE_HIGH | B8H_RTemp_Current | Dynamic | float64 | Band 8 current high-gain calibration reference temperature in degrees C Valid format: SNNN.NNN, where SNNN.NNN = 25.00 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B1L_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 1 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B1L_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 1 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B1L_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 1 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-----------------------|---------------|---------------------------------|---| | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B2L_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 2 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B2L_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 2 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B2L_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 2 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B3L_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 3 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B3L_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 3 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B3L_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 3 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B4L_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 4 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B4L_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 4 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B4L_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 4 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B5L_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 5 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B5L_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 5 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B5L_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 5 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B6L_SCoeff_Prelaunch | Static | float64
array
(8 values) | Band 6 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B6L_SCoeff_Postlaunch | Static | float64
array
(8 values) | Band 6 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B6L_SCoeff_Current | Dynamic | float64
array
(8 values) | Band 6 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|------------------------------|---------------|---------------------------------|--| | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B6L_SCoeffOff_
Prelaunch | Static | float64
array
(8 values) | Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B6L_SCoeffOff_
Postlaunch | Static | float64
array
(8 values) | Band 6 postlaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B6L_SCoeffOff_
Current | Dynamic | float64
array
(8 values) | Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B7L_SCoeff_
Prelaunch | Static | float64
array
(16 values) | Band 7 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B7L_SCoeff_
Postlaunch | Static | float64
array
(16 values) | Band 7 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B7L_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 7 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B8L_SCoeff_
Prelaunch | Static | float64
array
(32 values) | Band 8 prelaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B8L_SCoeff_
Postlaunch | Static | float64
array
(32 values) | Band 8 postlaunch low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_LOW | B8L_SCoeff_Current | Dynamic | float64
array
(32 values) | Band 8 current low-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B1H_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 1 prelaunch high-gain calibration temperature sensitivity coefficient
Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B1H_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 1 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B1H_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 1 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B2H_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 2 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B2H_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 2 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B2H_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 2 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|------------------------------|---------------|---------------------------------|--| | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B3H_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 3 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B3H_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 3 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B3H_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 3 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B4H_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 4 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B4H_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 4 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B4H_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 4 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B5H_SCoeff_Prelaunch | Static | float64
array
(16 values) | Band 5 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B5H_SCoeff_Postlaunch | Static | float64
array
(16 values) | Band 5 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B5H_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 5 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B6H_SCoeff_Prelaunch | Static | float64
array
(8 values) | Band 6 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B6H_SCoeff_Postlaunch | Static | float64
array
(8 values) | Band 6 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B6H_SCoeff_Current | Dynamic | float64
array
(8 values) | Band 6 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B6H_SCoeffOff_
Prelaunch | Static | float64
array
(8 values) | Band 6 prelaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B6H_SCoeffOff_
Postlaunch | Static | float64
array
(8 values) | Band 6 postlaunch offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B6H_SCoeffOff_
Current | Dynamic | float64
array
(8 values) | Band 6 current offset calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|---------------------------------|--| | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B7H_SCoeff_
Prelaunch | Static | float64
array
(16 values) | Band 7 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B7H_SCoeff_
Postlaunch | Static | float64
array
(16 values) | Band 7 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B7H_SCoeff_Current | Dynamic | float64
array
(16 values) | Band 7 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B8H_SCoeff_
Prelaunch | Static | float64
array
(32 values) | Band 8 prelaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B8H_SCoeff_
Postlaunch | Static | float64
array
(32 values) | Band 8 postlaunch high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: SENSITIVITY_
TEMPERATURES
GROUP: SENSITIVITY_HIGH | B8H_SCoeff_Current | Dynamic | float64
array
(32 values) | Band 8 current high-gain calibration temperature sensitivity coefficient Valid format: SNNN.NNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
TRENDING_COEFFS | Lamp1_Coeffs | Static | float32
array
(2 values) | Time since launch coefficients for Lamp 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
TRENDING_COEFFS | Lamp2_Coeffs | Static | float32
array
(2 values) | Time since launch coefficients for Lamp 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State2_
Current | Dynamic |
float32
array
(16 values) | Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch internal calibrator lamp
effective spectral radiance in W/m^2-ster-µm;
State 3 - lamp 1 on, lamp 2 on; low-gain mode
Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------------------|---------------|---------------------------------|---| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B1L_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B2L_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------------------|---------------|---------------------------------|---| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B3L_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B4L_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 4 current internal calibrator lamp
effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|-------------------------------|---------------|---------------------------------|---| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B5L_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|---------------------------------|--| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B7L_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State1_
Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State1_
Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State1_
Current | Dynamic | float32
array
(32 values) | Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State2_
Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State2_
Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State2_
Current | Dynamic | float32
array
(32 values) | Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State3_
Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State3_
Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_LOW | B8L_Rad_State3_
Current | Dynamic | float32
array
(32 values) | Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; low-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 off;
high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|---------------------------------|--| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 1 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 1 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B1H_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 1 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 2 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 2 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B2H_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 2 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|---------------------------------|--| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 3 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 3 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B3H_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 3 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP:
LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 4 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|---------------------------------|--| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 4 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B4H_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 4 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 5 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 5 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B5H_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 5 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State1_
Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State1_
Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State1_
Current | Dynamic | float32
array
(16 values) | Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State2_
Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch internal calibrator lamp
effective spectral radiance in W/m^2-ster-µm;
State 2 - lamp 1 off, lamp 2 on; high-gain mode
Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|-------------------------------|---------------|---------------------------------|--| | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State2_
Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State2_
Current | Dynamic | float32
array
(16 values) | Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State3_
Prelaunch | Static | float32
array
(16 values) | Band 7 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State3_
Postlaunch | Static | float32
array
(16 values) | Band 7 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B7H_Rad_State3_
Current | Dynamic | float32
array
(16 values) | Band 7 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State1_
Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State1_
Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State1_
Current | Dynamic | float32
array
(32 values) | Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 1 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State2_
Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State2_
Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State2_
Current | Dynamic | float32
array
(32 values) | Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 2 - lamp 1 off, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State3_
Prelaunch | Static | float32
array
(32 values) | Band 8 prelaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State3_
Postlaunch | Static | float32
array
(32 values) | Band 8 postlaunch internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2 on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | GROUP: LAMP_RADIANCE
GROUP:
LAMP_RADIANCE_HIGH | B8H_Rad_State3_
Current | Dynamic | float32
array
(32 values) | Band 8 current internal calibrator lamp effective spectral radiance in W/m^2-ster-µm; State 3 - lamp 1 on, lamp 2
on; high-gain mode Valid format: NNN.NNN, where N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|--------------------------------|---------------|---------------------------------|--| | GROUP: LAMP_REFERENCE | Lmp_Rtemp_
PreLaunch | Static | float32
array
(14 values) | Prelaunch internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 T1 = Cal shutter flag temp T2 = Backup shutter flag temp T3 = Silicon focal plane array temp T4 = Cold focal plane monitor temp T5 = Cal lamp housing temp T6 = Scan line corrector temp T7 = Cal shutter hub temp T8 = Ambient pre-amp temp (high) T9 = Ambient pre-amp temp (low) T10 = Cold pre-amp temp (B7) T11 = Post-amp temp (B4) T12 = Primary mirror amp temp T13 = Secondary mirror temp T14 = Pan band post-amp temp | | GROUP: LAMP_REFERENCE | Lmp_Rtemp_
Postlaunch | Static | float32
array
(14 values) | Postlaunch internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 Descriptions of T1 through T14 are the same as above | | GROUP: LAMP_REFERENCE | Lmp_Rtemp_Current | Dynamic | float32
array
(14 values) | Current internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.NNN, where S = "+" or "-" and N = 0 to 9 Descriptions of T1 through T14 are the same as above | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B1L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B2L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B2L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B2L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B2L_Coefficients_
Detector13 | Dynamic |
float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B2L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B2L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B3L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B3L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B4L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B4L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B5L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B5L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B5L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B5L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B7L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B7L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B7L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B7L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B7L_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B7L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW |
B8L_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B8L_Coefficients
_Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B8L_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B8L_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B8L_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector17 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 17 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector18 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector19 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 19 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector20 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 20 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector21 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 21 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector22 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 22 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector23 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 23 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector24 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 24 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector25 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 25 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS LOW | B8L_Coefficients_
Detector26 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 26 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector27 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 27 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector28 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 28 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector29 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 29 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector30 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 30 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector31 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_LOW | B8L_Coefficients_
Detector32 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, low gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B1H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B1H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 9
Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B1H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B1H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B1H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 1, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B2H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B2H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B2H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B2H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B2H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B2H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 2, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B3H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B3H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B3H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------
--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B3H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 3, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B4H_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B4H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B4H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B4H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B4H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B4H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B4H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 4, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B5H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B5H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B5H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B5H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
REFLECTIVE_IC_COEFFS
GROUP:
REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B5H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 5, high gain, detector 16 Valid
format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 6 Valid format: SNNN.NNNNNNN, where = + or - and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B7H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B7H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 7, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients
_Detector1 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 1 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector2 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 2 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector3 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 3 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector4 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 4 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector5 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 5 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector6 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 6 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector7 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 7 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector8 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 8 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|---------------------------------|---------------|---------------------------------|--| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector9 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 9 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector10 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 10 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector11 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 11 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector12 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 12 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector13 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 13 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector14 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 14 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector15 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 15 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector16 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 16 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector17 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 17 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector18 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 18 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector19 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 19 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector20 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 20 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP:
REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector21 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 21 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector22 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 22 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector23 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 23 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |---|------------------------------------|---------------|---------------------------------|---| | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector24 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 24 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector25 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 25 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT IC COEFFS HIGH | B8H_Coefficients_
Detector26 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 26 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector27 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 27 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector28 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 28 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector29 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 29 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector30 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 30 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector31 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 31 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: REFLECTIVE_IC_COEFFS GROUP: REFLECT_IC_COEFFS_HIGH | B8H_Coefficients_
Detector32 | Dynamic | float32
array
(18 values) | IC coefficients for Band 8, high gain, detector 32 Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector1 | Static | float32
array
(15 values) | View factor coefficients for Band 6, detector 1 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 a1 = Scan line corrector view factor a2 = Central baffles (heater) a3 = Secondary mirror and mask view factor a4 = Primary mirror and mask view factor a5 = Scan mirror view factor a6 = Black body (isolated) view factor a7 = Black body (control) view factor a8 = Cold focal plane control view factor a9 = Cold focal plane monitor view factor a10 = Baffle (tube) view factor a11 = Baffle (support) view factor a12 = Telescope housing view factor b = Integrated instrument view factor Vbb = Blocked aperture black body view factor | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector2 | Static | float32
array
(15 values) | View factor coefficients for Band 6, detector 2 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |--------------------------------|------------------------------------|---------------|-------------------------------------|---| | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector3 | Static | float32
array
(15
values) | View factor coefficients for Band 6, detector 3 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector4 | Static | float32
array
(15
values) | View factor coefficients for Band 6, detector 4 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector5 | Static | float32
array
(15
values) | View factor coefficients for Band 6, detector 5 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector6 | Static | float32
array
(15
values) | View factor coefficients for Band 6, detector 6 Valid format: SNNN.NNNNNNNNN, where S = "+" or "." and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector7 | Static | float32
array
(15
values) | View factor coefficients for Band 6, detector 7 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | GROUP: B6_VIEW_COEFFS | B6_View_Coefficients_
Detector8 | Static | float32
array
(15
values) | View factor coefficients for Band 6, detector 8 Valid format: SNNN.NNNNNNNNN, where S = "+" or "-" and N = 0 to 9 Descriptions of the 15 coefficients are the same as above | | GROUP:
B6_TEMP_MODEL_COEFFS | B6_Temp_Model_Parm | Dynamic | float32
array
(6 values) | Coefficients used to calculate scan mirror temperature where (a1) = Scan mirror/secondary mirror adjustment factor, (a2) = Average secondary mirror temperature, and (a3) - (a6) = reserved Valid format: SNNN.NNNNNNN, where S = "+" or "-" and SNNN.NNNNNNNN = +1.0178 (a1) SNNN.NNNNNNNN = +0.0 (a2) SNNN.NNNNNNNN = +0.0 (a3) SNNN.NNNNNNNN = +0.0 (a4) SNNN.NNNNNNNN = +0.0 (a5) SNNN.NNNNNNNN = +0.0 (a6) | | GROUP:
THERMISTOR_COEFFS | Black_Body_Isolated_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Black_Body_Control_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Cold_FP_Control_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Cold_FP_Monitor_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Cal_Shutter_Flag_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Backup_Shutter_
Flag_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |-----------------------------|--------------------------------------|---------------|--------------------------------|---| | GROUP:
THERMISTOR_COEFFS | Baffle_Heater_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Silicon_FP_Array_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Primary_Mirror_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Secondary_Mirror_
Temp |
Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Scan_Line_Corrector_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Baffle3_Tube_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Baffle2_Support_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Cal_Lamp_Housing_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Cal_Shutter_Hub_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Ambient_Preamp_
HighCh_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Ambient_Preamp_
LowCh_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Postamp_Temp_B4 | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Cold_Preamp_B7_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Pan_Band_Postamp_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Telescope_Housing_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Primary_Mirror_
Mask_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Secondary_Mirror_
Mask_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Telescope_
Baseplate_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Mem_Heat_Sink_
Power_Supply1_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | Parameter
Group | Parameter
Name | Value
Type | Data
Type | Description | |-----------------------------|--------------------------------------|---------------|--------------------------------|---| | GROUP:
THERMISTOR_COEFFS | Mem_Heat_Sink_
Power_Supply2_Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Mux1_Power_Supply_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP:
THERMISTOR_COEFFS | Mux1_Electronics_
Temp | Static | float32
array
(6 values) | Calibration coefficients for raw data (telemetry value contains the power supply temperature for "active" Mux, which could be either Mux 1 or Mux 2) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: LAMP_CURRENTS | Tec_Lamp_i1 | Static | float32
array
(2 values) | Calibration coefficients for raw data (telemetry value contains current in mA of primary onboard calibration lamp, telemetry name = TECLAMP1I) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: LAMP_CURRENTS | Tec_Lamp_i2 | Static | float32
array
(2 values) | Calibration coefficients for raw data (telemetry value contains current in mA of primary onboard calibration lamp, telemetry name = TECLAMP2I) Valid format: SNNN.NNNNNNN, where S = "+" or "-" and N = 0 to 9 | | GROUP: FILL_PATTERNS | Band_Fill_Pattern | Static | uint8 array
(2 values) | Fill pattern used to fill erroneous or missing image data minor frames Valid format: NNN, where NNN = (0, 255) (alternating 0, 255's) | Table 2-1. Landsat 7 CPF Parameters ## Section 3 CPF ODL ## 3.1 Introduction The ODL syntax employs the following conventions: - Parameter definition is in the form of parameter = value. - Value can be either a scalar or an array. Array values are enclosed in parentheses and are separated by commas. - Parameter arrays can and do exist on multiple lines. - A carriage return <CR> and line feed <LF> end each line in the file. - Blank spaces and lines are ignored. - Each line of comments must begin with /* and end with */, including comments embedded on the same line as a parameter definition. - Quotation marks are required for values that are text strings, including single characters. The exceptions to this rule are the GROUP and END_GROUP identifiers or values, which do not use quotation marks. The parameters Effective_Date_Begin and Effective_Date_End also do not have quotation marks. ODL recognizes dates if they follow prescribed formats. - In general for ODL, case is not significant. However, for the CPF, the case is significant for keyword and group names. All group names are in all capital letters and keywords are in mixed case. - Indentation is not significant but is used for readability. - The reserved word END concludes the file. - Most parameter values have been derived during prelaunch instrument and spacecraft testing and analysis. Formats for CPF numerical parameters are accurate; however, negative signs are not explicitly stated. A data dictionary that declares each parameter's data type and value range has been defined. ## 3.2 Sample ETM+ CPF ODL File The following is a prototype of CPF file that contains valid parameter values for the first calendar quarter of 2007. To present the format structure, the hypothetical bumper mode specific parameters are also included in this example. ``` GROUP = FILE ATTRIBUTES Spacecraft_Name = "Landsat 7" Sensor Name = "Enhanced Thematic Mapper Plus" Effective_Date_Begin = \overline{2}007-01-0\overline{1} Effective Date End = 2007-03-31 CPF_File_Name = "L7CPF20070101 20070331.01" END GROUP = FILE ATTRIBUTES GROUP = EARTH CONSTANTS Ellipsoid_Name = "WGS84" Semi_Major_Axis = 6378137.000 Semi_Minor_Axis = 6356752.3142 Ellipticity = 0.00335281066474 Eccentricity = 0.00669437999013 Earth Spin Rate = 72.921158553E-06 Gravity_Constant = 3.986005E14 J2 Earth Model Term = 1082.63E-06 END GROUP = EARTH CONSTANTS GROUP = ORBIT PARAMETERS ``` ``` WRS Cycle Days = 16 WRS_Cycle_Orbits = 233 Scenes Per Orbit = 248 Orbital Period = 5933.0472 Angular Momentum = 53.136250E9 Orbit Radius = 7083.4457 Orbit Semimajor Axis = 7083.4457 Orbit Semiminor Axis = 7083.4408 Orbit_Eccentricity = 0.00117604 Inclination Angle = 98.2096 Argument Of Perigee = 90.0 Descending_Node_Row = 60 Long_Path1_Row60 = -64.6 Descending_Node_Time_Min = "09:45" Descending Node Time Max = "10:15" Nodal_Regression_Rate = 0.985647366 END GROUP = ORBIT PARAMETERS GROUP = SCANNER PARAMETERS Lines Per Scan 30 = 16 Lines_Per_Scan_60 = 8 Lines_Per_Scan_15 = 32 Scans Per Scene = 375 Swath_Angle = .26868 Scan Rate = 2.21095 Dwel\overline{1} Time 30 = 9.6110206 Dwell_Time_60 = 19.222041 Dwell_Time_15 = 4.8055103 IC_Line_Length_30 = 1150 IC Line Length 60 = 575 IC Line Length 15 = 2300 Scan Line Length 30 = 6320 Scan_Line_Length_60 = 3160 Scan Line Length 15 = 12640 Filter_Frequency_30 = 52.02 Filter_Frequency_60 = 26.01 Filter Frequency 15 = 115.00 IFOV B\overline{1}234 = 42.\overline{5} \overline{IFOV} B57 along scan = 39.4 IFOV_B57_across_scan = 42.5 IFOV B6 = 85.0 IFOV_B8_along_scan = 18.5 IFOV B8 across scan = 21.25 Scan Period = \overline{143.58} Scan Frequency = 6.96476 Active Scan Time = 60743.346 Turn_Around_Time = 11.055 END GROUP = SCANNER PARAMETERS GROUP = SPACECRAFT PARAMETERS ADS Interval = 2.0 ADS Roll Offset = 0.375 ADS Pitch Offset = 0.875 ADS_Yaw_Offset = 1.375 Data_Rate = 74.914 END GROUP = SPACECRAFT PARAMETERS GROUP = MIRROR PARAMETERS Error Conversion Factor = 0.18845139 GROUP = ANGLES SME1 SAM 1.638834E+01,3.070082E+02,-2.016646E+03) \texttt{Forward_Cross_SME1_SAM} \ = \ (-8.926001E-07, 2.945449E-04, -2.799967E-02, 1.024417E+00, -1.024417E+00, -1.02447E+00, -1.02457E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, -1.0247E+00, 1.579172E+01,8.644595E+01) Forward_Angle1_SME1_SAM = 67166.9 Forward Angle2 SME1 SAM = 67145.9 Reverse Along SME1 SAM = (0.000000E+00,2.717297E-03,-3.610215E-01,1.637412E+01,- 3.045525E+02,1.987221E+03) Reverse Cross SME1 SAM = (-7.702087E-07,1.318691E-04,-4.507913E-03,-8.416380E- 02, 5.421192E+00, -5.563424E+01) Reverse Angle1 SME1 SAM = 67142.8 Reverse_Angle2_SME1_SAM = 67169.9 END GROUP = ANGLES
SME1 SAM GROUP = ANGLES SME1 BUMP ``` ``` Forward Along SME1 Bump = (1.177376E-19, -2.713081E-03, 3.605800E-01, -1.618500E+01, 3.001900E+02, -1.965000E+03) Forward Cross SME1 Bump = (-3.159000E-07, 4.831800E-06, -1.336000E-03, 6.273300E-02, - 1.174500E+00, 7.932400E+00) Forward Angle1 SME1 Bump = (68302.9, 68\overline{3}02.9, 6\overline{8}302.\overline{9}, 68302.9,68302.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9 8302.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9, 302.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,6
02.9,68302.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68 2.9,68302.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,68000.9,680 .9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9 9,68302.9,68302.9,68302.9,68302.9,68302.9,68302.9) Forward Angle2 SME1 Bump = (69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5, 69050.5,69050.5 9050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5 050.5, 690
50.5,69050.5,69 0.5,69050.5, .5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050.5,69050. 5,69050.5,69050.5,69050.5,69050.5,69050.5) Forward_FHSERR_SME1_Bump = Forward SHSERR SME1 Bump = (-883, 883, -883) Reverse Along SME1 Bump = (-4.065758E-2, 2.074688E-03, -3.345100E-01, 1.567300E+01, - 2.953100E+02, 1.954000E+03) Reverse Cross SME1 Bump = (-5.611700E-07, -1.018300E-06, -1.553500E-04, 2.048200E-03, 1.075500E-01, -1.\overline{450700E+00}) Reverse Angle1 SME1 Bump = (68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3, 68234.3,68234.2,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3 8234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3,68234.3
234.3,68234.3,6 34.3,68234.3,68 4.3,68234.3,682 .3,68234.3,6823 3,68234.3,68234.3,68234.3,68234.3,68234.3) Reverse_Angle2_SME1_Bump = (68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3, 68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3 8889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3 889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3 89.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3 9.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3 .3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3,68889.3 3,68889.3,68889.3,68889.3,68889.3,68889.3) Reverse FHSERR SME1 Bump = Reverse SHSERR SME1 Bump = (-790, -790,
-790, 790,-790) END GROUP = ANGLES SME1 BUMP GROUP = ANGLES SME2 SAM Forward_Along_SME2_SAM = (0.000000E+00, -2.100656E-03, 3.401124E-01, -1.558871E+01, 2.878695E+02, -1.877441E+03) ``` ``` Forward Cross SME2 SAM = (-2.374600E-09, -8.188300E-06, 1.072700E-04, -3.646200E-03, -3.646000E-03, -3.646000E-03, -3.646000E-03, -3.646000E-03, -3.646000E-03, -3.646000E-03, -3.646000E-03, -3.646000 1.456200E-01, -1.\overline{4}8670\overline{0}E+00) Forward Angle1 SME2 SAM = 67162.7 Forward Angle2 SME2 SAM = 67162.8 Reverse Along SME2 SAM = (0.000000E+00, 2.746938E-03, -3.415100E-01, 1.534667E+01, - 2.872800E+02, 1.892100E+03) Reverse Cross SME2 SAM = (-6.351600E-07, 1.258700E-05, -7.787700E-04, 1.767400E-02, - 1.108500E-01, -1.\overline{5}9710\overline{0}E-01) Reverse_Angle1_SME2_SAM = 67162.8 Reverse Angle2 SME2 SAM = 67162.7 END GROUP = ANGLES SME2 SAM GROUP = ANGLES SME2 BUMP Forward Along SME2 Bump = (0.0000000E+00, -2.463915E-03, 3.546100E-01, -1.609400E+01, 2.987000E+02, -1.956800E+03) Forward Cross SME2 Bump = (-3.344900E-07, 7.778000E-06, -1.768700E-03, 8.061500E-02, -1.768700E- 1.463400E+0\overline{0}, 9.5\overline{1}2300\overline{E}+00) Forward Angle1 SME2 Bump = (67162.7, 67\overline{1}62.7, 67\overline{1}62.\overline{7}, 67162.7,67162.7 7162.7,67162.7,
162.7,67162.7,6 62.7,67162.7,67 2.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7 .7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162. 7,67162.7,67162.7,67162.7,67162.7,67162.7) Forward Angle2 SME2 Bump = (67162.8,671 67162.8,67162.8
7162.8,67162.8, 162.8,67162.8,6 62.8,67162.8,67 2.8,67162.8,
.8,67162.8,6 8,67162.8,67162.8,67162.8,67162.8) Forward FHSERR SME2 Bump = 883, -883) Reverse_Along_SME2_Bump = (0.000000E+00, 2.234071E-03, -3.347900E-01, 1.554200E+01, - 2.927500E+0\overline{2}, 1.9\overline{3}6900\overline{E}+03) Reverse Cross SME2 Bump = (-6.024100E-07, 6.736100E-06, -1.153000E-03, 5.158900E-02, 5.158900E-03, -1.153000E-03, 5.158900E-03, -1.153000E-03, -1.153000E- 9.145700E-01, 5.977300E+00) Reverse Angle1 SME2 Bump = (67162.8,67162. 67162.8,67162.8 7162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67162.8,67 162.8,67162.
62.8,67162.8 2.8,67162.8,671 .8,67162.8,6 8,67162.8,67162.8,67162.8,67162.8) Reverse Angle2 SME2 Bump = (67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7, 67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7 7162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7 162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,67162.7,671 62.7,67162.7
2.7,67162.7,671 .7,67162.7,6 7,67162.7,67162.7,67162.7,67162.7) Reverse FHSERR SME2 Bump = ``` ``` END GROUP = ANGLES SME2 BUMP END GROUP = MIRROR PARAMETERS GROUP = BUMPER MODE PARAMETERS SME1 BumperA Dwell Time = (9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770. 8,9770.8,970. .8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,977 0.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,97 70.8,970.8,970.
770.8,9700.8,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700.9,9700 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8) SME1 BumperA Pickoff Time = (511.0, 11.0, 5 1.0, 511.0,
511.0, 51 .0, 511 0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0 SME1 BumperA Offset Time = 10110.0 SME1 BumperA Angle = -69000.0 SME1 BumperB Dwell Time = (9801.\overline{7}, 9801.\overline{7}, 9801.\overline{7 7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801. .7,9801 1.7,980 01.7,98 801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7, 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7) SME1_BumperB_Pickoff_Time = (439.6, 439.6,
39.6,43 9.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 .6, 439 6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6, 439.6) SME1 BumperB Offset Time = 10110.0 SME1_BumperB_Angle = 69000.0 SME2_BumperA_Dwell Time = (9770.\overline{8}, 9770.8, 8,9770.8,970.8,9
.8,9770.8,970 0.8,9770.8,970.8 70.8,9770. 770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8,9770.8, 9770.8,9770.8,9770.8,9770.8,9770.8,9770.8) SME2_BumperA_Pickoff_Time = (511.0, 511.0,
511.0, 11.0, 5 1.0, 51 .0, 511 0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0,511.0) SME2_BumperA_Offset_Time = 10110.0 SME2 BumperA Angle = -69000.0 SME2 BumperB Dwell Time = (9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801. 7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801. .7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,980 1.7,9801.7 01.7, 9801.7,
9801.7, 9801.7 801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7, 9801.7,9801.7,9801.7,9801.7,9801.7,9801.7,9801.7) ``` ``` SME2 BumperB Pickoff Time = (439.6, 39.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 9.6,439 .6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6 6,439.6,439.6,439.6,439.6,439.6,439.6,439.6,439.6) SME2 BumperB Offset Time = 10110.0 SME2 BumperB Angle = 69000.0 END GROUP = BUMPER MODE PARAMETERS GROUP = SCAN LINE CORRECTOR Primary_Angular_Velocity = 0.0 Secondary_Angular_Velocity = 0.0 Primary Corrector Motion = (0.00000, 0.00000, 0.00000, 0.00000, 0.00000, 0.00000) Secondary_Corrector_Motion = (0.00000,0.00000,0.00000,0.00000,0.00000,0.00000) Unpowered Pointing Bias = 0.0000427 END GROUP = SCAN LINE CORRECTOR GROUP = FOCAL PLANE PARAMETERS GROUP = BAND OFFSETS Along Scan Band Offsets = (+3627.944,+2564.567,+1501.002,+438.166,-2577.619,-4072.538,- 1473.263,+4692.000) {\tt Across_Scan_Band_Offsets} = (+1.280, +0.537, -0.270, -1.447, +15.828, +31.762, +15.683, +0.000) Forward Focal Plane Offsets = (+25.0,+50.0,+75.0,+100.0,+171.0,+206.0,+145.0,+0.0) Reverse Focal Plane Offsets = (-25.0,-50.0,-75.0,-100.0,-171.0,-206.0,-145.0,+0.5) END GROUP = BAND OFFSETS GROUP = DETECTOR OFFSETS Forward Along Scan DO B1 = (1.250, 1.298, 1.324, 1.250, 1.253, 1.241, 1.254, 1.271, 1.207, 1.260, 1.247, 1.251, 1.234, 1.227, 1.264, 1.243 Reverse_Along_Scan_DO_B1 = (1.241, 1.278, 1.320, 1.230, 1.244, 1.224, 1.256, 1.260, 1.223, 1.255, 1.262, 1.252, 1.251, 1.234, 1.287, 1.258) Forward_Along_Scan_DO_B2 = (1.260, 1.278, 1.263, 1.276, 1.269, 1.246, 1.233, 1.232, 1.281, 1.229, 1.237, 1.240, 1.228, 1.246, 1.221, 1.267) Reverse_Along_Scan_DO_B2 = (1.249, 1.262, 1.257, 1.258, 1.260, 1.230, 1.234, 1.221, 1.294, 1.224, 1.25\overline{3}, 1.2\overline{42}, 1.24\overline{4}, 1.252, 1.244, 1.282) Forward Along Scan DO B3 = (1.252, 1.256, 1.267, 1.225, 1.240, 1.261, 1.236, 1.297, 1.203, 1.222, 1.214, 1.193, 1.218, 1.210, 1.269, 1.221) Reverse Along Scan DO B3 = (1.242, 1.237, 1.260, 1.207, 1.231, 1.244, 1.235, 1.287, 1.213, 1.218, 1.229, 1.195, 1.238, 1.214, 1.294, 1.237) Forward Along Scan DO B4 = (1.263, 1.259, 1.286, 1.268, 1.265, 1.269, 1.257, 1.300, 1.281, 1.265, 1.234, 1.253, 1.232, 1.226, 1.256, 1.301) Reverse Along Scan DO B4 = (1.253, 1.238, 1.278, 1.246, 1.256, 1.251, 1.257, 1.291, 1.292, 1.263, 1.24\overline{9}, 1.2\overline{59}, 1.25\overline{0}, 1.233, 1.281, 1.317) Forward Along Scan DO B5 = (1.163, 1.165, 1.144, 1.137, 1.150, 1.120, 1.109, 1.109, 1.100, 1.095, 1.067, 1.069, 1.058, 1.053, 1.058, 1.027 Reverse_Along_Scan_DO_B5 = (1.047, 1.037, 1.045, 1.068, 1.078, 1.077, 1.075, 1.103, 1.108, 1.125, 1.107, 1.1\overline{33}, 1.\overline{133}, 1.151, 1.168, 1.166 Forward_Along_Scan_DO_B6 = (1.904, 2.058, 1.890, 2.055, 1.899, 1.946, 1.820, 1.924) Reverse Along Scan DO B6 = (1.952, 1.899, 1.951, 1.924, 1.964, 1.907, 1.974, 1.924) Forward Along Scan DO B7 = (1.202, 1.190, 1.217, 1.165, 1.185, 1.116, 1.168, 1.117, 1.121, 1.092, 1.110, 1.091, 1.079, 1.058, 1.076, 1.042) Reverse Along Scan DO B7 = (1.034, 1.064, 1.098, 1.074, 1.104, 1.064, 1.135, 1.113, 1.133, 1.133, 1.16\overline{3}, 1.168, 1.170, 1.171, 1.206, 1.199) Forward Along Scan DO B8 = (0.511, 0.508, 0.505, 0.514, 0.513, 0.523, 0.521, 0.511, 0.509, 0.499,\ 0.5\overline{17},\ 0.\overline{513},\ 0.\overline{508},\ 0.508,\ 0.516,\ 0.512,\ 0.507,\ 0.523,\ 0.522,\ 0.541,\ 0.499,\ 0.527,\ 0.510, 0.528, 0.518, 0.519, 0.515, 0.518, 0.514, 0.521, 0.499, 0.523) Reverse Along Scan DO B8 = (0.511, 0.508, 0.505, 0.514, 0.513, 0.523, 0.521, 0.511, 0.509, 0.499,\ 0.517,\ 0.513,\ 0.507,\ 0.508,\ 0.516,\ 0.512,\ 0.514,\ 0.489,\ 0.525,\ 0.504,\ 0.515,\ 0.497,\ 0.522, 0.505, 0.535, 0.497, 0.539, 0.505, 0.544, 0.516, 0.537, 0.523) Forward_Across_Scan_DO_B1 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) Reverse_Across_Scan_DO_B1 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) Forward Across Scan DO B2 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) Reverse Across Scan DO B2 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000) Forward Across Scan DO B3 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000) Reverse Across Scan DO B3 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000) ``` ``` Forward Across Scan DO B4 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000) Reverse Across Scan DO B4 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, \ 0.00\overline{0}, \ 0.00\overline{0}, \ 0.\overline{0}00, \ 0.000, \ 0.000, \ 0.000) Forward Across Scan DO B5 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{000}, 0.000, 0.000, 0.000 Reverse Across Scan DO B5 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{000}, 0.000, 0.000, 0.000 Forward_Across_Scan_DO_B6 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) Reverse Across Scan DO B6 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) Forward Across Scan DO B7 = (0.000, 0.000,
0.000, 0.000) Reverse Across Scan DO B7 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00, 0.000, 0.000, 0.000) Forward Across Scan DO B8 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.00\overline{0}, 0.00\overline{0}, 0.\overline{0}00\overline{0}, 0.000 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) Reverse Across Scan DO B8 = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000,\ 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) END GROUP = DETECTOR OFFSETS GROUP = ODD EVEN OFFSETS Forward_Even_Detector_Shift = (31.0,56.0,81.0,106.0,177.0,101.0,151.0,14.0) Forward Odd Detector Shift = (33.0,58.0,83.0,108.0,179.0,104.0,153.0,18.0) Reverse Even Detector Shift = (27.0,52.0,77.0,102.0,173.0,105.0,147.0,4.0) Reverse Odd Detector Shift = (30.0,55.0,80.0,105.0,176.0,107.0,150.0,8.0) END GROUP = ODD EVEN OFFSETS END GROUP = FOCAL PLANE PARAMETERS GROUP = ATTITUDE PARAMETERS Gyro To Attitude Matrix = (9.99999900E-01, -3.68543600E-04, 2.43062700E-05, 2.43207600E-05, - 2.22997000E-04, -1.000000000E+00, 3.68785400E-04, 9.99999900E-01, -2.22941100E-04) ADSA To ETM Matrix = (9.99999800E-01, 1.65108100E-04, 6.51893000E-04, 6.78739000E-05, 9.39659800E-01, -3.42110300E-01, -6.69042800E-04, 3.42110300E-01, 9.39659600E-01) Attitude To ETM Matrix = (9.99999845E-01, 1.18363752E-04, 5.43986578E-04, -1.18213574E-04, 9.99999955\overline{E}-0\overline{1}, -\overline{2}.76092898E-04, -5.44019232E-04, 2.76028548E-04, 9.99999814E-01) Spacecraft Roll Bias = 0.00000000E+00 Spacecraft_Pitch_Bias = 0.00000000E+00 Spacecraft_{Yaw_Bias} = 0.00000000E+00 IMU_Drift_Bias_XA = -2.23500000E-06 IMU Drift Bias YA = -2.23500000E-06 IMU_Drift_Bias_ZA = 1.68230000E-06 IMU Drift Bias XB = 1.86665000E-06 IMU Drift Bias YB = -6.35100000E-07 IMU Drift Bias ZB = 4.84810000E-08 END GROUP = ATTITUDE PARAMETERS GROUP = TIME_PARAMETERS Scan Time = 60743.0 Forward First Half Time = 30371.4 Forward Second Half Time = 30371.6 Reverse First \overline{\text{Half Time}} = 30371.6 Reverse Second Half Time = 30371.4 END GROUP = TIME PARAMETERS GROUP = TRANSFER FUNCTION GROUP = IMU Fn = 3.3113091 Zeta = 0.66882924 Tau = -1.6086176E-2 P = -4.1138195E-3 Ak = 1.0103061 END GROUP = IMU GROUP = ADS ADS num = ,0.0,0.0,0.0,+9.2111049E2,+1.9766902E2,+1.00000E0) ADS den = 4,+4.3224093E3,+2.3570742E2,+1.0000000E0) ADS_num_temp = (0.0, 0.0, 0.0, +6.4416984E1, -1.3578067E0, -5.0789831E- 3,0.0,0.0,0.0,+2.0618135E2,+4.7466808E0,-2.9005228E- 3,0.0,0.0,0.0,+9.1603744E1,+2.0285055E0,+4.0783070E-2) ``` ``` 3, +1.9779418E4, +3.3575148E4, +4.6478372E3, +2.6281609E2, +4.3279161E0, -2.7584826E- 3, +9.9464208E3, +1.3229420E4, +1.8093952E3, +9.2350092E1, +2.9068940E0, +4.2219584E-2) END GROUP = ADS GROUP = PREFILTER ADSPre W = (0.000670695, 0.000427279, 0.000667499, 0.000946530, 0.001221428) ADSPre\ H = (-0.0748, 0.0133, 0.7994, 0.1824, 1.00157) ADSPre T = (0.0010191, 0.000015, 0.0, 0.0, 0.0) END GROUP = PREFILTER END GROUP = TRANSFER FUNCTION GROUP = UT1 TIME PARAMETERS UT1 Year = (2006, 006, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007, 2007,
2007, 2007 07, 2007 07,2007,2007,2007,2007,2007) UT1 Month = ("Nov", "Nov", "Dec", " an", "Jan", "Feb", "Feb , Feb", Feb", Feb", Feb", Feb", Feb", Mar", Mar" Mar", "Mar", "Mar", "Mar", "Apr", "Ap r","Apr","Apr","May","May","May","May","May","May","May","May","May","May","May","May","May","May","May","May ", "May", "May") UT1 Day = (18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22, 23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2 7,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,1,2,3,4, UT1 Modified Julian = (5405\overline{7}, 54058, 5\overline{40}59, 54060, 54061, 54062, 54063, 54064, 54065, 54066, 54067, 54068, 54069, 54070, 54071, 54072, 54073,54074,54075,54076,54077,54078,54079,54080,54081,54082,54083,54084,54085,54086,54087,54088,5 4089,54090,54091,54092,54093,54094,54095,54096,54097,54098,54099,54100,54101,54102,54103,54104,54 105, 54106, 54107, 54108, 54109, 54110, 54111, 54112, 54113, 54114, 54115, 54116, 54117, 54118, 54119, 54120, 54111, 54119, 54 21,54122,54123,54124,54125,54126,54127,54128,54129,54130,54131,54132,54133,54134,54135,54136,5413 7,54138,54139,54140,54141,54142,54143,54144,54145,54146,54147,54148,54149,54150,54151,54152,54153 ,54154,54155,54156,54157,54158,54159,54160,54161,54162,54163,54164,54165,54166,54167,54168,54169, 54170,54171,54172,54173,54174,54175,54176,54177,54178,54179,54180,54181,54182,54183,54184,54185,5 4186,54187,54188,54189,54190,54191,54192,54193,54194,54195,54196,54197,54198,54199,54200,54201,54 202, 54203, 54204, 54205, 54206, 54207, 54208, 54209, 54210, 54211, 54212, 54213, 54214, 54215, 54216, 54217, 54216,
54217, 54216, 54217, 54 18, 54219, 54220, 54221, 54222, 54223, 54224, 54225, 54226, 54227, 54228, 54229, 54230, 54231, 54232, 54233, 54231, 54232, 542322, 542322, 542322, 54232, 54232, 54232, 54232, 54232, 54222, 54222, 54222, 54222, 54222, 4,54235,54236) \text{UT1} \ \ \text{X} = (-0.02126, -0.02269, -0.02414, -0.02561, -0.02684, -0.02808, -0.02957, -0.03118, -0.03286, -0.02808, -0.0 0.034\overline{4}6, -0.03572, -0.03663, -0.03742, -0.03814, -0.03848, -0.03856, -0.03863, -0.03876, -0.03921, -0.03863, -0.03864, -0 0.04011, -0.04122, -0.04235, -0.04350, -0.04465, -0.04579, -0.04691, -0.04802, -0.04910, -0.05016, -0.04011, -0.04010, -0.04 0.05120, -0.05220, -0.05318, -0.05413, -0.05504, -0.05593, -0.05679, -0.05761, -0.05840, -0.05917, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120, -0.05120,
-0.05120, -0.05 0.05989, -0.06059, -0.06125, -0.06187, -0.06247, -0.06303, -0.06355, -0.06404, -0.06449, -0.06492, -0.06404, -0.06 0.06530, -0.06564, -0.06595, -0.06623, -0.06646, -0.06666, -0.06681, -0.06693, -0.06702, -0.06706, -0.06681, -0.06681, -0.06693, -0.06702, -0.06706, -0.06 0.06706, -0.06703, -0.06696, -0.06684, -0.06669, -0.06650, -0.06626, -0.06599, -0.06588, -0.06532, - 0.06493, -0.06450, -0.06402, -0.06351, -0.06295, -0.06235, -0.06171, -0.06104, -0.06032, -0.05956, -0.06493, -0.06450, -0.06492, -0.06 0.05876, -0.05792, -0.05704, -0.05612, -0.05516, -0.05416, -0.05312, -0.05204, -0.05093, -0.04977, -0.05876,
-0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05876, -0.05 0.04858, -0.04734, -0.04607, -0.04476, -0.04342, -0.04203, -0.04061, -0.03916, -0.03767, -0.03614, -0.04858, -0.04061, -0.04 0.03458, -0.03298, -0.03134, -0.02968, -0.02798, -0.02625, -0.02448, -0.02269, -0.02086, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0.019000, -0 0.01711, -0.01519, -0.01324, -0.01126, -0.00926, -0.00723, -0.00517, -0.00308, -0.00723, -0.00517, -0.00308, -0.00517, -0.00 0.00097, 0.00117, 0.00333, 0.00551, 0.00772, 0.00995, 0.01220, 0.01447, 0.01676, 0.01907, 0.02140, 0.02375, 0.01200, 0.014000, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.01400, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.0140000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0.014000, 0. .02612, 0.02850, 0.03090, 0.03331, 0.03574, 0.03818, 0.04063, 0.04310, 0.04558, 0.04807, 0.05057, 0.05308, 0.04807, 0.05067,
0.05067, 0. 05559, 0.05812, 0.06065, 0.06318, 0.06573, 0.06827, 0.07082, 0.07338, 0.07594, 0.07849, 0.08105, 0.08361, 0.0 8617, 0.08873, 0.09128, 0.09383, 0.09638, 0.09892, 0.10146, 0.10400, 0.10652, 0.10904, 0.11155, 0.11406, 0.11111, 0. ``` ``` 655, 0.11903, 0.12151, 0.12397, 0.12642, 0.12885, 0.13128, 0.13369, 0.13608, 0.13846, 0.14083, 0.14317, 0.145 50,0.14782,0.15011) UT1 Y = (0.29\overline{0}18, 0.29078, 0.29127, 0.29199, 0.29307, 0.29435, 0.29579, 0.29730, 0.29881, 0.30016, 0.30114, 0.30189, 0.30287, 0.30385, 0.30490, 0.30642, 0.30828, 0.31009, 0.31195, 0.31392, 0.31583, 0.31768, 0.31948, 0.32125, 0.31948, 0 .32298, 0.32470, 0.32640, 0.32810, 0.32979, 0.33147, 0.33316, 0.33486, 0.33656, 0.33827, 0.33998, 0.34171, 0. 34345, 0.34520, 0.34696, 0.34873, 0.35051, 0.35230, 0.35410, 0.35591, 0.35774, 0.35957, 0.36141, 0.36326, 0.36141, 0.3 6512,0.36699,0.36886,0.37074,0.37263,0.37453,0.37643,0.37833,0.38024,0.38216,0.38407,0.38599,0.38 792, 0.38984, 0.39176, 0.39369, 0.39562, 0.39754, 0.39947, 0.40139, 0.40331, 0.40523, 0.40711, 0.40903, 0.410120, 0.40120,
0.40120, 0.401200, 0.401200, 0.401200, 0.401200, 0.401200, 0.401200, 0.401200, 0.401200, 0.401200, 0.40 94,0.41284,0.41474,0.41664,0.41852,0.42040,0.42228,0.42414,0.42600,0.42784,0.42968,0.43150,0.4333 2, 0.43512, 0.43691, 0.43868, 0.44045, 0.44220, 0.44393, 0.44565, 0.44735, 0.44904, 0.45071, 0.45236, 0.45400 0.47335, 0.47467, 0.47596, 0.47723, 0.47847, 0.47969, 0.48087, 0.48203, 0.48315, 0.48425, 0.48531, 0.48635, 0.48425, 0.48425, 0.48425, 0.48531, 0.48635, 0.48425, 0 .48735,0.48832,0.48926,0.49016,0.49103,0.49187,0.49268,0.49345,0.49418,0.49488,0.49554,0.49617,0. 49676, 0.49732, 0.49783, 0.49831, 0.49875, 0.49916, 0.49952, 0.49985, 0.50013, 0.50038, 0.50059, 0.50076, 0.5 0089, 0.50098, 0.50103, 0.50104, 0.50101, 0.50093, 0.50082, 0.50066, 0.50047, 0.50023, 0.49995, 0.49963, 0.49995, 0.49950, 0.49950, 0.49950, 0.49950, 0.49950, 0.49950, 0.49950, 0.49950, 0.49950, 0.49 927,0.49887,0.49843,0.49794,0.49741,0.49685,0.49624,0.49559,0.49489,0.49416,0.49339,0.49257,0.491 72,0.49082,0.48988,0.48890,0.48789,0.48683,0.48573,0.48459,0.48342,0.48220,0.48095) UT1 UTC = (0.08\overline{5}66, 0.08458, 0.08362, 0.08277, 0.08206, 0.08147, 0.08094, 0.08033, 0.07952, 0.07842, 0.07703, 0.07539, 0.07361, 0.07180, 0.07013, 0.06875, 0.06767, 0.06679, 0.06607, 0.06538, 0.06459, 0.06360, 0.06245, 0.06121, 0 .05987, 0.05846, 0.05700, 0.05561, 0.05436, 0.05331, 0.05246, 0.05181, 0.05130, 0.05087, 0.05039, 0.04977, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 0.051300, 04891, 0.04781, 0.04648, 0.04502,
0.04354, 0.04218, 0.04106, 0.04022, 0.03963, 0.03924, 0.03893, 0.03857, 0.04106, 0.04022, 0.04022, 0.04024, 0.0 3807,0.03738,0.03650,0.03547,0.03435,0.03321,0.03209,0.03105,0.03013,0.02936,0.02873,0.02824,0.02 780,0.02733,0.02670,0.02583,0.02465,0.02318,0.02153,0.01983,0.01825,0.01690,0.01583,0.01504,0.014 45, 0.01395, 0.01343, 0.01279, 0.01198, 0.01098, 0.00980, 0.00850, 0.00714, 0.00580, 0.00453, 0.00338, 0.0023, 0.004500, 0.00450, 0.00450, 0.004500, 0.004500, 0.004500, 0.004500, 0.004500, 0.004500, 0.004500, 0.004500, 0.004500, 0.004500, 0.004 9,0.00155,0.00086,0.00025,-0.00036,-0.00109,-0.00205,-0.00334,-0.00497,-0.00686,-0.00888,- 0.01085, -0.01260, -0.01405, -0.01520, -0.01613, -0.01693, -0.01773, -0.01863, -0.01971, -0.02099, -0.01085, -0.01971, -0.02099, -0.01085, -0.01971, -0.02099, -0.01085, -0.01971, -0.02099, -0.01085, -0.01971, -0.01971, -0.02099, -0.0099, -0.00 0.02246, -0.02409, -0.02581, -0.02754, -0.02921, -0.03076, -0.03216, -0.03339, -0.03446, -0.03542, -0.03646, -0.03666, -0.03666, -0.03666, -0.0366, -0.036 0.03632, -0.03728, -0.03840, -0.03980, -0.04154, -0.04360, -0.04588, -0.04818, -0.05033, -0.05218, -0.04818, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.04818, -0.05033, -0.05218, -0.04818, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.04818, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033, -0.05218, -0.05033,
-0.05033, -0.05 0.05366, -0.05484, -0.05583, -0.05677, -0.05778, -0.05893, -0.06025, -0.06174, -0.06337, -0.06510, -0.06337, -0.06025, -0.06 0.06684, -0.06854, -0.07012, -0.07155, -0.07281, -0.07389, -0.07485, -0.07573, -0.07663, -0.07764, -0.07689, -0.07 0.07886, -0.08038, -0.08223, -0.08434, -0.08658, -0.08875, -0.09069, -0.09229, -0.09355, -0.09454, -0.08668, -0.08669, -0.08038, -0.08623, -0.08623, -0.08658, -0.08658, -0.08675, -0.09669, -0.09 0.09542, -0.09631, -0.09732, -0.09848, -0.09980, -0.10124, -0.10277, -0.10431, -0.10580, -0.10718, -0.10 0.10840, -0.10943, -0.11028, -0.11096, -0.11155, -0.11211, -0.11274, -0.11353, -0.11455, -0.11584, -0.10840,
-0.10840, -0.10 0.11739, -0.11911, -0.12083, -0.12241, -0.12368 END GROUP = UT1 TIME PARAMETERS GROUP = DETECTOR STATUS Status Band1 = "00000", "00000", "00000", "00000") Status Band2 = "00000", "00000", "00000", "00000") Status Band3 = "00000", "00000", "00000", "00000") Status Band4 : ("00000" ,"00000","00000","00000","00000","00000","00000","00000","00000","00000","00000","00000", "00000", "00000", "00000", "00000") Status Band5 = "00000", "00000", "00000", "00000") Status Band6 = ("00000","00000","00000","00000","00000","00000","00000","00000") Status_Band7 = "00000", "00000", "00000", "00000") Status Band8 = "00000", "000000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "000 00000","00000","00000","00000","00000","00000","00000", END GROUP = DETECTOR STATUS GROUP = DETECTOR GAINS GROUP = DETECTOR GAINS LOW B1L Prelaunch = (0.8153\overline{9}, 0.81569, 0.80851, 0.81656, 0.80959, 0.81726, 0.81510, 0.81726, 0.81972, 0.82364, 0.81647, 0.81569, 0.81558, 0.81421, 0.81637, 0.82413) B1L Postlaunch = (0.8182\overline{3}, 0.81783, 0.80966, 0.81754, 0.81015, 0.81693, 0.81472, 0.81488, 0.81880, 0.82097, 0.81406, 0.81251, 0.81488, 0.81880, 0.82097, 0.81406, 0.81251, 0.81488, 0.81880, 0.81880, 0.82097, 0.81406, 0.81251, 0.81488, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.818800, 0.8180 0.81488, 0.81594, 0.81815, 0.82591) ``` - 100 - ``` B1L Current = (0.8179\overline{9}, 0.81750, 0.80957, 0.81749, 0.81003, 0.81677, 0.81467, 0.81498, 0.81855, 0.82083, 0.81422, 0.81251, 0.81532, 0.81641, 0.81808, 0.82585) B2L Prelaunch = (0.79631, 0.79482, 0.78627, 0.79980, 0.79164, 0.79352, 0.79342, 0.78984, 0.78915, 0.80556, 0.79114, 0.79323, 0.79114, 0.79324, 0.79114, 0.79721, 0.79393, 0.79909, 0.78627) B2L Postlaunch = (0.7977\overline{6}, 0.79609, 0.78776, 0.80101, 0.79164, 0.79403, 0.79284, 0.78974, 0.78839, 0.80499, 0.79077, 0.79244, 0.79657, 0.79395, 0.79720, 0.78602 B2L Current = (0.7974\overline{6}, 0.78745, 0.78744, 0.79996, 0.79186, 0.79381, 0.79329, 0.78996, 0.78878, 0.80521, 0.79057, 0.79210, 0.79651, 0.79394, 0.79806, 0.78682) B3L Prelaunch (1.02746, 1.02044, 1.02350, 1.02469, 1.02370, 1.03171, 1.03417, 1.02360, 1.01866, 1.02785, 1.01728, 1.02884,
1.02884, 1.02192, 1.02578, 1.01966, 1.02212) B3L Postlaunch = (1.02799, 1.02041, 1.02390, 1.02421, 1.02328, 1.03097, 1.03486, 1.02379, 1.01888, 1.02687, 1.01693, 1.02830, 1.02298, 1.02656, 1.01940, 1.02205) B3L Current = (1.02779, 1.02074, 1.02399, 1.02526, 1.02314, 1.03146, 1.03397, 1.02363, 1.01817, 1.02742, 1.01668, 1.02899, 1.02203, 1.02624, 1.01991, 1.02282) B4L Prelaunch = (1.0015\overline{5}, 0.99885, 1.00308, 0.98557, 1.00135, 1.00001, 0.99761, 1.00491, 0.99087, 0.99626, 0.98750, 0.99693, 0.99405, 0.99751, 0.98913, 1.00578) B4L Postlaunch = (1.00200, 0.99891, 1.00320, 0.98575, 1.00160, 0.99990, 0.99711, 1.00359, 0.99203, 0.99691, 0.98724, 0.99661, 0.99402,0.99761,0.98844,1.00608) B4L_Current = (1.00257, 0.99977, 1.00358, 0.98599, 1.00195, 1.00017, 0.99770, 1.00433, 0.99132, 0.99636, 0.98717, 0.99667, 0.99341, 0.99711, 0.98861, 1.00640) B5L Prelaunch = (5.03398, 5.06663, 5.07855, 5.05421, 5.08496, 5.02657, 5.04109, 5.08426, 5.06803, 5.08837, 5.04810, 5.04560, 5.03738, 5.05932, 5.03949, 5.09518) B5L Postlaunch : (5.03903, 5.07388, 5.07588, 5.05826, 5.09772, 5.02991, 5.04964, 5.07949, 5.07899, 5.10122, 5.04353, 5.03692, 5.02130, 5.04453, 5.03642, 5.08500) B5L Current = (5.0409\overline{1}, 5.07587, 5.07901, 5.05802, 5.09723, 5.03077, 5.05160, 5.08235, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.03239, 5.07142, 5.09768, 5.04620, 5.09768, 5.04620, 5.09768, 5.04620, 5.09768, 5.0976 5.02648, 5.05153, 5.03273, 5.07932) B6L Prelaunch = (12.283,12.474,13.150,12.511,12.805,12.646,13.108,12.794) B6L_Postlaunch = (12.426,12.614,13.270,12.625,12.899,12.893,13.217,12.969) B6L Current = (12.435,12.620,13.276,12.628,12.898,12.758,13.211,12.951) B7L Prelaunch = (14.54238,14.52680,14.58439,14.51162,14.55705,14.59233,14.60841,14.48228,14.52429,14.53584,14.622 07,14.51916,14.21294,14.68861,14.51303,14.49303) B7L Postlaunch = (14.510\overline{63}, 14.46411, 14.60801, 14.52661, 14.55857, 14.57595, 14.62399, 14.52219, 14.53385, 14.53676, 14.653 03,14.54550,14.19237,14.68207,14.50772,14.47285) B7L Current = (14.507\overline{0}6, 14.48280, 14.61788, 14.53490, 14.54235, 14.58111, 14.59652, 14.50995, 14.53182, 14.54217, 14.6438, 14.6438, 14.6438, 14.6438, 14.6438, 14.6438, 14.6438, 14.64888, 14.64888, 14.64888, 14.6488, 14.64888, 14.64888, 14.64888, 14.64888, 14.64888, 14.6488 89,14.52400,14.21692,14.69388,14.51501,14.47046) B8L Prelaunch = (0.98287,0.99414,0.98206,0.99334,0.99072,0.99545,0.98679,0.99656,0.98277,0.98146,0.98821,0.98096, 0.98861, 0.98468, 0.98438, 0.99464, 0.99344, 0.97783, 0.99504, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.98428, 0.99122, 0.98589, 0.99092, 0.98166, 0.99122, 0.98589, 0.99092, 0.99092, 0 .99636,0.98719,0.98780,0.98337,0.99313,0.99575,0.99344,0.98831) B8L Postlaunch = (0.9840\overline{0}, 0.99576, 0.98222, 0.99448, 0.99022, 0.99586, 0.98529, 0.99645, 0.98271, 0.98083, 0.98657, 0.98103, 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98049, 0.99122, 0.98251, 0.99122, 0.98251, 0.99122, 0.98044, 0.98049, 0.99122, 0.98251, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98251, 0.99122, 0.98049, 0.99122, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049,
0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0.98049, 0.99122, 0 .99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914) B8L Current = (0.98400, 0.99576, 0.98222, 0.99448, 0.99022, 0.99586, 0.98529, 0.99645, 0.98271, 0.98083, 0.98657, 0.98103, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.98590, 0.985 0.99092, 0.98558, 0.98400, 0.99389, 0.99448, 0.98004, 0.99418, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0.98479, 0.99122, 0.98251, 0.99122, 0.98044, 0 .99527,0.98667,0.98647,0.98351,0.99448,0.99487,0.99418,0.98914) END GROUP = DETECTOR GAINS LOW GROUP = DETECTOR GAINS HIGH B1H Prelaunch = 1.22483, 1.22306, 1.22473, 1.23711) B1H Postlaunch (1.22807, 1.22746, 1.21521, 1.22703, 1.21594, 1.22611, 1.22281, 1.22304, 1.22892, 1.23218, 1.22182, 1.21949, 1.22304, 1.22464, 1.22795, 1.23959) ``` ``` B1H Current = (1.2280\overline{3}, 1.22712, 1.21536, 1.22724, 1.21611, 1.22630, 1.22281, 1.22306, 1.22901, 1.23215, 1.22207, 1.21956, 1.22259, 1.22435, 1.22788, 1.23963) B2H Prelaunch = (1.19510, 1.19271, 1.18036, 1.20027, 1.18664, 1.18942, 1.18893, 1.18444, 1.18424, 1.20845, 1.18723, 1.18992, 1.19510, 1.19092, 1.19779, 1.17906) B2H Postlaunch = (1.19657, 1.19406, 1.18157, 1.20144, 1.18739, 1.19097, 1.18918, 1.18453, 1.18252, 1.20740, 1.18608, 1.18858, 1.19478, 1.19085, 1.19573, 1.17895) B2H Current = (1.1966\overline{3}, 1.18166, 1.18154, 1.20040, 1.18714, 1.19041, 1.18950, 1.18471, 1.18307, 1.20780, 1.18624, 1.18886, 1.19419, 1.19057, 1.19641, 1.17941) B3H Prelaunch : (1.54197, 1.53259, 1.53429, 1.53718, 1.53629, 1.54845, 1.55294, 1.53678, 1.52820, 1.54297, 1.52711, 1.54436, 1.52820, 1.54297, 1.52711, 1.54436, 1.52820, 1.54297, 1.53459, 1.54107, 1.52980, 1.53289) B3H Postlaunch = (1.54289, 1.53152, 1.53674, 1.53721, 1.53582, 1.54736, 1.55319, 1.53659, 1.52922, 1.54121, 1.52629, 1.54336, 1.54121,
1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.54121, 1.53537, 1.54075, 1.52999, 1.53398) B3H Current = (1.5433\overline{3}, 1.53257, 1.53633, 1.53773, 1.53541, 1.54789, 1.55255, 1.53701, 1.52843, 1.54193, 1.52569, 1.54413, 1.53439, 1.54101, 1.53007, 1.53442) B4H Prelaunch = (1.5017\overline{4}, 1.49785, 1.50437, 1.47818, 1.50252, 1.49989, 1.49531, 1.50642, 1.48850, 1.49610, 1.48227, 1.49668, 1.49259, 1.49785, 1.48461, 1.50963) B4H Postlaunch = (1.50351, 1.49886, 1.50530, 1.47912, 1.50290, 1.50036, 1.49616, 1.50589, 1.48854, 1.49587, 1.48136, 1.49542, 1.49153, 1.49692, 1.48315, 1.50963) B4H Current = (1.50367, 1.49969, 1.50557, 1.47950, 1.50283, 1.50040, 1.49576, 1.50606, 1.48807, 1.49590, 1.48144, 1.49577, 1.49192,1.49748,1.48375,1.51046) B5H Prelaunch = (7.5546\overline{9}, 7.59878, 7.62118, 7.58419, 7.63018, 7.54119, 7.55799, 7.61848, 7.59718, 7.63598, 7.57749, 7.57069, 7.54699, 7.58149, 7.56809, 7.64298) B5H Postlaunch (7.55854, 7.61082, 7.61382, 7.58738, 7.64657, 7.54487, 7.57446, 7.61923, 7.61848, 7.65183, 7.56530, 7.55538, 7.61848, 7.61848, 7.65183, 7.56530, 7.55538, 7.61848, 7.61848, 7.65183, 7.618484, 7.6184848, 7.618484, 7.618484, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61848, 7.61 7.53195,7.56680,7.55463,7.62749) B5H Current = (7.5594\overline{4}, 7.61343, 7.61647, 7.58572, 7.64538, 7.54615, 7.57231, 7.61890, 7.61047, 7.64933, 7.56928, 7.55076, 7.53328, 7.57133, 7.55801, 7.62922) B6H Prelaunch = (23.953,24.325,25.642,24.397,24.969,24.659,25.561,24.949) B6H Postlaunch = (24.231,24.597,25.876,24.618,25.153,25.142,25.774,25.289) B6H Current = (24.257,24.700,26.097,24.783,25.211,24.980,25.851,25.424) B7H Prelaunch = (21.82563,21.80364,21.87966,21.77120,21.83747,21.89717,21.93090,21.74115,21.78742,21.79995,21.957 57,21.78373,21.30363,22.02712,21.76921,21.74891) B7H Postlaunch = (21.771\overline{7}5, 21.70194, 21.91786, 21.79573, 21.84368, 21.86976, 21.94183, 21.78909, 21.80658, 21.81096, 21.985 41,21.82407,21.29424,22.02898,21.76738,21.71506) B7H Current = (21.758\overline{15}, 21.72167, 21.93070, 21.80577, 21.81935, 21.86660, 21.92634, 21.79395, 21.80156, 21.81776, 21.989 36,21.81000,21.31337,22.03100,21.77424,21.70837) B8H Prelaunch = (1.47469, 1.49009, 1.47114, 1.49009, 1.48593, 1.49231, 1.48026, 1.49565, 1.47530, 1.47246, 1.48420, 1.47226, 1.47469, 1.48269, 1.47732, 1.47610, 1.49231, 1.49130, 1.46730, 1.49423, 1.47550, 1.48715, 1.47803, 1.48735, 1.47459, 1 .49697,1.48127,1.48300,1.47630,1.48958,1.49423,1.49049,1.48249) B8H Postlaunch = (1.4763\overline{9}, 1.49404, 1.47373, 1.49212, 1.48573, 1.49419, 1.47833, 1.49508, 1.47446, 1.47164, 1.48025, 1.47194, 1.48677, 1.47876, 1.47639, 1.49123, 1.49212, 1.47045, 1.49167, 1.47757, 1.48722, 1.47416, 1.48722, 1.47105, 1.48722,
1.48722, 1 .49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411) B8H Current = (1.47639, 1.49404, 1.47373, 1.49212, 1.48573, 1.49419, 1.47833, 1.49508, 1.47446, 1.47164, 1.48025, 1.47194, 1.48677,1.47876,1.47639,1.49123,1.49212,1.47045,1.49167,1.47757,1.48722,1.47416,1.48722,1.47105,1 .49330,1.48040,1.48010,1.47565,1.49212,1.49270,1.49167,1.48411) END GROUP = DETECTOR GAINS HIGH END GROUP = DETECTOR GAINS GROUP = BIAS LOCATIONS Forward_Bias_Location_30 = 143 Forward Bias Length 30 = 500 Forward_IC_Region_30 = 814 Reverse_Bias_Location 30 = 780 Reverse Bias Length 30 = 500 ``` ``` Reverse IC Region 30 = 780 Forward_Bias_Location 60 = 85 Forward Bias Length 60 = 275 Forward IC Region 60 = 380 Reverse Bias Location 60 = 380 Reverse Bias Length 60 = 275 Reverse IC Region 60 = 380 Forward Bias Location 15 = 286 Forward_Bias_Length_15 = 1000 Forward IC Region 15 = 1635 Reverse Bias Location 15 = 1580 Reverse Bias Length 15 = 1000 {\tt Reverse_IC_Region_15 = 1580} END GROUP = BIAS_LOCATIONS GROUP = DETECTOR BIASES B6 GROUP = DETECTOR BIASES B6 LOW B6L Bias Prelaunch = (31.51,30.12,25.27,29.86,27.84,28.91,25.65,27.87) B6L Bias Postlaunch = (25.96,24.86,20.14,24.76,22.76,22.93,20.57,22.43) B6L Bias Current = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463) END GROUP = DETECTOR BIASES B6 LOW GROUP = DETECTOR_BIASES_B6_HIGH B6H Bias Prelaunch = (-66.23, -68.95, -78.39, -69.44, -73.38, -71.30, -77.66, -73.33) B6H_Bias_Postlaunch = (-77.10,-79.26,-88.45,-79.44,-83.35,-83.01,-87.62,-83.98) B6H Bias Current = (-69.566, -72.634, -82.61, -73.2228, -76.1918, -76.3519, -80.6467, -77.7089) END GROUP = DETECTOR BIASES B6 HIGH END GROUP = DETECTOR BIASES B6 GROUP = ACCA BIASES GROUP = ACCA BIASES LOW B1L ACCA \overline{\text{Bias}} = (9.91, 9.87, 10.11, 10.02, 10.06, 10.02, 10.12, 10.03, 10.00, 9.97, 10.08, 10.09, 10.02, 10.07, 9.96, 10.03) B2L ACCA Bias = (9.95, 10.12, 9.95, 10.09, 9.87, 10.05, 9.98, 10.11, 9.90, 10.14, 9.87, 10.13, 9.83, 10.11, 9.88, 10.16) B3L ACCA Bias = (10.20, \overline{9}.79, \overline{10}.18, 9.70, 10.08, 9.66, 10.20, 9.84, 10.23, 9.84, 10.24, 9.83, 10.13, 9.72, 10.11, 9.74) B4L ACCA Bias = (10.06, 9.99, 9.97, 9.88, 10.00, 9.90, 10.03, 9.92, 10.00, 9.94, 9.77, 9.74, 9.81, 9.78, 9.99, 9.95) B5L ACCA Bias = (10.02,\overline{10.03,10.00},9.98,10.06,10.07,10.01,10.07,10.09,10.09,9.90,9.97,10.10,10.08,10.07,10.06) B6L_ACCA_Bias = (29.825,28.782,24.286,28.685,26.768,26.941,24.678,26.463) B7L ACCA Bias = (10.23,\overline{10.16},\overline{10.08},10.08,10.14,10.16,10.20,10.09,10.00,10.02,10.12,10.11,10.04,10.17,9.96,10.10) B8L ACCA Bias = (10.49, \overline{9}.40, \overline{10}.62, 9.48, 10.25, 9.75, 10.26, 9.64, 9.90, 10.37, 10.02, 10.26, 9.10, 10.37, 9.49, 9.90, 9.28, 9.40, 10. 5,9.05,9.02,8.60,10.19,8.53,10.02,8.29,8.82,7.99,9.02,7.34,8.98,7.45,8.95) END GROUP = ACCA BIASES LOW GROUP = ACCA BIASES HIGH B1H ACCA Bias = (14.86,\overline{14.80},15.13,15.00,15.14,15.08,15.23,15.09,14.94,14.93,15.07,15.09,15.08,15.15,14.99,15.08) B2H ACCA Bias = (14.92, \overline{15}.19, \overline{14}.90, 15.13, 14.70, 15.00, 14.93, 15.13, 14.82, 15.18, 14.79, 15.17, 14.71, 15.13, 14.76, 15.18) B3H ACCA Bias = (15.19, \overline{14}.58, \overline{15}.33, 14.61, 15.07, 14.46, 15.32, 14.80, 15.23, 14.64, 15.24, 14.63, 15.18, 14.55, 15.22, 14.66) B4H ACCA Bias = (14.97,\overline{14.84},\overline{14.88},14.72,15.03,14.84,15.10,14.88,15.08,14.95,14.64,14.57,14.70,14.66,14.92,14.85) B5H ACCA Bias = (14.98, 15.00, 15.05, 15.02, 15.02, 15.04, 15.01, 15.10, 15.18, 15.19, 14.81, 14.93, 15.04, 15.01, 15.04, 15.03) B6H ACCA Bias = (-69.566,-72.634,-82.61,-73.2228,-76.1918,-76.3519,-80.6467,-77.7089) B7H ACCA Bias = (15.32, 15.15, 15.13, 15.11, 15.14, 15.16, 15.31, 15.12, 15.03, 15.04, 15.11, 15.10, 15.02, 15.22, 14.91, 15.13) B8H ACCA Bias = (15.85, 14.28, 16.29, 14.39, 15.51, 14.87, 15.49, 14.54, 14.99, 15.60, 15.12, 15.25, 13.80, 15.59, 14.27, 14.82, 15.25, 14.06, 14.18, 13.46, 13.52, 12.70, 15.49, 12.56, 15.21, 12.21, 13.14, 11.91, 13.21, 10.91, 13.12, 11.16, 13.00 END GROUP = ACCA BIASES HIGH END GROUP = ACCA BIASES GROUP = ACCA_THRESHOLDS Thresh B3 = 0.0800 Thresh B3 Lower = 0.07 Thresh B56 High = 225.000 Thresh_B56_Low = 210.000 Thresh B6 = 300.000 Thresh B45 Ratio = 1.0000 ``` ``` Thresh B42 Ratio = 2.16248 Thresh B43 Ratio = 2.3500 Thresh \overline{NDSI} Max = 0.7000 Thresh NDSI Min = -0.2500 Thresh NDSI Snow = 0.8000 Cloud Percent Min = 0.4000 Desert Index = 0.500 Thresh Snow Percent = 1.0000 Thermal_Effect_High = 35.0000 Thermal Effect Low = 25.000 B6Max Maxthresh Diff = 2.000 END GROUP = ACCA THRESHOLDS GROUP = SOLAR SPECTRAL IRRADIANCES B1_Solar_Irradiance = 1969.000 B2 Solar Irradiance = 1840.000 B3_Solar_Irradiance = 1551.000 B4_Solar_Irradiance = 1044.000 B5_Solar_Irradiance = 225.7 B7 Solar Irradiance = 82.07 B8_Solar_Irradiance = 1368.000 END_GROUP = SOLAR_SPECTRAL_IRRADIANCES GROUP = THERMAL CONSTANTS K1_Constant = 666.09 K2 Constant = 1282.71 END GROUP = THERMAL CONSTANTS GROUP = SCALING PARAMETERS GROUP = SCALING PARAMETERS LOW B1L Lmin Lmax = (-6.2, 293.7) B2L Lmin Lmax = (-6.4, 300.9) B3L Lmin Lmax = (-5.0, 234.4) B4L Lmin Lmax = (-5.1, 241.1) B5L Lmin Lmax = (-1.0, 47.57) B6L_Lmin_Lmax = (0.0, 17.04) B7L_Lmin_Lmax = (-0.35,16.54) B8L_Lmin_Lmax = (-4.7,243.1) END GROUP = SCALING PARAMETERS LOW GROUP = SCALING PARAMETERS HIGH B1H Lmin Lmax = (-6.2, 19\overline{1.6}) B2H_Lmin_Lmax = (-6.4, 196.5) B3H Lmin Lmax = (-5.0, 152.9) B4H_Lmin_Lmax = (-5.1, 157.4) B5H Lmin Lmax = (-1.0, 31.06) B6H Lmin Lmax = (3.2, 12.65) B7H Lmin Lmax = (-0.35, 10.80) B8H Lmin Lmax = (-4.7, 158.3) END GROUP = SCALING PARAMETERS_HIGH END GROUP = SCALING PARAMETERS GROUP = MTF COMPENSATION B1 weights along = (1.56766583, 0.00000000, -1.56766583, -0.01966520, -0.01966520) B1
weights across = (1.45063128,0.00000000,-1.45063128,0.00257381,0.00257381) B2 weights along = (1.61050310, 0.000000000, -1.61050310, -0.02774139, -0.02774139) B2 weights across = (1.49221631,0.00000000,-1.49221631,-0.00535953,-0.00535953) B3 weights along = (1.65047774, 0.00000000, -1.65047774, -0.03525043, -0.03525043) B3 weights across = (1.52298447,0.00000000,-1.52298447,-0.01120648,-0.01120648) B4_weights_along = (1.73786071,0.00000000,-1.73786071,-0.05158080,-0.05158080) B4 weights across = (1.55814152,0.00000000,-1.55814152,-0.01786521,-0.01786521) B5 weights along = (1.54118459,0.00000000,-1.54118459,-0.01465645,-0.01465645) B5 weights across = (1.43789226,0.000000000,-1.43789226,0.00501156,0.00501156) B6 weights along = (1.74511478, 0.00000000, -1.74511478, -0.05293163, -0.05293163) B6 weights across = (1.24858736,0.00000000,-1.24858736,0.04172298,0.04172298) B7 weights along = (1.47951767,0.00000000,-1.47951767,-0.00294082,-0.00294082) B7 weights across = (1.42261190,0.00000000,-1.42261190,0.00794044,0.00794044) B8 weights along = (1.94052085,0.000000000,-1.94052085,-0.08907866,-0.08907866) B8 weights across = (2.11745387, 0.00000000, -2.11745387, -0.12147250, -0.12147250) END GROUP = MTF COMPENSATION \overline{\text{GROUP}} = \text{MEMORY } \overline{\text{EFFECT}} GROUP = ME MAGNITUDES ``` ``` B6 ME Magnitude = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) B8 ME Magnitude = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) END GROUP = ME MAGNITUDES GROUP = ME TIME CONSTANTS B1_ME_Time_Constant = (1100.\overline{0}, \overline{1100.0}, \overline{1100.0}, 1100.0, 11 0.1100.0.1100.0 B2 ME Time Constant = (1100.\overline{0}, 1\overline{10}0.0, 1100. 0,1100.0,1100.0 B3 ME Time Constant = (1100.\overline{0}, 1\overline{1}00.0, 1100. 0,1100.0,1100.0 B4_ME_Time_Constant = (1100.0, 110 0,1100.0,1100.0) B5 ME Time Constant = (1100.\overline{0}, \overline{1100.0}, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0, 1100.0,
1100.0, 1100. 0,1100.0,1100.0) B6 ME Time Constant = (1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0,1100.0) B7 ME Time Constant = (1100.\overline{0}, 1\overline{100.0}, 1100.0, 1100. 0,1100.0,1100.0 B8 ME Time Constant = (1100.\overline{0}, 1\overline{10}0.0, 1100. 0, 1100.0, 1 .0,1100.0,1100.0,1100.0,1100.0) END GROUP = ME TIME CONSTANTS END GROUP = MEMORY EFFECT GROUP = GHOST PULSE Ghost Pulse Endpoints = (0.00, 0.00) \overline{\text{END GROUP}} = \overline{\text{GHOST PULSE}} GROUP = SCAN CORRELATED SHIFT SCS Reference Detectors = (1,1,1,1,1,1,1) GROUP = SCS LOW B8L SCS Magnitudes = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) END GROUP = SCS LOW GROUP = SCS HIGH B8H SCS Magnitudes = 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0) END GROUP = SCS HIGH END GROUP = SCAN CORRELATED SHIFT \overline{GROUP} = STRIPING GROUP = STRIPING FLAG LOW Correction Reference B1 Low = 2 Correction Reference B2 Low = 2 Correction_Reference_B3_Low = 2 Correction_Reference_B4_Low = 2 Correction Reference B5 Low = 2 Correction_Reference_B6_Low = 0 Correction Reference B7 Low = 2 Correction Reference B8 Low = 2 ``` ``` END GROUP = STRIPING FLAG LOW GROUP = STRIPING FLAG HIGH Correction Reference B1 High = 2 Correction Reference B2 High = 2 Correction Reference B3 High = 2 Correction Reference B4 High = 2 Correction Reference B5 High = 2 Correction Reference B6 High = 0 Correction_Reference_B7_High = 2 Correction Reference B8 High = 2 END GROUP = STRIPING FLAG HIGH \overline{\text{END GROUP}} = \overline{\text{STRIPING}} GROUP = HISTOGRAM GROUP = DETECTOR NOISE GROUP = DETECTOR NOISE LOW Detector_Noise_Level_B1_Low = (0.779460, 0.772285, 0.728671, 0.763302, 0.786943, 0.776291, 0.770672, 0.739825, 0.804123, 0.737660, 0.7495,
0.7495, 0.74950, 0.7495, 0.7495, 0.7495, 0.7495, 0.74950, 0.74950, 0.74950, 0.74950, 0.74950, 0.74950, 0.74950, 0.74950, 0.74950, 0.74950, 0.74 92,0.794155,0.765984,0.780631,0.743702,0.759316) Detector Noise Level B2 Low = (0.601029, 0.57\overline{6}235, 0.57869\overline{6}, 0.572740, 0.587501, 0.591210, 0.577901, 0.596892, 0.612274, 0.599762, 0.6019 85,0.572298,0.605657,0.588833,0.586422,0.574523) Detector Noise Level B3 Low = (0.814260, 0.79\overline{7}001, 0.\overline{8}0625\overline{3}, 0.\overline{8}25438, 0.805607, 0.835023, 0.802352, 0.759353, 0.814861, 0.804235, 0.83031, 0.804235, 0.80425, 29,0.835847,0.795850,0.819125,0.760094,0.808781) Detector Noise Level B4 Low = (0.373855, 0.357412, 0.410801, 0.401166, 0.386735, 0.385534, 0.351177, 0.388469, 0.298362, 0.346134, 0.45444 76,0.467169,0.430189,0.458503,0.309542,0.349836) Detector Noise Level B5 Low = (0.541758, 0.538805, 0.56404\overline{0}, 0.528059, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.548776, 35,0.554186,0.578348,0.541598,0.546643,0.543750) Detector Noise Level B6 Low = (0.38498, 0.40307, 0.39786, 0.37927, 0.38451, 0.38594, 0.37989, 0.37353) Detector Noise Level B7 Low = (0.882830, 0.84\overline{1372}, 0.84080\overline{1}, 0.836801, 0.918675, 0.888781, 0.868970, 0.833833, 0.889666, 0.816621, 0.8723 48,0.823312,0.844422,0.839332,0.818657,0.838030) Detector_Noise_Level_B8_Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976, 1.455102, 1.447059,\ 1.44\overline{5}895,\ \overline{1}.4285\overline{2}3,\ \overline{1}.518779,\ 1.410482,\ 1.546677,\ 1.412992,\ 1.568844,\ 1.432523,\ 1.518779,\ 1.410482,\ 1.546677,\ 1.412992,\ 1.568844,\ 1.432523,\ 1.518779,\ 1.410482,\ 1.546677,\ 1.412992,\ 1.568844,\ 1.432523,\ 1.518779,\ 1.410482,\ 1.546677,\ 1.412992,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\ 1.432523,\ 1.568844,\
1.568844,\ 1.56 1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786, 1.435104, 1.447014, 1.411219, 1.420777, 1.483956, 1.469533, 1.473144, 1.436488, 1.435460) END GROUP = DETECTOR NOISE LOW GROUP = DETECTOR_NOISE_HIGH Detector Noise Level B1 High = (1.115767, 1.10\overline{5}730, 1.03449\overline{2}, 1.088057, 1.122772, 1.109671, 1.093771, 1.045665, 1.135931, 1.051208, 1.0683 69,1.137889,1.088930,1.113233,1.060574,1.083090) Detector Noise Level B2 High = (0.840525, 0.80\overline{2531}, 0.\overline{811894}, 0.\overline{802952}, 0.821014, 0.828448, 0.799075, 0.826498, 0.848278, 0.828466, 0.8339) 49,0.787364,0.842703,0.814721,0.810008,0.789331) Detector_Noise_Level_B3_High = (1.171068, 1.145406, 1.154020, 1.185309, 1.152540, 1.197513, 1.145797, 1.079392, 1.168113, 1.152881, 1.19731, 1.197411, 1.19741, 1.19741, 1.19741, 1.197411, 1.19741, 1.19741, 1.19741, 1.19741, 1.19741, 1.19741, 1.19741, 1.19741, 1.19741, 1.1974 19,1.204024,1.142140,1.177719,1.081946,1.158203) Detector Noise Level B4 High = (0.571712, 0.568938, 0.60179\overline{0}, 0.577678, 0.585365, 0.570769, 0.564726, 0.575154, 0.523646, 0.549596, 0.5781 82,0.564183,0.560860,0.580182,0.528458,0.559510) Detector Noise Level B5 High = (0.758784, 0.75\overline{3}994, 0.79116\overline{5}, 0.746657, 0.796592, 0.791935, 0.769362, 0.774648, 0.810945, 0.794850, 0.77248610, 0.794850, 0.7724810, 0.7948500, 0.794850, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7 70,0.783913,0.811670,0.761202,0.770891,0.766004) Detector Noise Level B6 High = (0.63424,0.64766,0.63594,0.62451,0.62835,0.64975,0.62390,0.60717) Detector Noise Level B7 High = (1.292273, 1.226330, 1.215933, 1.208056, 1.337354, 1.291756, 1.261227, 1.208343, 1.296625, 1.183313, 1.2693 91,1.193715,1.221458,1.216385,1.179451,1.211407) Detector Noise Level B8 High = (2.01844,2.03392,2.10339,1.99754,2.63946,2.07794,2.46647,2.03946,2.51454,2.12575,2.02078,2.16917,2.03946,2.0 1.98090, 2.18632, 2.01149, 1.98286, 2.07499, 2.11379, 2.10509, 2.14305, 2.00573, 2.09848, 2.03111, 2.08271, 2 .06095,2.01814,1.98271,2.17801,2.44790,2.15665,2.25689,2.24758) END GROUP = DETECTOR NOISE HIGH END GROUP = DETECTOR NOISE GROUP = DET SHUTTER NOISE GROUP = DET SHUTTER NOISE LOW ``` ``` Det Shutter Noise Level B1 Low = (0.779460, 0.77228\overline{5}, 0.72\overline{8}671, 0.76\overline{3}302, 0.786943, 0.776291, 0.770672, 0.739825, 0.804123, 0.737660, 0.7495 92,0.794155,0.765984,0.780631,0.743702,0.759316) Det Shutter Noise Level B2 Low = (0.601029, 0.576235, 0.578696, 0.572740, 0.587501, 0.591210, 0.577901, 0.596892, 0.612274, 0.599762, 0.6019 85,0.572298,0.605657,0.588833,0.586422,0.574523) Det Shutter Noise Level B3 Low = (0.814260, 0.79700\overline{1}, 0.80\overline{6}253, 0.\overline{825438}, 0.805607, 0.835023, 0.802352, 0.759353, 0.814861, 0.804235, 0.8303) 29,0.835847,0.795850,0.819125,0.760094,0.808781) Det Shutter Noise Level B4 Low = (0.373855, 0.35741\overline{2}, 0.41\overline{0}801, 0.40\overline{1}166, 0.386735, 0.385534, 0.351177, 0.388469, 0.298362, 0.346134, 0.45447, 0.46134,
0.46134, 0.46144, 0.461444, 0.46144, 0.46144, 0.46144, 0.46144, 0.46144, 0.46144, 0.46144, 0.46144, 0.46144, 0.46144 76,0.467169,0.430189,0.458503,0.309542,0.349836) Det Shutter Noise Level B5 Low (0.541758, 0.53880\overline{5}, 0.56\overline{4}040, 0.52\overline{8}059, 0.567236, 0.564582, 0.557496, 0.559557, 0.576319, 0.563746, 0.5487736, 0.563746, 0.565746, 0.5 35,0.554186,0.578348,0.541598,0.546643,0.543750) Det_Shutter_Noise_Level_B6_Low = (0.38498, 0.40307, 0.39786, 0.37927, 0.38451, 0.38594, 0.37989, 0.37353) Det Shutter Noise Level B7 Low = (0.882830, 0.841372, 0.840801, 0.836801, 0.918675, 0.888781, 0.868970, 0.833833, 0.889666, 0.816621, 0.8723 48,0.823312,0.844422,0.839332,0.818657,0.838030) Det Shutter Noise Level B8 Low = (1.411792, 1.429218, 1.475390, 1.417629, 1.426976, 1.455102, 1.447059, 1.445895, 1.428523, 1.518779, 1.410482, 1.546677, 1.412992, 1.568844, 1.432523, 1.406441, 1.466322, 1.523012, 1.488277, 1.538726, 1.419587, 1.438650, 1.437786, 1.435104, 1.447014, 1.411219, 1.420777, 1.483956, 1.469533, 1.473144, 1.436488, 1.435460) END GROUP = DET SHUTTER NOISE LOW GROUP = DET SHUTTER NOISE HIGH Det_Shutter_Noise_Level_B1_High = (1.115767, 1.105730, 1.034492, 1.088057, 1.122772, 1.109671, 1.093771, 1.045665, 1.135931, 1.051208, 1.0683 69,1.137889,1.088930,1.113233,1.060574,1.083090) Det Shutter Noise Level B2 High = (0.840525, 0.80253\overline{1}, 0.81\overline{1}894, 0.80\overline{2}952, 0.821014, 0.828448, 0.799075, 0.826498, 0.848278, 0.828466, 0.8339 49,0.787364,0.842703,0.814721,0.810008,0.789331) Det Shutter Noise Level B3 High = (1.171068, 1.145406, 1.154020, 1.185309, 1.152540, 1.197513, 1.145797, 1.079392, 1.168113, 1.152881, 1.1973 19,1.204024,1.142140,1.177719,1.081946,1.158203) Det Shutter Noise Level B4 High = (0.571712, 0.56893\overline{8}, 0.60\overline{1}790, 0.577\overline{6}7\overline{8}, 0.585365, 0.570769, 0.564726, 0.575154, 0.523646, 0.549596, 0.57812, 0.564726, 0.575154, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0.564726, 0. 82,0.564183,0.560860,0.580182,0.528458,0.559510) Det Shutter Noise Level B5 High = (0.758784, 0.753994, 0.79\overline{1}165, 0.74\overline{6}657, 0.796592, 0.791935, 0.769362, 0.774648, 0.810945, 0.794850, 0.7724868, 0.810945, 0.7948500, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.794850, 0.7948500, 0.794850, 0.794850, 0.7948500, 0.7948500, 0.7948500, 0.79485000, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.7948500, 0.79 70,0.783913,0.811670,0.761202,0.770891,0.766004) Det Shutter Noise Level B6 High = (0.63424, \overline{0.64766}, \overline{0.63594}, 0.62\overline{451}, 0.62835, 0.64975, 0.62390, 0.60717) Det Shutter Noise Level B7 High = (1.292273, 1.226330, 1.215933, 1.208056, 1.337354, 1.291756, 1.261227, 1.208343, 1.296625, 1.183313, 1.2693 91,1.193715,1.221458,1.216385,1.179451,1.211407) Det Shutter Noise Level B8 High = (2.01844,\overline{2}.03392,\overline{2}.1033\overline{9},1.99\overline{7}54,\overline{2}.63946,2.07794,2.46647,2.03946,2.51454,2.12575,2.02078,2.16917, 1.98090, 2.18632, 2.01149, 1.98286, 2.07499, 2.11379, 2.10509, 2.14305, 2.00573, 2.09848, 2.03111, 2.08271,
2.08271, 2 .06095,2.01814,1.98271,2.17801,2.44790,2.15665,2.25689,2.24758) END GROUP = DET SHUTTER NOISE HIGH END GROUP = DET SHUTTER NOISE GROUP = REFERENCE DETECTORS Reference Detector B1 = 15 Reference_Detector_B2 = 12 Reference Detector B3 = 08 Reference Detector B4 = 07 Reference_Detector_B5 = 14 Reference Detector B6 = 01 Reference_Detector_B7 = 10 Reference_Detector_B8 = 27 END GROUP = REFERENCE DETECTORS GROUP = SATURATION THRESHOLDS Saturation Bin Threshold B1 = 1000 Saturation Bin Threshold B2 = 1000 Saturation_Bin_Threshold_B3 = 1000 Saturation_Bin_Threshold_B4 = 1000 Saturation Bin Threshold B5 = 1000 Saturation_Bin_Threshold_B6 = 1000 Saturation Bin Threshold B7 = 1000 Saturation Bin Threshold B8 = 1000 ``` ``` END GROUP = SATURATION THRESHOLDS GROUP = ADJACENT BINS GROUP = BIN NUMBER Adjacent \overline{B}in Number B1 = 2 Adjacent Bin Number B2 = 2 Adjacent_Bin_Number_B3 = 2 Adjacent_Bin_Number_B4 = 2 Adjacent Bin Number B5 = 2 Adjacent_Bin_Number_B6 = 2 Adjacent_Bin_Number_B7 = 2 Adjacent_Bin_Number_B8 = 2 END GROUP = BIN NUMBER \overline{GROUP} = \overline{BIN} \underline{THRESHOLD} Adjacent Bin Threshold B1 = 10 Adjacent Bin Threshold B2 = 10 Adjacent_Bin_Threshold_B3 = 10 Adjacent_Bin_Threshold_B4 = 10 Adjacent_Bin_Threshold_B5 = 10 Adjacent Bin Threshold B6 = 10 Adjacent_Bin_Threshold_B7 = 10 Adjacent_Bin_Threshold_B8 = 10 END GROUP = BIN THRESHOLD END_GROUP = ADJACENT_BINS GROUP = STARTING PIXEL Start_pixel_B1 = 243 Start_pixel_B2 = 218 Start_pixel_B3 = 193 Start pixel_B4 = 168 Start_pixel_B5 = 97 Start_pixel_B6 = 31 Start_pixel_B7 = 123 Start_pixel_B8 = 536 END GROUP = STARTING PIXEL GROUP = WINDOW WIDTH Window_Samples_B1 = 5874 Window_Samples_B2 = 5874 Window_Samples_B3 = 5874 Window_Samples_B4 = 5874 Window_Samples_B5 = 5874 Window Samples B6 = 2937 Window_Samples_B7 = 5874 Window Samples B8 = 11748 END GROUP = WINDOW WIDTH GROUP = WINDOW LENGTH Window Scans B1 = 375 Window_Scans_B2 = 375 Window Scans B3 = 375 Window_Scans_B4 = 375 Window Scans B5 = 375 Window Scans B6 = 375 Window Scans B7 = 375 Window_Scans_B8 = 375 END GROUP = WINDOW LENGTH GROUP = OVERLAPPING SCANS Overlap_Scans_B1 = 0 Overlap Scans B2 = 0 Overlap_Scans_B3 = 0 Overlap_Scans_B4 = 0 Overlap_Scans_B5 = 0 Overlap_Scans_B6 = 0 Overlap Scans B7 = 0 Overlap_Scans_B8 = 0 END GROUP = OVERLAPPING SCANS END GROUP = HISTOGRAM GROUP = IMPULSE NOISE Median Filter Width = 3 GROUP = IN THRESHOLD B1L Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B2L_Threshold = (10.33, 10.33 10.33, \overline{1}0.33, 10.33, 10.33, 10.33) ``` ``` B3L Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B4L Threshold = (20.67, \overline{2}0.67, 20.67, 20.67, 20.67) B5L Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B6L_Threshold = (20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67, 20.67) B7L Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B8L Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17, 6.89, 5.17, 6.89, 6.89, 6.89, 5.17, 6.89, 5.17, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B1H Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B2H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, \overline{1}0.33, 10.33, 10.33, 10.33) B3H Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B4H Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, \overline{1}0.33, 10.33, 10.33, 10.33) B5H Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B6H_Threshold = (10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33, 10.33) B7H Threshold = (6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89, 6.89) B8H Threshold = (4.13, 4.13, 4.13, 5.17, 3.44, 4.13, 4.13, 4.13, 3.44, 4.13, 4.13, 4.13, 5.17, 4.13, 4.13, 5.17, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 4.13, 5.17, 4.13, 4.13, 4.13, 4.13, 4.13) END GROUP = IN THRESHOLD GROUP = IN SIGMA THRESHOLD B1L_Sigma_Threshold = (13.26, 13.38, 14.18, 13.54, 13.13, 13.31, 13.41, 13.97, 12.85, 14.01, 13.78, 13.01, 13.49, 13.24, 13.89, 13.61) B2L Sigma Threshold = (17.19, 17.93, 17.86, 18.04, 17.59,
17.48, 17.88, 17.31, 16.88, 17.23, 17.16, 18.06, 17.06, 17.55, 17.62, 17.99) B3L Sigma Threshold = (12.69, 12.96, 12.82, 12.52, 12.83, 12.37, 12.88, 13.61, 12.68, 12.85, 12.44, 12.36, 12.98, 12.61, 13.59, 12.78) B4L_Sigma_Threshold = (27.64, 28.91, 25.15, 25.76, 26.72, 26.80, 29.42, 26.60, 34.63, 29.85, 22.74, 22.12, 24.02, 22.54, 33.38, 29.54) B5L Sigma Threshold = (19.07, 19.18, 18.32, 19.57, 18.22, 18.30, 18.53, 18.47, 17.93, 18.33, 18.83, 18.65, 17.87, 19.08, 18.90, 19.00) B6L_Sigma_Threshold = (26.84, 25.64, 25.97, 27.24, 26.87, 26.77, 27.20, 27.66) Sigma Threshold = (11.70, 12.28, 12.29, 12.35, 11.25, 11.63, 11.89, 12.39, 11.61, 12.65, 11.85, \overline{1}2.55, \overline{1}2.24, 12.31, 12.62, 12.33 B8L_Sigma_Threshold = (7.32, 7.23, 7.00, 7.29, 7.24, 7.10, 7.14, 7.15, 7.23, 6.80, 7.33, 6.68, 7.31, 6.59, 7.21, 7.35, 7.05, 6.78, 6.94, 6.72, 7.28, 7.18, 7.19, 7.20, 7.14, 7.32, 7.27, 6.96, 7.03, 7.01, 7.19, 7.20) B1H Sigma Threshold = (9.26, 9.34, 9.99, 9.50, 9.20, 9.31, 9.45, 9.88, 9.10, 9.83, 9.67, 9.08, 9.49, 9.28, 9.74, 9.54) B2H Sigma Threshold = (12.29, 12.88, 12.73, 12.87, 12.59, 12.47, 12.93, 12.50, 12.18, 12.47, 12.39, \overline{1}3.12, \overline{1}2.26, 12.68, 12.76, 13.09 B3H Sigma Threshold = (8.82, 9.02, 8.95, 8.72, 8.97, 8.63, 9.02, 9.57, 8.85, 8.96, 8.63, 8.58, 9.05, 8.77, 9.55, 8.92) B4H Sigma Threshold = (18.07, 18.16, 17.17, 17.89, 17.65, 18.10, 18.30, 17.97, 19.73, 18.80, 17.87, 18.31, 18.42, 17.81, 19.55, 18.47) B5H_Sigma_Threshold = (13.62, 13.70, 13.06, 13.84, 12.97, 13.05, 13.43, 13.34, 12.74, 13.00, 13.38, 13.18, 12.73, 13.57, 13.40, 13.49) B6H Sigma Threshold = (16.29, 15.95, 16.25, 16.55, 16.44, 15.90, 16.56, 17.02) B7H Sigma Threshold = (8.00, 8.43, 8.50, 8.55, 7.73, 8.00, 8.19, 8.55, 7.97, 8.73, 8.14, 8.66, 8.46, 8.49, 8.76, 8.53) B8H_Sigma_Threshold = (5.12, 5.08, 4.91, 5.17, 3.91, 4.97, 4.19, 5.07, 4.11, 4.86, 5.11, 4.76, 5.22, 4.73, 5.14, 5.21, 4.98, 4.89, 4.91, 4.82, 5.15, 4.92, 5.09, 4.96, 5.01, 5.12, 5.21, 4.74, 4.22, 4.79, 4.58, 4.60) END GROUP = IN SIGMA THRESHOLD END GROUP = IMPULSE NOISE GROUP = COHERENT NOISE Frequency Components = 10 GROUP = CN_FREQUENCY_PARAMETERS GROUP = FREQUENCY MEANS B2 Frequency Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) ``` ``` B6 Frequency Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = FREQUENCY MEANS GROUP = FREQUENCY SIGMAS B1 Frequency Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B5_Frequency_Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B8 Frequency Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) \overline{\text{END GROUP}} = \overline{\text{FREQUENCY SIGMAS}} GROUP = FREQUENCY MINIMUMS \texttt{B1_Frequency_Min} = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B2 Frequency Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4 Frequency Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B6_Frequency_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B7 Frequency Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = FREQUENCY MINIMUMS GROUP = FREQUENCY MAXIMUMS B2 Frequency Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4_Frequency_Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = FREQUENCY MAXIMUMS END GROUP = CN FREQUENCY PARAMETERS GROUP = CN PHASE PARAMETERS GROUP = PHASE MEANS B1 Phase Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B3 Phase Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4 Phase Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B5_Phase_Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B8 Phase Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = PHASE MEANS GROUP = PHASE SIGMAS B1 Phase Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B2 Phase Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4 Phase Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B7 Phase Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = PHASE SIGMAS GROUP = PHASE MINIMUMS B1_Phase_Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4 Phase Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B6 Phase Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = PHASE MINIMUMS GROUP = PHASE MAXIMUMS B1 Phase Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B2 - Phase - Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) ``` ``` B3 Phase Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4 Phase Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B5 Phase Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B6 Phase Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B7 Phase Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = PHASE MAXIMUMS END GROUP = CN PHASE PARAMETERS GROUP = CN_MAGNITUDE_PARAMETERS GROUP = MAGNITUDE MEANS B1 Magnitude Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B3 Magnitude Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B7 Magnitude Mean = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = MAGNITUDE MEANS GROUP = MAGNITUDE SIGMAS B8 Magnitude Sigma = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = MAGNITUDE SIGMAS GROUP = MAGNITUDE MINIMUMS B1 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B3 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B4 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B5 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B6 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B7 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B8 Magnitude Min = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = MAGNITUDE MINIMUMS GROUP = MAGNITUDE MAXIMUMS B1 Magnitude Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B2 Magnitude Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) B8 Magnitude Max = (0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00) END GROUP = MAGNITUDE MAXIMUMS END GROUP = CN MAGNITUDE PARAMETERS END GROUP = COHERENT NOISE GROUP = DETECTOR SATURATION GROUP = AD CONVERTER SATURATION GROUP = AD CONVERTER SATURATION LOW High AD Level B8 low = 255, 255, 255, 255, 255, 255, 255, 255) Low_AD_Level_B1_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_AD_Level_B2_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_AD_Level_B3_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B4 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_AD_Level_B5_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B6 low = (0,0,0,0,0,0,0,0) Low AD Level B7 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ``` ``` END GROUP = AD CONVERTER SATURATION LOW GROUP = AD CONVERTER SATURATION HIGH High_AD_Level_B6_high = (255,255,255,255,255,255,255) High AD Level B8 high = 255, 255, 255, 255, 255, 255, 255, 255) Low AD Level B1 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B2 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_AD_Level_B3_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B4 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B5 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low AD Level B6 high = (0,0,0,0,0,0,0,0) END GROUP = AD CONVERTER SATURATION HIGH END_GROUP = AD_CONVERTER_SATURATION GROUP = ANALOG SIGNAL SATURATION GROUP = ANALOG SIGNAL SATURATION LOW High_Analog_Level_B1_low = High Analog Level B2 low = High_Analog_Level_B3_low = High_Analog_Level_B4_low = High_Analog_Level_B5_low = High Analog Level B7 low = High Analog Level B8 low = 255, 255, 255, 255, 255, 255, 255, 255) Low Analog Level B1 low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B2_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B3_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B4_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B5_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low Analog Level B6 low = (0,0,0,0,0,0,0,0) Low_Analog_Level_B7_low = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) END GROUP = ANALOG SIGNAL SATURATION LOW GROUP = ANALOG SIGNAL SATURATION HIGH High_Analog_Level_B1_high = High Analog Level B2 high = High Analog Level B3 high = High_Analog_Level_B4_high = High_Analog_Level_B5_high = High_Analog_Level_B6_high = (255,255,255,255,255,255,255,255) High Analog Level B7 high = High Analog Level B8 high = 255, 255, 255, 255, 255, 255, 255) Low Analog Level B1 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B2_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low Analog Level B3 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low Analog Level B4 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) ``` ``` Low Analog Level B5 high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B6_high = (0,0,0,0,0,0,0,0) Low_Analog_Level_B7_high = (0,0,0,0,0,0,0,0,0,0,0,0,0,0) Low_Analog_Level_B8_high = END GROUP = ANALOG SIGNAL SATURATION HIGH END GROUP = ANALOG SIGNAL SATURATION END GROUP = DETECTOR SATURATION GROUP = REFERENCE TEMPERATURES GROUP = REFERENCE LOW B1L_RTemp_Prelaunch = 25.00 B1L_RTemp_Postlaunch = 25.00 B1L_RTemp_Current = 25.00 B2L RTemp Prelaunch = 25.00 B2L RTemp Postlaunch = 25.00 B2L_RTemp_Current = 25.00 B3L RTemp Prelaunch = 25.00 B3L_RTemp_Postlaunch = 25.00 B3L RTemp Current = 25.00 B4L_RTemp_Prelaunch = 25.00 B4L RTemp Postlaunch = 25.00 B4L RTemp Current = 25.00 B5L_RTemp_Prelaunch = -182.1 B5L RTemp Postlaunch = -182.1 B5L RTemp Current = -182.1 B6L_RTemp_Prelaunch = -182.2 B6L_RTemp_Postlaunch = -182.1 B6L_RTemp_Current = -182.2 B7L RTemp Prelaunch = -182.1 B7L_RTemp_Postlaunch =
-182.1 B7L RTemp Current = -182.1 B8L_RTemp_Prelaunch = 25.00 B8L RTemp Postlaunch = 25.00 B8L_RTemp_Current = 25.00 END GROUP = REFERENCE LOW GROUP = REFERENCE HIGH B1H_RTemp_Prelaunch = 25.00 B1H_RTemp_Postlaunch = 25.00 B1H RTemp Current = 25.00 B2H RTemp Prelaunch = 25.00 B2H_RTemp_Postlaunch = 25.00 B2H_RTemp_Current = 25.00 B3H_RTemp_Prelaunch = 25.00 B3H_RTemp_Postlaunch = 25.00 B3H_RTemp_Current = 25.00 B4H_RTemp_Prelaunch = 25.00 B4H RTemp Postlaunch = 25.00 B4H_RTemp_Current = 25.00 B5H RTemp Prelaunch = -182.1 B5H RTemp Postlaunch = -182.1 B5H_RTemp_Current = -182.1 B6H_RTemp_Prelaunch = -182.2 B6H_RTemp_Postlaunch = -182.1 B6H RTemp Current = -182.2 B7H_RTemp_Prelaunch = -182.1 B7H RTemp Postlaunch = -182.1 B7H_RTemp_Current = -182.1 B8H_RTemp_Prelaunch = 25.00 B8H RTemp Postlaunch = 25.00 B8H_RTemp_Current = 25.00 END GROUP = REFERENCE HIGH END GROUP = REFERENCE TEMPERATURES GROUP = SENSITIVITY TEMPERATURES GROUP = SENSITIVITY LOW 0.0, 0.\overline{0}, 0.0 0.0, 0.0, 0.0) \mathtt{B1L_SCoeff_Current} = (\ 0.0,\ 0 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0\overline{)} 0.0, 0.0) 0.0, 0.0, 0.0) \texttt{B3L_SCoeff_Postlaunch} = (\ 0.0, \ 0.0 0.0, 0.0, 0.0) 0.0, 0.0) 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0\overline{)} 0.0, 0.0) 0.0, 0.\overline{0}, 0.0 0.0, 0.0, 0.0) 0.0, 0.0) B6L SCoeffOff Current = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0 0.0, 0.\overline{0}, 0.0\overline{)} 0.0, 0.\overline{0} END GROUP = SENSITIVITY LOW GROUP = SENSITIVITY HIGH 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.\overline{0} 0.0, 0.\overline{0}, 0.0 0.0, 0.0, 0.0) 0.0, 0.0) 0.0, 0.0, 0.0) 0.0, 0.0, 0.0) 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.\overline{0}, 0.0 0.0, 0.0) 0.0, 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0) 0.0, 0.\overline{0} B6H SCoeffOff Current = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0) 0.0, 0.0, 0.0) 0.0, 0.\overline{0} 0.0,\ 0.\overline{0},\ 0.0, -0.0,\ 0 END GROUP = SENSITIVITY HIGH END GROUP = SENSITIVITY_TEMPERATURES GROUP = LAMP RADIANCE GROUP = TRENDING COEFFS Lamp1_Coeffs = (+0.0, +0.0) Lamp2 Coeffs = (+0.0, +0.0) END GROUP = TRENDING COEFFS GROUP = LAMP_RADIANCE_LOW B1L Rad State1 Prelaunch = (45.787, 45.\overline{3}77, 46.\overline{0}26, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.56) 1,46.177,45.732) B1L Rad State1 Postlaunch = (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0) B1L Rad State1 Current = (45.787, 45.377, 46.026, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.561, 45.661, 46.742, 45.661, 46.742,
46.742, 46. 1,46.177,45.732) B1L Rad_State2_Prelaunch = (45.803, 45.\overline{3}65, 45.\overline{9}35, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33) 5,45.981,45.577) B1L Rad State2 Postlaunch = (50.0, \overline{50.0}, \overline{50.0}, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0) B1L Rad State2 Current = (45.80\overline{3}, 45.\overline{3}65, 45.\overline{9}35, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33 5,45.981,45.577) B1L Rad State3 Prelaunch = (81.684, \overline{8}0.\overline{8}10, 81.\overline{9}03, 81.\overline{3}23, 82.\overline{3}94, 81.\overline{5}90, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83) 9,82.374,81.345) B1L Rad State3 Postlaunch = (100.0, B1L Rad State3 Current = (81.684, \overline{8}0.\overline{8}10, 81.\overline{9}03, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83) 9,82.374,81.345) B2L Rad State1 Prelaunch = (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82 6,93.658,85.806) B2L Rad State1 Postlaunch = (100.0,100 B2L_Rad_State1_Current = (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82 6,93.658,85.806) B2L Rad State2 Prelaunch = (100.78\overline{7}, 95.042, 10\overline{1}.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41) 3,95.003,101.319,93.884) B2L_Rad_State2_Postlaunch = (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) B2L Rad State2 Current = (100.787, 95.042, 101.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41, 102.735, 102.735, 102.845 3,95.003,101.319,93.884) ``` ``` B2L Rad State3 Prelaunch = (183.71\overline{0}, 17\overline{1}.503, 1\overline{8}4.161, 173.274, 187.684, 171.997, 188.732, 171.010, 188.371, 174.781, 187.716, 171.468, 186.974,171.568,185.010,169.558) B2L Rad State3 Postlaunch
(200.0,200 B2L Rad State3 Current = (183.71\overline{0},17\overline{1}.503,1\overline{8}4.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468,17 186.974,171.568,185.010,169.558) B3L_Rad_State1_Prelaunch = (74.771, 68.694, 75.603, 68.942, 76.300, 69.277, 77.123, 69.013, 75.981, 69.171, 75.813, 69.290, 75.248, 68.87) 4,74.268,68.658) B3L Rad State1 Postlaunch = B3L Rad State1 Current = (74.771, 68.694, 75.603, 68.942, 76.300, 69.277, 77.123, 69.013, 75.981, 69.171, 75.813, 69.290, 75.248, 68.87) 4,74.268,68.658) B3L Rad State2 Prelaunch = (83.835, 78.\overline{103}, 84.\overline{806}, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.172, 84.271, 78.173, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.173, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.474, 85.000, 78.474, 85.000, 78.474, 85.000, 78.474, 85.000, 78.474, 85.000, 78.474, 85.000, 78.474, 85.000, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 7 7,83.013,77.903) B3L Rad State2 Postlaunch = B3L Rad State2 Current = (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.474, 85.090, 78.442, 84.790, 78.474, 85.000, 78.474, 85.0000, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 78.4740, 7,83.013,77.903) B3L Rad State3 Prelaunch = (148.358, 136.935, 150.558, 137.800, 151.652, 138.445, 153.268, 137.681, 150.913, 138.026, 150.303, 138.203,
138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.203, 138.203, 138.203, 138.203, 138.2030, 138.203, 138.203, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.2030, 138.20300, 138.20300, 138.20 149.181,137.271,147.210,136.848) B3L Rad State3 Postlaunch = (120.0,\overline{120.0},120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0) B3L Rad State3 Current = (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203, 149.181, 137.271, 147.210, 136.848) B4L Rad State1 Prelaunch = (90.684, 86.813, 91.\overline{6}48, 85.361, 91.916, 86.890, 91.548, 87.355, 91.100, 86.758, 90.371, 86.732, 90.606, 86.79) 4,89.926,87.610) B4L Rad State1 Postlaunch = (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) B4L Rad State1 Current = (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79 4,89.926,87.610) B4L Rad State2 Prelaunch = (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97 .661,98.474,98.477) B4L_Rad_State2_Postlaunch = (100.0,100 B4L Rad State2 Current = (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.858, 100.429, 100.861, 10 .661,98.474,98.477) B4L Rad State3 Prelaunch = (180.29\overline{7}, 17\overline{4}.745, 1\overline{8}2.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.368,174.777,178.348,176.381) B4L Rad State3 Postlaunch = (200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0)\\ B4L Rad State3 Current = (180.29\overline{7}, 17\overline{4}.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.368,174.777,178.348,176.381) B5L Rad State1 Prelaunch = (22.307, 21.710, 22.166, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53) 3,22.030,21.432) B5L_Rad_State1_Postlaunch = B5L Rad State1 Current = (22.307, 21.710, 22.166, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53) 3.22.030.21.432 B5L Rad State2 Prelaunch = (23.397,23.\overline{4}05,23.\overline{2}70,23.231,23.191,23.271,23.182,23.288,23.190,23.108,23.053,22.976,23.089,23.20 4,23.054,23.045) B5L Rad State2 Postlaunch = ``` ``` B5L Rad State2 Current = (23.397,23.\overline{4}05,23.\overline{2}70,23.231,23.191,23.271,23.182,23.288,23.190,23.108,23.053,22.976,23.089,23.20 4,23.054,23.045) B5L Rad State3 Prelaunch = (43.679, 43.113, 43.429, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.83 9,43.069,42.487) B5L Rad State3 Postlaunch = (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0) B5L Rad State3 Current = (43.679, 43.\overline{1}13, 43.\overline{4}29, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.83) 9,43.069,42.487) B7L Rad State1 Prelaunch = (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.95 3,12.035,10.990) B7L Rad State1 Postlaunch = (10.0, 1\overline{0}.0, \overline{10}.0, 10.\overline{0}, 10.0, B7L Rad State1 Current =
(12.224,\overline{11.010},12.\overline{122},10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95 3,12.035,10.990) B7L Rad State2 Prelaunch = (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 12.498, 12.504, 12. 1,12.390,11.835) B7L_Rad_State2_Postlaunch = B7L Rad State2 Current = (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 12.498, 12.504, 12. 1,12,390,11,835) B7L Rad State3 Prelaunch = (24.885, 22.\overline{9}55, 24.\overline{6}51, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75 4,24.425,22.825) B7L Rad State3 Postlaunch = (30.0, \overline{30}.0, \overline{30}.0, 30.\overline{0}, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0) B7L Rad State3 Current = (24.885, 22.955, 24.\overline{651}, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75, 24.601, 2 4,24.425,22.825) B8L Rad State1 Prelaunch = (99.913, \overline{8}8.\overline{8}76, 102.\overline{0}90, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850 ,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8L Rad State1 Postlaunch =
(110.0,\overline{1}10.\overline{0},110.0,110 110.0, B8L Rad State1 Current = (99.913, 88.876, 102.090, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850 ,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8L Rad State2 Prelaunch = (93.948, \overline{84.423}, 96.\overline{0}89, 84.763, 96.898, 85.256, 97.194, 85.395, 97.565, 87.087, 98.395, 86.116, 97.894, 86.73) 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8L Rad State2 Postlaunch = (110.0,\overline{1}10.\overline{0},110.0,110 110.0,
110.0, B8L Rad State2 Current = (93.948, 84.\overline{423}, 96.\overline{089}, 84.763, 96.898, 85.256, 97.194, 85.395, 97.565, 87.087, 98.395, 86.116, 97.894, 86.73 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8L Rad State3 Prelaunch = (182.440,163.589,186.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231, 192.365, 165.990, 191.352, 165.694, 193.326, 164.103, 194.511, 164.837, 193.731, 165.855, 193.256, 165.002, 193.731, 1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) B8L Rad State3 Postlaunch (220.0,20.0,20.0,20.0, 220.0, B8L Rad State3 Current = (182.44\overline{0}, 16\overline{3}.589, 1\overline{8}6.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 192.365, 165.990, 191.352, 165.694, 193.326, 164.103, 194.511, 164.837, 193.731, 165.855, 193.256, 165.002, 193.731, 1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) END GROUP = LAMP_RADIANCE_LOW GROUP = LAMP RADIANCE HIGH ``` ``` B1H Rad State1 Prelaunch = (45.787, 45.377, 46.\overline{0}26, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.56) 1,46.177,45.732) B1H Rad State1 Postlaunch = (50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0, 50.0,
50.0, 50.0, 50.0, 50.0) B1H Rad State1 Current = (45.787, 45.377, 46.026, 45.784, 46.332, 45.894, 46.752, 45.929, 46.900, 46.087, 46.742, 45.694, 46.361, 45.561, 45.694, 46.742, 46.742, 46. 1,46.177,45.732) B1H_Rad_State2_Prelaunch = (45.803, 45.365, 45.935, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33 5,45.981,45.577) B1H Rad State2 Postlaunch = (50.0, \overline{50.0}, \overline{50.0}, 50.0, 50. B1H Rad State2 Current = (45.803, 45.365, 45.935, 45.555, 46.116, 45.726, 46.623, 45.706, 46.806, 45.923, 46.497, 45.639, 46.194, 45.33 5,45.981,45.577) B1H Rad State3 Prelaunch = (81.684, \overline{8}0.\overline{8}10, 81.\overline{9}03, 81.323, 82.394, 81.590, 83.226, 81.523, 83.745, 82.168, 83.184, 81.248, 82.648, 80.83) 9,82.374,81.345) B1H Rad State3 Postlaunch = (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) B1H Rad State3 Current = (81.684,80.810,81.903,81.323,82.394,81.590,83.226,81.523,83.745,82.168,83.184,81.248,82.648,80.83 9,82.374,81.345) B2H Rad State1 Prelaunch = (92.855, 86.584, 93.161, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82 6,93,658,85,806) B2H Rad State1 Postlaunch = (100.0,\overline{100.0},100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) B2H Rad State1 Current = (92.855, 86.\overline{5}84, 93.\overline{1}61, 87.519, 94.752, 86.906, 95.384, 86.465, 95.068, 88.235, 94.897, 86.732, 94.539, 86.82 6,93.658,85.806) B2H Rad State2 Prelaunch = (100.78\overline{7}, 95.042, 10\overline{1}.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41) 3,95.003,101.319,93.884) B2H Rad State2 Postlaunch = (100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) B2H Rad State2 Current = (100.787, 95.042, 101.110, 95.845, 102.845, 95.216, 103.303, 94.719, 102.990, 96.648, 102.735, 94.994, 102.41 3,95.003,101.319,93.884) B2H Rad State3 Prelaunch = (183.710,171.503,184.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.468, 186.974,171.568,185.010,169.558) B2H Rad State3 Postlaunch = (200.0,200 B2H Rad State3 Current =
(183.71\overline{0},17\overline{1}.503,1\overline{8}4.161,173.274,187.684,171.997,188.732,171.010,188.371,174.781,187.716,171.4688,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,171.468,1 186.974,171.568,185.010,169.558) B3H Rad State1 Prelaunch = (74.771,68.\overline{6}94,75.\overline{6}03,68.942,76.300,69.277,77.123,69.013,75.981,69.171,75.813,69.290,75.248,68.87 4,74.268,68.658) B3H Rad State1 Postlaunch = B3H Rad State1 Current = 4,74.268,68.658) B3H Rad State2 Prelaunch = (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 78.171, 84.271, 84.271, 78.171, 84.271, 84. 7,83.013,77.903) B3H_Rad_State2_Postlaunch = B3H Rad State2 Current = (83.835, 78.103, 84.806, 78.339, 85.510, 78.794, 86.371, 78.474, 85.090, 78.442, 84.790, 78.771, 84.271, 78.171, 84.271, 84.271, 78.171, 84.271, 84. 7,83,013,77,903) B3H Rad State3 Prelaunch = (148.35\overline{8}, 13\overline{6}.935, 1\overline{5}0.558, 137.800, 151.652, 138.445, 153.268, 137.681, 150.913, 138.026, 150.303, 138.203, 149.181,137.271,147.210,136.848) B3H Rad State3 Postlaunch = (120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0,120.0) ``` ``` B3H Rad State3 Current = (148.358,136.935,150.558,137.800,151.652,138.445,153.268,137.681,150.913,138.026,150.303,138.203, 149.181, 137.271, 147.210, 136.848) B4H Rad State1 Prelaunch = (90.684,86.813,91.648,85.361,91.916,86.890,91.548,87.355,91.100,86.758,90.371,86.732,90.606,86.79 4,89.926,87.610) B4H Rad State1 Postlaunch = (100.0,\overline{100.0},100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0,100.0) B4H_Rad_State1_Current = (90.684, 86.813, 91.\overline{648}, 85.361, 91.916, 86.890, 91.548, 87.355, 91.100, 86.758, 90.371, 86.732, 90.606, 86.79 4,89.926,87.610) B4H Rad State2 Prelaunch = (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97 .661,98.474,98.477) B4H Rad State2 Postlaunch = (100.0, \overline{100.0}, 100.0, 100 B4H Rad State2 Current = (99.545, 97.781, 100.581, 96.103, 100.861, 97.858, 100.429, 98.329, 99.894, 97.626, 99.123, 97.587, 99.371, 97.858, 100.429, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861, 100.861,
100.861, 10 .661,98.474,98.477) B4H Rad State3 Prelaunch = (180.29\overline{7}, 17\overline{4}.745, 1\overline{8}2.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.368,174.777,178.348,176.381) B4H_Rad_State3_Postlaunch = (200.0,\overline{2}00.\overline{0},200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0,200.0) B4H Rad State3 Current = (180.297, 174.745, 182.339, 171.777, 182.794, 174.990, 182.165, 176.045, 180.939, 174.523, 179.635, 174.865, 180.368,174.777,178.348,176.381) B5H Rad State1 Prelaunch = (22.307,21.\overline{7}10,22.\overline{1}66,21.616,22.084,21.632,22.074,21.576,22.134,21.496,22.005,21.409,22.028,21.53 3,22.030,21.432) B5H Rad State1 Postlaunch = B5H Rad State1 Current = (22.307, 21.710, 22.\overline{166}, 21.616, 22.084, 21.632, 22.074, 21.576, 22.134, 21.496, 22.005, 21.409, 22.028, 21.53) 3,22.030,21.432) B5H Rad State2 Prelaunch = (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 23.2000, 4,23.054,23.045) B5H Rad State2 Postlaunch = B5H Rad State2 Current = (23.397, 23.405, 23.270, 23.231, 23.191, 23.271, 23.182, 23.288, 23.190, 23.108, 23.053, 22.976, 23.089, 23.20 4,23.054,23.045) B5H Rad State3 Prelaunch = (43.679, 43.\overline{1}13, 43.\overline{4}29, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.83) 9,43.069,42.487) B5H Rad State3 Postlaunch = (50.0, 50. B5H Rad State3 Current = (43.679, 43.\overline{1}13, 43.\overline{4}29, 42.911, 43.374, 42.978, 43.272, 42.897, 43.283, 42.604, 43.140, 42.467, 43.155, 42.83) 9,43.069,42.487) B7H Rad State1 Prelaunch = (12.224,11.010,12.122,10.999,12.138,10.970,12.140,11.023,12.146,10.957,12.103,10.979,12.128,10.95,10.970,12.128, 3,12.035,10.990) B7H_Rad_State1_Postlaunch = B7H Rad State1 Current = (12.224, 11.010, 12.122, 10.999, 12.138, 10.970, 12.140, 11.023, 12.146, 10.957, 12.103, 10.979, 12.128, 10.95, 10.970,
10.970, 10.9 3,12.035,10.990) B7H_Rad_State2_Prelaunch = (12.661, 11.945, 12.529, 11.926, 12.564, 11.878, 12.545, 11.915, 12.532, 11.850, 12.498, 11.884, 12.504, 11.800, 12.498, 12.504, 12. 1,12.390,11.835) B7H Rad State2 Postlaunch = (10.0, \overline{10.0}, \overline{10.0}, 10.0, 10. B7H Rad State2 Current = (12.661,\overline{11.945},12.\overline{529},11.926,12.564,11.878,12.545,11.915,12.532,11.850,12.498,11.884,12.504,11.80 1,12.390,11.835) B7H Rad State3 Prelaunch = (24.885, 22.955, 24.651, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75, 24.601, 24.6 4,24,425,22,825) ``` ``` B7H Rad State3_Postlaunch = (30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0, 30.0) B7H Rad State3 Current = (24.885, 22.955, 24.\overline{6}51, 22.925, 24.702, 22.848, 24.685, 22.938, 24.678, 22.807, 24.601, 22.863, 24.632, 22.75) 4,24.425,22.825) B8H Rad State1 Prelaunch = (99.913, 88.\overline{876}, 102.\overline{090}, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540,
104.540, 1 ,91.315,104.027,90.476,105.156,89.298,105.865,89.710,105.337,90.632,105.169,90.085,104.852,90.168 ,103.097,90.113,102.637,90.968,101.805,89.732) B8H Rad State1 Postlaunch = (110.0,\overline{1}10.\overline{0},110.0,\overline{1}10.0,110.0, 110.0, B8H Rad State1 Current (99.913, 88.876, 102.090, 89.352, 103.174, 89.855, 103.613, 90.034, 103.929, 91.642, 104.850, 90.456, 104.540, 104.850 , 91.315, 104.027, 90.476, 105.156, 89.298, 105.865, 89.710, 105.337, 90.632, 105.169, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 90.085, 104.852, 90.168, 9 ,103.097,90.113,102.637,90.968,101.805,89.732) B8H Rad State2 Prelaunch = (93.948, 84.\overline{423}, 96.\overline{089}, 84.763, 96.898, 85.256, 97.194, 85.395, 97.565, 87.087, 98.395, 86.116, 97.894, 86.73) 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8H Rad State2 Postlaunch = (110.0, 110.0,
110.0, B8H Rad State2 Current = (93.948, 84.\overline{423}, 96.\overline{089}, 84.763, 96.898, 85.256, 97.194, 85.395, 97.565, 87.087, 98.395, 86.116, 97.894, 86.73 9,97.360,85.834,98.402,84.873,99.018,85.050,98.837,85.956,98.510,85.452,98.185,85.574,96.513,85.2 76,96.015,86.142,95.205,85.060) B8H Rad State3 Prelaunch = (182.44\overline{0}, 16\overline{3}.589, 1\overline{8}6.632, 164.440, 189.408, 165.374, 190.111, 165.489, 190.873, 166.669, 192.347, 165.231, 192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) B8H_Rad_State3_Postlaunch = (220.0, B8H Rad State3 Current = (182.440,163.589,186.632,164.440,189.408,165.374,190.111,165.489,190.873,166.669,192.347,165.231, 192.365,165.990,191.352,165.694,193.326,164.103,194.511,164.837,193.731,165.855,193.256,165.002,1 93.115,165.292,190.031,164.790,189.484,166.400,187.450,164.442) END GROUP = LAMP RADIANCE HIGH END GROUP = LAMP RADIANCE GROUP = LAMP REFERENCE Lmp Rtemp PreLaunch = (+25.76, +25.76, +25.80, -168.6, +25.09, +25.50, +25.41, +28.98, +28.98, +24.45, +27.35, +24.45, +23.81, +28.65) Lmp Rtemp Postlaunch = (+25.0, +25.00, +25.00, -168.6, +25.00,
+25.00, +25.0 +25.00, +25.00, +25.00, +25.00, +25.00, +25.00, +25.00) Lmp Rtemp Current = (+25.76, +25.76, +25.80, -168.6, +25.09, +25.50, +25.41, +28.98, +28.98, +24.45, +27.35, +24.45, +23.81, +28.65) END GROUP = LAMP REFERENCE GROUP = REFLECTIVE IC COEFFS GROUP = REFLECT IC COEFFS LOW 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) \texttt{B1L_Coefficients_Detector10} \ = \ (\ 0.0, \ 0 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` - 120 - ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) \texttt{B4L Coefficients Detector5} = (\ 0.0, 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) \texttt{B5L_Coefficients_Detector16} \ = \ (\ 0.0, \
0.0, \ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) END GROUP = REFLECT IC COEFFS LOW GROUP = REFLECT IC COEFFS HIGH 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) \texttt{B5H Coefficients Detector6} = (\ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) \texttt{B5H_Coefficients_Detector12} \ = \ (\ 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` - 126 - ``` 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0,
0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, \overline{0}.0, 0.0 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) ``` ``` 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) 0.0, 0.\overline{0}, 0.0, 0.0, \overline{0}.0, 0.0) END GROUP = REFLECT IC COEFFS HIGH END GROUP = REFLECTIVE IC COEFFS GROUP = B6 VIEW COEFFS B6 View Coefficients Detector1 = B6 View Coefficients Detector2 = B6 View Coefficients Detector3 = B6 View Coefficients Detector4 = B6_View_Coefficients_Detector5 = B6 View Coefficients Detector6 = B6 View Coefficients Detector7 = B6 View Coefficients Detector8 = END GROUP = B6 VIEW COEFFS \overline{\text{GROUP}} = \text{B6} \ \overline{\text{TEMP}} \ \overline{\text{MODEL}} \ \overline{\text{COEFFS}} B6 Temp Model Parm = (+1.0178, +0.0, +0.0, +0.0, +0.0, +0.0) END GROUP = B6 TEMP MODEL COEFFS GROUP = THERMISTOR COEFFS Black Body Isolated Temp = (16.778000,0.092912,0.00011322,0,0,0) Black Body Control Temp = (51.724000, -0.16368, 0.000071646, 0, 0, 0) Cold_{FP}_{Control}_{Temp} = (110.350500, -0.10204, 0, 0, 0, 0) Cold_FP_Monitor_Temp = (109.718500,-0.10177,0,0,0,0) Cal Shutter Flag Temp = (37.23,-0.16878,3.8161E-05,0.0,0.0,0.0) Backup_Shutter_Flag_Temp = (37.230000,-0.16878,0.000038161,0,0,0) Baffle Heater Temp = (-2.999300, 0.093187, 0.00026150, 0, 0, 0) Silicon FP Array Temp = (5.139200, 0.086259, 0.00020767, 0, 0, 0) Primary Mirror Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10) Secondary Mirror Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10) Scan Line Corrector Temp = (109.650000, -2.3891, 0.029481, -1.9470E-04, 6.2209E-07, -7.5546E-10) Baffle3 Tube Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Baffle2 Support Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Cal Lamp Housing Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Cal Shutter Hub Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Ambient Preamp HighCh Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Ambient Preamp LowCh Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10) Postamp_Temp_B4 = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Cold Preamp B7 Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10) Pan Band Postamp Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Telescope Housing Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Primary Mirror Mask Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -5.2512E-10) Secondary Mirror Mask Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Telescope Baseplate Temp = (121.499000,-1.95685,0.0202707,-1.2745E-04,4.0681E-07,-5.2512E-10) Mem Heat Sink Power Supply1 Temp = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -1.2755E-04, 5.2512E-10) \text{Mem Heat Sink Power Supply2 Temp} = (121.499000, -1.95685, 0.0202707, -1.2745E-04, 4.0681E-07, -1.2745E-07, -1.2745E-0 5.2512E-10) Mux1 Power Supply Temp = (109.484000,-2.42279,0.0286100,-1.9000E-04,6.1400E-07,-7.7500E-10) Mux1 Electronics Temp = (109.484000,-2.42279,0.0286100,-1.9000E-04,6.1400E-07,-7.7500E-10) \overline{\text{END GROUP}} = \overline{\text{THERMISTOR COEFFS}} \overline{\text{GROUP}} = \text{LAMP}_{\text{CURRENTS}} Tec_{Lamp_i1} = (95.449, -0.041194) Tec_{Lamp_i2} = (95.449, -0.041194) END GROUP = LAMP CURRENTS GROUP = FILL PATTERNS Band Fill Pattern = (0,255) END GROUP = FILL PATTERNS END ``` ## References Please see http://landsat.usgs.gov/resources/acronyms.php for a list of acronyms. A useful ODL document is the Jet Propulsion Laboratory (JPL), California Institute of Technology's Planetary Data System Standards Reference, Version 3.2, Chapter 12. Object Description Language Specification and Usage, July 24, 1995. This document is online at http://pds.ipl.nasa.gov.