STRAIN-BASED DESIGN AND ASSESSMENT AND 0.8 DESIGN FACTOR

Yong-Yi Wang

ywang@cres-americas.com

Center for Reliable Energy Systems

5960 Venture Dr., Suite B Dublin, OH 43017 USA 614-808-4872

DOT PHMSA RD Forum 2012

July 18-19, 2012

Outline

- □ Three parts: (1) intro, (2) status, and (3) gaps
- Introduction to strain-based design and assessment (SBDA)
 - What is SBDA?
 - Practical applications of SBDA
- □ Current approach to SBDA
- Elements of SBDA
 - Strain demand
 - Compressive strain capacity
 - Tensile strain capacity
- □ Role of SBDA in pipeline life cycle
- □ Gaps in SBDA
- Concluding remarks

Design, Operation, and Maintenance, Nominal Process

- Historically pipelines were constructed to contain content and maintain pressure. So design against hoop stress is the primary criterion.
- □ Other design consideration includes:
 - External interference (e.g., mechanical damage, road crossings)
 - Corrosion
 - Collapse from external pressure (offshore)
 - Manufacturing defects (e.g., seam and girth welds)
- Materials remain elastic under normal operating conditions.

What is Strain-Based Design and Assessment

- Strain-based design and assessment (SBDA) falls under the general framework of fitness-for-service assessment
- □ FFS correlate the following key parameters
 - Pipe dimensions
 - Diameter, wall thickness
 - Material properties
 - Strength and toughness
 - Anomalies
 - Loads/stress/strain on the pipelines

Strain based design

- Pipeline design with a specific goal of servicing/surviving under longitudinal plastic deformation (strain > 0.5%)
- Strain-based assessment

Using the same approach to assess the condition of in-service pipelines

7/18/2012

Applications of SBDA – Onshore

- Frost heave and thaw settlement
- □ Slope movement
- Mining settlement
- □ Earthquake

STRAIN-BASED DESIGN AND ASSESSMENT AND 0.8 DESIGN FACTOR

Applications of SBDA - Offshore

□ Pipe laying by reeling

□ Lateral or upheaval buckling from pipe expansion

STRAIN-BASED DESIGN AND ASSESSMENT AND 0.8 DESIGN FACTOR

Approach to SBDA

□Components of SBD

- Strain demand: tensile or compressive
- Strain capacity: tensile or compressive.

Design conditions

✤ ε_d (strain demand) < f (safety factor) × ε_c (strain capacity)

STRAIN-BASED DESIGN AND ASSESSMENT AND 0.8 DESIGN FACTOR

Strain Demand

□ Inertial measurement unit (IMU)

□ Soil movement → pipe/soil interaction

Direct stress measurement

Strain-Based Design and Assessment and 0.8 Design Factor

Compressive Strain Capacity (CSC)

□ Compressive strain capacity

Strain-Based Design and Assessment and 0.8 Design Factor

Tensile Strain Capacity (TSC)

The bars are the test data spread between two sides of the curved wide plate (CWP) specimens.

Strain-Based Design and Assessment and 0.8 Design Factor

TSC vs. Material Property, Flaw Size, Misalignment

□ Three curves represent three levels of target tensile strain capacity (1.0%, 1.5% and 2.0%).

Strain-Based Design and Assessment and 0.8 Design Factor

Role of SBDA in Pipeline Life Cycle

Design

- Route selection, understanding strain demand and possible strain capacity
- Ductile fracture control / design of crack arrestor
- Materials
 - Linepipe material specification
- Construction
 - Welding procedure qualification
 - Weld strength
 - Toughness
 - Flaw acceptance criteria in field welding
 - Basis for the control of weld profile and misalignment
- Operation and maintenance
 - Assess the margin of safety for possible threats to pipelines
 - Help to establish intervention criteria
 - Facilitate decisions on mitigation options

Understanding Gaps - CSC

Strain-Based Design and Assessment and 0.8 Design Factor

Understanding Gaps - TSC

1

□ Field condition

Test condition

Strain-Based Design and Assessment and 0.8 Design Factor

State of Art in SBDA

Strain demand

- IMU to pick up strains from pipe bending
- Use pipe/soil interaction model to estimate strain/stress on pipes from soil movement

□ Compressive strain capacity (CSC)

- Various equations from standards (e.g., CSA, DNV, and API) and published document (U. of Alberta)
- More refined equations are being developed (PHMSA funded project at CRES)
 - http://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=361
- Project-specific equations
- □ Tensile strain capacity (TSC)
 - Procedures from a DOT/PRCI co-funded project (CRES and C-FER)
 - http://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=201
 - http://primis.phmsa.dot.gov/matrix/PrjHome.rdm?prj=200
 - Procedures from other organizations

SBDA for In-Service Pipelines

- JIP: <u>Risk-Informed Fitness-For-Service Assessment of Pipelines</u> <u>Subjected to Ground Settlement and Movement Hazards</u>
- Philosophy
 - Focus on technology deployment
 - Certain areas will need to be refined over time
- Led by operators and technology leaders
 - Kinder Morgan, Spectra, and CRES
- □ Intend to deliver "complete solutions"
 - Identification of geotechnical hazards
 - Proper use of inspection tools (ILI and other tools)
 - FFS and associated input parameters (material properties and flaw characteristics)
 - Mitigation (repair, stress relief) and monitoring
 - Risk ranking and intervention
- Key team members
 - Operators
 - Geotechnical experts
 - Inspection companies
 - Experts in materials, welding, and mechanics

7/18/2012

Strain-Based Design and Assessment and 0.8 Design Factor

Gaps – Overall Observations

- □ Strain capacity models are relatively advanced, but
 - Developed under laboratory test conditions
 - Straight pipes without any damage
 - Application of loads could be different from field conditions.
 - Without considering <u>interacting defects</u>
 - Material (linepipe and girth welds) qualification procedures, requirements, and test methods do not have the necessary precision for SBDA.
 - Data on the material properties and flaw characteristics of in-service pipelines are limited.
- The gaps identified below are applicable, in general, to new constructions and in-service pipelines.

Gaps

- Gap 1: Interaction of high longitudinal strain and anomalies from corrosion or mechanical damage
 - Present assessment methodology on those anomalies was established
 - under the condition of small longitudinal strain
 - Hoop stress level is higher than longitudinal stress level
 - Would the behavior of those anomalies change under high longitudinal strain?
 - How would the strain capacity change with the presence of those anomalies?
- Gap 2: SBDA in the presence of fittings (hot bends, elbows, tees, valves)
 - Transition zones can be points of strain concentration
 - Qualification, flaw detection, and monitoring of manual welds
 - Heat treatment of large diameter high pressure (thick) fittings

Thank You!

Questions

Strain-Based Design and Assessment and 0.8 Design Factor