

Effect of Alternate Fuels and CO₂ on Pipelines

Status and Gaps

Narasi Sridhar July 18, 2012

Alternate fuels

- Bioalcohols
- Biodiesel
- Drop-in hydrocarbons
- Biogas
- Hydrogen
- Shale gas

Biofuels

Status and Challenges

Narasi Sridhar July 18, 2012

Biofuels materials compatibility program

New threats to equipment integrity

Added Integrity Threats	Ethanol	Butanol	Biodiesel	Biogas
Corrosion				
Stress corrosion cracking				
Delamination				
Swelling				
Softening				
Permanent Set				
Soap formation				
Effect on Product quality				
Permeation				
		Known Threat		
		Possible threat Unlikely		

Key Factors Influencing SCC Susceptibility in ethanol

Dissolved oxygen is the most important factor in SCC

No SCC below E-15

E-50 could be the worst

Effect of Alternate Fuels and CO2 on Pipelines July 18, 2012 © Det Norske Veritas AS. All rights reserved.

Effect of water on SCC in ethanol

Hydrous ethanol will not cause SCC

Ammonia requires about 3000 ppm water to inhibit SCC

Methanol requires about 0.5% water to inhibit SCC

Effect of Alternate Fuels and CO2 on Pipelines July 18, 2012 © Det Norske Veritas AS. All rights reserved.

Steel microstructure is not very important for SCC

Effect of ethanol chemistry – no smoking gun

© Det Norske Veritas AS. All rights reserved.

Some Inhibitors are effective in mitigating SCC

But ammonium hydroxide is the best by far

© Det Norske Veritas AS. All rights reserved.

July 18, 2012

Biodiesel

Narasi Sridhar July 18, 2012

MANAGING RISK

Issues

- Corrosion
- High electrical resistivity electrochemical measurements difficult
- Current ASTM fuel corrosivity test is useless for pipelines
- Corrosion rates in emulsions negligibly low phase separation important

Measuring corrosion in biodiesel/water mixture – Multielectrode Array Technique

(c) after two week

(a) before cleaning

(b) after cleaning

Effect of Alternate Fuels and CO2 on Pipelines July 18, 2012 © Det Norske Veritas AS. All rights reserved.

Corrosion rate comparison

(a): biodiesel/water mixture(b):ULSD/water mixture

(b)

Effect of Alternate Fuels and CO2 on Pipelines July 18, 2012 © Det Norske Veritas AS. All rights reserved.

Gaps and challenges for biofuel pipelines

- SCC is still observed in terminals and storage tanks (and possibly pipelines)
- SCC control in ethanol
 - Ammonium hydroxide seems to be the best, but unknown downstream effects
 - SCC monitoring tool
- Corrosion control in biodiesel
 - How does biodiesel influence water corrosivity?
 - Appropriate corrosion test methods
 - Monitoring methods
- Other materials
 - Non-ferrous alloys in ethanol and biodiesel
 - Elastomer behavior in alcohol fuels
- Integrity assessment

CO₂ Pipelines

Status and challenges

Narasi Sridhar July 18, 2012

Three Strategies to Reducing CO₂ in Atmosphere

The future for clean energy markets (IEA)

Projected CO₂ emissions by 2030

Why Transport of Super Critical CO₂ Important?

The CO₂ generation and storage sources are not all in geographical proximity.

Transporting the CO₂ will be a critical challenge in the CCS world.

Major safety issues in CO₂ pipeline transportation

- Running ductile fracture
- Release and depressurization effects on pipeline
- Corrosion (gas quality specification, co-mingling effects)
- Seals/gaskets (rapid depressurization, swelling, plasticizing)
- Liners
- Non-ferrous metals (valves, pumps, measuring devices, etc.)

Property	Unit	Value
Molecular Weight	g/mol	44.01
Critical Pressure	bara	73.8
Critical Temperature	°C	31.1
Triple point pressure	bara	5.18
Triple point temperature	°C	-56.6
Aqueous solubility at 25°C, 1 bar	g/L	1.45
Standard (gas) density	kg/m ³	1.98
Density at critical point	kg/m ³	467
Liquid density at 0°C, 70bar	kg/m ³	995
Sublimation temp, 1bara	°C	-79
Solid density at freezing point	kg/m ³	1562
Colour	-	None

Effect of Alternate Fuels and CO2 on Pipelines July 18, 2012 © Det Norske Veritas AS. All rights reserved.

Impurities in Supercritical CO₂

Aggressive species :

Inhibitive species:

-Amine	
-NaOH	
-Other	
organics	

Overall objective of DNV JIP - CO2PIPETRANS

- To provide guidance on safe, reliable and cost efficient design, construction and operation of CO₂ pipelines
- Two phased approach:
 - Phase 1: Gather existing knowledge into a guidance document
 - Phase 2: Close the found knowledge gaps to a adequate confidence level

CO2PIPETRANS Phase 2

Current Knowledge of CO₂ Corrosion

- Limited data and understanding of pCO₂ higher than 20 bar.
- Corrosion rate of CS decreases with increasing partial pressure of CO₂, at moderate pressures it may be due to formation of FeCO₃ films.

Limited understanding and data at high partial pressures of CO₂.

Effect of Alternate Fuels and CO2 on Pipelines July 18, 2012 © Det Norske Veritas AS. All rights reserved.

Summary of Electrochemical Data

After exposure 1d, 1200 psi, 25 C

CO₂ Equations of State

- Many models available, but none of them perfect
- NIST data and modeling source
- Gaps remain:
 - Impurity effects still sometimes pose concerns
 - Water, NOx
 - Models seem to fail more often in complex systems (e.g., 3) component CO_2 + water + N_2)
 - Models have discontinuities and some errors

Where don't they work so well?

Other problems: discontinuity in calculations

02/g

Gaps and challenges for CO₂ pipelines

- Equations of state and phase behavior calculations need significant improvement
 - Effect of impurities
- Internal corrosion direct assessment (ICDA) for CO₂ pipelines
 - Understand phase and flow behavior (e.g., water dropout locations)
 - Gas quality specification
 - Model corrosion
 - Manage corrosion (inhibition, dehydration, etc.)
- Gaskets and seals
 - Long-term elastomer performance in CO₂ with impurities
 - Rapid decompression effects
- Fracture behavior
 - Reasonably well understood
 - Improved understanding of phase behavior will enable better design
- Facilities and equipment
 - Non-ferrous materials

- Dynamic seal performance

July 18, 2012 © Det Norske Veritas AS. All rights reserved

Safeguarding life, property and the environment

www.dnv.com

