Pipeline Research Council International, Inc.

Leak Detection R&D for the Pipeline Industry

Gaps & Challenges to be Addressed through Collaborative R&D

US DOT PHMSA R&D Forum Working Group #2 Arlington, VA July 18, 2012

Mark Piazza Director, Pipeline Technical Committees

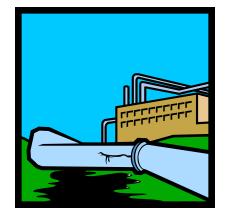
LEADING PIPELINE RESEARCH

Presentation Topics

Issues and Drivers for Leak Detection

- Current Understanding and Programs
- PRCI Leak Detection Roadmap
- Facilities and Offshore Leak Detection
- Game Changers & Changing the Game
 - "Moving the Needle Quickly"

Research Drivers for Leak Detection


3

Safety and Environmental Performance

- Potential for unknown/unexpected worker and public exposure
 - Incidental contact
 - Vapor/gas intrusion concerns (liquids)
- Liability for natural resource impacts and damages
 - Remediation and restoration
 - Legal claims
- LAUFE emphasis on greenhouse gas releases

Financial and Economic Considerations

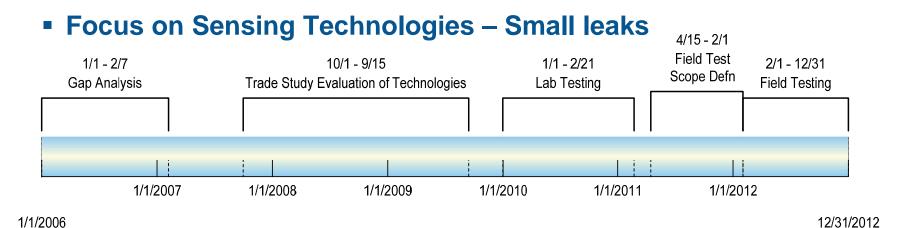
- Keeping product in the pipe and delivery to market
- Paying for liabilities from above
- Credits and trading

- Public Perception and Corporate Citizenship
 - Encroachment
 - Enhanced awareness
- The Best Leak is One that Never Happens (API website)

Challenges for Leak Detection Technology

- Needs vary based on unique operating conditions
 - Gas vs. liquids
 - Gathering , Transmission, Distribution
- Monitoring frequency and timing challenge of continuous monitoring
- Sensitivity of measurement systems relative to size of leak
- Substantial mileage of systems transmission and distribution
 - 170,000 miles of hazardous liquid lines
 - 295,000 miles of gas transmission lines
 - 1,900,000 miles of natural gas distribution lines

PRCI Leak Detection Research


- Multiple projects/programs on developing ILI technology for defect detection – IMP provides data
- Past efforts conducted to research a number of leak detection approaches and technologies
 - Satellite and remote sensing linked to Damage Prevention
 - Fiber Optic cables
 - Human Factors and Control Room Operations
 - Computational Pipeline Monitoring (CPM)
 - Acoustic methods
- Current Program Focus
 - Evaluation of external leak detection systems
 - Leak Detection Technologies for unmanned facilities
 - RAM Program

External Leak Detection R&D - Ground

6

 Fiber optic cables and acoustic emissions ranked highest for performance (40 technologies reviewed); limitations in analysis

Field testing of Acoustic/Negative Pressure Wave Leak Detection

Technologies Underway

The retrofit dilemma

External Leak Detection R&D - Air RAM Program Concept of Operations

7

No single, cost-effective system, service or suite of technologies has been developed to apply over the entire pipeline system network to address the three primary threats:

- •Machinery threats (3rd party damage)
- •Leaks
- Geologic activity/natural forces

Automating ROW Monitoring:

Detect – sensing & imagery collection

Process - data analysis via algorithms

Distribute – communication **Archive** – improved data management processes and predictive modeling

LEAK DETECTION Gas + Liquids

Changed Fight-of-Way

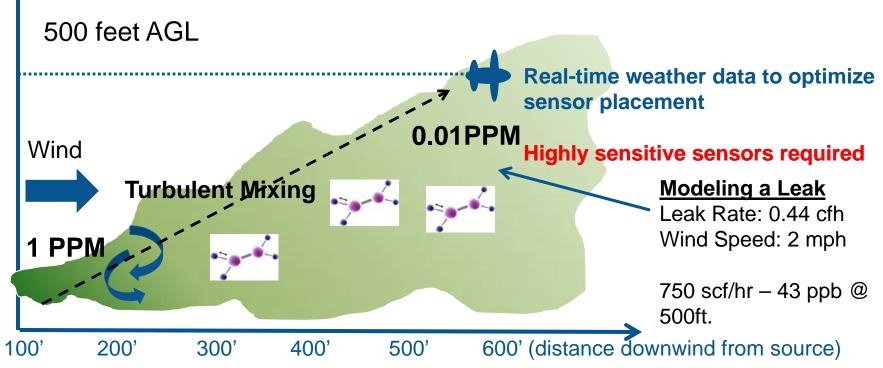
Changed Features

Pipeline Location

Threat - FALSE

Courtesy of NASA Ames Research Center

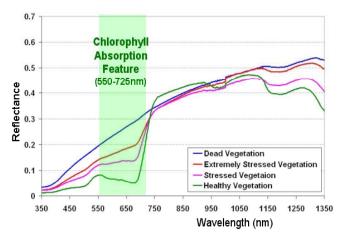
Standard aerial surveillance with regular manned aircraft

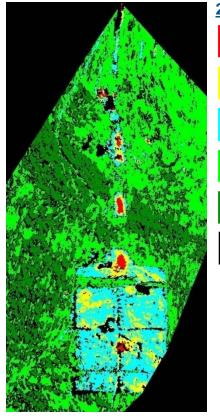


Automated processing and communication – benefits to Damage Prevention, Emergency Response & Crisis Management

Challenge for Aerial Sensing - Sensitivity

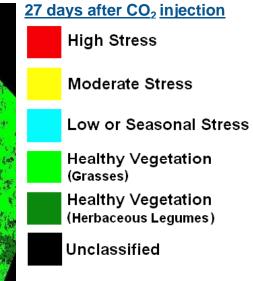
- Proof of Concept demonstrated for Natural Gas
- Field Trials June 2012 liquids included
- Vapor plume dynamics subsurface and air


Turbulence acts to disperse the plume both laterally and vertically while the mean wind simply moves the plume downwind of the release.


Proven Capabilities – Hyperspectral Sensing

Resolution requirements:

- 0.5 meter pixel is sufficient
- > 5 nm wavelength from 300nm and 800nm



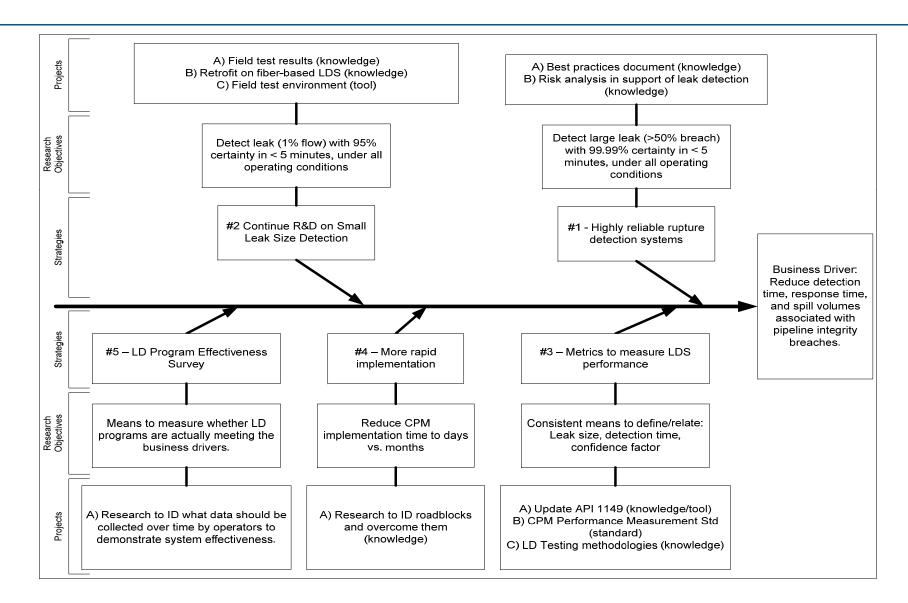
Limitations:

Sensor size

Plant stress spots correspond to measured CO₂ flux maxima

Other subsurface gases exhibit same patterns

False positives - not on pipeline path or migration pathways


Reference: From Pickles et. al., 2009

PRCI Leak Detection R&D Roadmap

- Part of Pipeline Industry R&D Roadmap
- High Priority AOPL/API Pipeline Safety Improvement Areas
- Best in Class Mentality
- Three Primary Elements: People (Human Factors), Process, and Technology
- Five Primary Areas Defined
 - Continuing R&D on small leak size detection on liquids pipelines – external sensing & CPM
 - Highly reliable pipeline rupture detection
 - Metrics to Measure Leak Detection Performance
 - Facilitate More Rapid Implementation of CPM Systems
 - Leak Detection Program Effectiveness Surveys

11

Leak Detection Roadmap Overview

12

Facilities and Off shore Leak Detection

Facility Integrity Management Program

- Unmanned aerial Systems (UASs) and unmanned facilities
- Off shore pipelines and systems

Offshore seeps

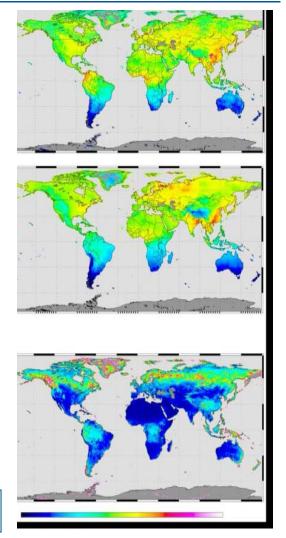
Game Changers and Changing the Game

13

Engineer the Environment

- Proactive vs reactive
- Plants
- •Bugs CO₂, Thermal, other
- Other?

DRA
Pattern Recognition



Satellites

- Move to automation iPad Generation
- Current capabilities vs future
- How does pipeline industry help define next generation?
- •Of, by, and for the people? Government role

Get rid of the Box - Expand our view of the world

From Frankenberg et. al., Journal of Geophysical Research, Vol. 111, 2006

Closing Slide Thank you for your attention Questions?

Follow-up questions or information needed: Mark Piazza

mpiazza@prci.org

678 339 3645