LANDSAT 4-5
 THEMATIC MAPPER (TM)
 CALIBRATION PARAMETER FILE (CPF) DEFINITION

Version 6.0

July 2011

LANDSAT 4-5
 THEMATIC MAPPER (TM) CALIBRATION PARAMETER FILE (CPF) DEFINITION

July 2011

Prepared By:

E. Micijevic	Date
Calibration Analyst	
SGT	

Reviewed By:

R. Junker	Date
IAS Systems Engineer	
SGT	

Reviewed By:
L. Johnson

Date

IAS Software Project Lead SGT

Approved By:

R. Rengarajan	Date
CalVal Task Lead	
SGT	

Approved By:
E. Fosnight Date

Landsat Data Acquisition Manager
U.S. Geological Survey

Executive Summary

This document describes the contents of the Calibration Parameter File (CPF) generated by the Thematic Mapper (TM) functionality of the Image Assessment System (IAS). The IAS routinely performs radiometric and geometric calibration and updates the CPF. This file is stamped with an applicability date range and is sent to the Landsat Archive Manager (LAM) for storage and eventual bundling with outbound Level 0 Reformatted Products (LORp). The CPF supplies the radiometric and geometric correction parameters required during Level 1 (L1) processing to create superior products of uniform consistency across the Landsat system.

Document History

Document Number	Document Version	Publication Date	Change Number
IAS-226	Version 1	August 9, 2004	NA
IAS-226	Version 2.0	October 28, 2005	CCR 4094
IAS-226	Version 3.0	September 2007	CCR 4254
IAS-226	Version 4.0	January 2008	NA
IAS-226	Version 5.0	August 2009	NA
IAS-226	Version 6.0	July 2011	NA

Contents

Executive Summary iii
Document History iv
Contents v
List of Tables vi
Section 1 Introduction 1
1.1 Background 1
1.2 Purpose and Scope 1
Section 2 File Structure 2
2.1 Calibration Parameter File Updates 2
2.1.1 Effective Dates 3
2.2 File-Naming Conventions 3
2.3 File Content Description 4
Section 3 CPF Definition 7
Section 4 CPF ODL 63
4.1 Introduction to ODL Syntax 63
4.2 Sample TM CPF ODL File 63
References 85

List of Tables

Table 2-1. File Naming Procedure for the CPF ... 3
Table 2-2. File Content Description.. 4
Table 2-4. Data Types Relevant to the CPF... 6
Table 3-1. Landsat TM CPF Parameters... 62

Section 1 Introduction

1.1 Background

In May 2003, the Landsat Project at the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) and the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) developed a joint charter to assess Landsat 4 (L4) and Landsat 5 (L5) Thematic Mapper (TM) data in an effort to enhance the radiometric and geometric accuracy of the image data products.

L4 and L5 comprise the suite of satellites with an on-board Thematic Mapper (TM) sensor. Before TM functionality was incorporated into the Image Assessment System (IAS), any calibration of the TM instrument was reactive in nature. For the most part, when a problem was identified in the Level 0 (L0) and Level 1 (L1) production systems, system developers responded by fixing the anomalies as they were found.

The TM calibration is a proactive approach aimed to monitor the TM data as acquired, validate the integrity of the archived products, and identify and troubleshoot anomalies. Data quality is assured via radiometric, geometric, and spatial characterization and calibration efforts. Each of these efforts generates inputs to the Calibration Parameter Files (CPFs) that are available to L0 and L1 production systems.

Retroactive trending of the data through time is an important tool to identify anomalies and trends within the archive, with a special importance for sensors, such as L4, which are no longer collecting data.

1.2 Purpose and Scope

This document describes the contents of the TM CPF generated by the IAS. The TM functionality of the IAS is responsible for offline assessment of TM image quality. In addition to its assessment functions, the IAS is responsible for the radiometric and geometric calibration of TM data. The IAS periodically performs radiometric and geometric calibration and updates the CPF. This file is stamped with an applicability date and is sent to the Landsat Archive Manager (LAM) for storage and eventual bundling with outbound data products. The CPF supplies the radiometric and geometric correction parameters required during L1 processing to create superior products of uniform consistency across the Landsat system.

Section 2 File Structure

All parameters are stored as American Standard Code for Information Interchange (ASCII) text using the Object Description Language (ODL) syntax developed by the NASA Jet Propulsion Laboratory (JPL). ODL is a tagged keyword language developed to provide a human-readable data structure to encode data for simplified interchange. The ODL interpreter developed by JPL may provide, in certain cases, the handling of lexical elements (e.g., building blocks) included in the Consultative Committee for Space Data Systems (CCSDS) specification of the Parameter Value Language (PVL), which is a superset of ODL. The IAS CPF is a pure ODL implementation without any PVL extensions.

The body of the file is composed of two statement types:

1. Attribute assignment statement: Used to assign values to parameters
2. Group statements: Used to aid in file organization and enhance parsing granularity of parameter sets

The Planetary Data System Standards Reference provides ODL details (see References).

2.1 Calibration Parameter File Updates

The IAS regularly releases and distributes new L5 TM CPFs at the beginning of each calendar quarter. In addition to a new CPF for the coming calendar quarter, the delivery also includes new versions of all CPFs for times affected by the most recent calibration update. $\mathrm{L4}$ TM has not been operational since 1993. Therefore, CPF updates are only released as necessary. For both sensors, only the most recent CPFs should be used in data product generations. The CPF file used is identified in the product metadata.

Landsat 5 TM

Prior to switching to bumper operational mode, CPFs needed to be released on a regular quarterly basis primarily because of the Universal Time Code (UTC) corrected (UT1) time corrections and pole wander predictions included in the file. However, the CPFs could be updated at any given time, if needed, and released for times shorter than a calendar quarter. For example, the first CPF interval covers March 1984 only, due to the satellite's launch on March 1, 1984. Since L5 TM switched to bumper operational mode in March 2002, multiple version updates are possible during any given quarter due to the unpredictive nature of the scanning mirror bumper parameters. The irregular (mid-quarter) updates do not affect the three-month CPF release schedule.

Landsat 4 TM

The L4 TM has not been operational since 1993. Therefore, L4 TM CPF updates are only released as necessary.

2.1.1 Effective Dates

Each CPF is time-stamped with an effective date range. The third and fourth parameters in the file-Effective_Date_Begin and Effective_Date_End-designate the range of valid acquisition dates and are in yyyy-mm-dd format. EROS maintains a database of CPF names and their effective dates for associating product orders with the appropriate parameter files. The parameter file that accompanies an order has an effective date range that includes the acquisition date of the ordered image.

2.2 File-Naming Conventions

Throughout the mission, a serial collection of CPFs has beeen generated and sent to the LAM for distribution with LORp products. The CPFs need updates when improved calibration parameters for a given period become available or due to a file error. The need for unique file version numbers becomes necessary as file contents change. Table $2-1$ shows the components comprising the naming convention that the IAS uses for CPF files.

CPF file name: LSCPF $y_{1} y_{1} y_{1} y_{1} m_{1} m_{1} d_{1} d_{1}{ }_{\perp} y_{2} y_{2} y_{2} y_{2} m_{2} m_{2} d_{2} d_{2}$.nn

where | LS | $=$ Landsat TM satellite designator (L4 or L5) |
| :--- | :--- |
| CPF | $=$ three-letter CPF designator |
| $y_{1} y_{1} y_{1} y_{1}$ | $=$ four-digit effectivity starting year |
| $\mathrm{m}_{1} \mathrm{~m}_{1}$ | $=$ two-digit effectivity starting month |
| $\mathrm{d}_{1} \mathrm{~d}_{1}$ | $=$ two-digit effectivity starting day |
| - | $=$ effectivity starting/ending date separator |
| $-\mathrm{y}_{2} \mathrm{y}_{2} \mathrm{y}_{2} \mathrm{y}_{2}$ | $=$ four-digit effectivity ending year |
| $\mathrm{m}_{2} \mathrm{~m}_{2}$ | $=$ two-digit effectivity ending month |
| $\mathrm{d}_{2} \mathrm{~d}_{2}$ | $=$ two-digit effectivity ending day |
| | $=$ ending day/sequence number separator |
| nn | $=$ sequence number for this file (starts with 01) |

Table 2-1. File Naming Procedure for the CPF

For example, if the IAS created four CPFs at three-month intervals, and then updated the first file twice and the second and third files once, the assigned file names would be as follows:

File 1 L5CPF19840301_19840331.01
L5CPF19840301_19840331.02 L5CPF19840301_19840331.03
File 2 L5CPF19840401_19840630.01 L5CPF19840401_19840630.02
File 3 L5CPF19840701_19840930.01
L5CPF19840701_19840930.02
File 4 L5CPF19841001_19841231.01
This example assumes that the effective date ranges did not change. The effective date range for a file can change if a specific problem (e.g., detector outage) is discovered within the nominal effective range. Assuming this scenario, two CPFs with new names and effective date ranges are spawned for the period under consideration. The Effective_Date_End for a new pre-problem CPF changes to the day before the problem occurred, and the Effective_Date_Begin remains unchanged. A post-problem CPF with a new file name is created with an Effective_Date_Begin corresponding to the imaging date when the problem occurred, and the assigned Effective_Date_End is the original Effective_Date_End for the period under consideration. Both new CPFs, although they appear for the first time for a given effective date, have a version number one higher than the CPF for the quarter in which they originated. New versions of all other CPFs affected by the updated parameter are also created.

2.3 File Content Description

GROUP: CHAR_CN_FFT _GENERATION	Forward_Scan_IC_Offset	Dynamic	uint8	Forward scan offset from the calibration pulse edge in pixels that defines the shutter region used in Coherent Noise (CN) characterization Validate format: NN
GROUP: CHAR_CN_FFT _GENERATION	Reverse_Scan_IC_Offset	Dynamic	uint8	Reverse scan offset from the calibration pulse edge in pixels that defines the shutter region used in CN characterization Valid format: NN

Table 2-2. File Content Description
Table 3-1 lists all CPF parameters. Within this table, each parameter entry is characterized by five attributes:

1. Parameter group: Identifies a related set of parameters.
2. Parameter name: Uniquely identifies and describes the content of each parameter.
3. Value type: Describes the parameter as either static or dynamic. A static value generally remains unchanged over the life of the mission. A dynamic value changes, or has the potential to change, over the life of the mission. Significant changes to dynamic values trigger a CPF update.
4. Data type: Uses a Hierarchical Data Format (HDF) number type nomenclature, type\#, where type is given by the descriptors 'char' (character), 'int' (integer), or 'float' (floating point), and \# is a decimal count of the number of bits used to represent the data type. The type mnemonics, int and char, may be preceded by the letter u, indicating an unsigned value. For example, the data type uint32 refers to an unsigned 32 -bit integer value. Error! Reference source not found. describes the data types relevant to the CPF.

Data Type	HDF Nomenclature
8-bit character	char8
8-bit unsigned integer	uint8
16-bit signed integer	int16
32-bit signed integer	int32
32-bit floating point number	float32
64-bit floating point number	float64

Table 2-3. Data Types Relevant to the CPF

5. Description: Describes the parameter and its format. It also identifies if a given parameter is specific for only one (L4 or L5) TM sensor; if not specifically stated, the parameter is available in both L4 and L5 CPFs. The valid parameter format for numeric data is described using letters S, N, and E . S represents the sign and assumes values + or -; if no sign is specified, the + sign is assumed. N represents any digit between 0 and 9 . E is used in scientific (exponential) notation to represent the "multiplication by 10 raised to the power" specified by the value following the letter E. For example, the valid format SNNN.NNNNESNN can assume any positive or negative value with a significant ranging from 0.0000 to 999.9999 multiplied by 10 raised to the power of any whole number between 99 and 99.

Section 3 CPF Definition

GROUP: CHAR_CN_FFT_ GENERATION	Forward_Scan_IC_Offset	Dynamic	uint8	Forward scan offset from the calibration pulse edge in pixels that defines the shutter region used in CN characterization Valid format: NN
GROUP: CHAR_CN_FFT_ GENERATION	Reverse_Scan_IC_Offset	Dynamic	uint8	Reverse scan offset from the calibration pulse edge in pixels that defines the shutter region used in CN characterization Valid format: NN

Table 3-1 lists the Landsat TM CPF parameters.

Parameter Groups	Parameter Name	Value Type	Data Type	Description
FILE_ATTRIBUTES	Spacecraft_Name	Static	char8	Descriptor used to identify the spacecraft for which the calibration parameters are applicable Valid format: Landsat_S, where $S=4$ or 5
FILE_ATTRIBUTES	Sensor_Name	Static	char8	Descriptor used to identify the sensor for which the calibration parameters are applicable Valid format: Thematic_Mapper
FILE_ATTRIBUTES	Effective_Date_Begin	Dynamic	char8	Effective start date for this file Valid format: yyyy-mm-dd, where yyyy $=1982-2050, \mathrm{~mm}=01-12$, and $\mathrm{dd}=01-31$
FILE_ATTRIBUTES	Effective_Date_End	Dynamic	char8	Effective end date for this file Valid format: yyyy-mm-dd, where yyyy $=1982-2050, \mathrm{~mm}=01-12$, and dd $=01-31$
FILE_ATTRIBUTES	CPF_File_Name	Dynamic	char8	Original file name assigned by IAS Valid format: LSCPFyyyymmdd_yyyymmdd.nn, where $S=4$ or 5 , yyymmmdd = effective start date and effective end date, respectively, and nn $=$ incrementing version for within a quarter (0199)
EARTH_CONSTANTS	Ellipsoid_Name	Static	char8	Name of the ellipsoid used to represent the semi-major and semi-minor axes of the Earth Valid format: WGS84
EARTH_CONSTANTS	Semi_Major_Axis	Static	float64	Earth semi-major axis; distance in meters from the center of the Earth to the equator Valid format: NNNNNNN.NNNN
EARTH_CONSTANTS	Semi_Minor_Axis	Static	float64	Earth semi-minor axis; distance in meters from the center of the Earth to the poles Valid format: NNNNNNN.NNNN
EARTH_CONSTANTS	Ellipticity	Static	float64	Ratio describing polar flattening or the Earth's deviation from an exact sphere (WGS84 standard) Valid format: N.NNNNNNNNNNNNNN
EARTH_CONSTANTS	Eccentricity	Static	float64	Number describing the Earth ellipsoid eccentricity squared (WGS84 standard) Valid format: N.NNNNNNNNNNNNNN
EARTH_CONSTANTS	Earth_Spin_Rate	Static	float64	Earth's diurnal spin rate in radians per second Valid format: NN.NNNNNNNNNESNN
EARTH_CONSTANTS	Gravity_Constant	Static	float64	Universal gravitational constant x mass of Earth This parameter is given in units of meters cubed per second squared $\left(\mathrm{m}^{3} / \mathrm{s}^{2}\right)$ Valid format: N.NNNNNNENN
EARTH_CONSTANTS	J2_Earth_Model_Term	Static	float64	Term that describes Earth's spherical harmonic Valid format: NNNN.NNESNN
ORBIT_PARAMETERS	WRS_Cycle_Days	Static	uint8	Time period, in days, required for the satellite to view the Earth once Valid format: NN, where $\mathrm{NN}=16$

Parameter Groups	Parameter Name	Value Type	Data Type	Description
ORBIT_PARAMETERS	WRS_Cycle_Orbits	Static	uint8	Number of orbits or paths in a complete World Reference System (WRS) cycle Valid format: NNN, where NNN = 233
ORBIT_PARAMETERS	Scenes_Per_Orbit	Static	uint8	Number of scenes or row locations per orbit Valid format: NNN, where NNN = 248
ORBIT_PARAMETERS	Orbital_Period	Static	float64	Time required, in seconds, to complete one orbit Valid format: NNNN.NNNN
ORBIT_PARAMETERS	Angular_Momentum	Static	float64	Angular momentum in orbit, specified in meters squared per second ($\mathrm{m}^{2} / \mathrm{s}$) Valid format: NN.NNNNNNEN
ORBIT_PARAMETERS	Orbit_Radius	Static	float64	Nominal distance in kilometers (km) from the Earth's center to the spacecraft track Valid format: NNNN.NNNN
ORBIT_PARAMETERS	Orbit_Semimajor_Axis	Static	float64	Nominal semi-major axis in km of the satellite's orbit Valid format: NNNN.NNNN
ORBIT_PARAMETERS	Orbit_Semiminor_Axis	Static	float64	Nominal semi-minor axis in km of the satellite's orbit Valid format: NNNN.NNNN
ORBIT_PARAMETERS	Orbit_Eccentricity	Static	float64	Nominal eccentricity of the satellite's orbit Valid format: N.NNNNNNNN
ORBIT_PARAMETERS	Inclination_Angle	Static	float64	Angle in degrees formed by the Earth's equatorial and satellite plane Valid format: NN.NNNN
ORBIT_PARAMETERS	Argument_Of_Perigee	Static	float32	Nominal angle in degrees of point nearest the Earth in orbit as measured from ascending node in the direction of the satellite motion Valid format: NN.N
ORBIT_PARAMETERS	Descending_Node_ Row	Static	uint8	Row corresponding to the Earth's equator Valid format: NN, where NN $=60$
ORBIT_PARAMETERS	Long_Path1_Row60	Static	float32	Longitude in degrees west of the point at which path 1 crossed the equator (row 60) Valid format: SNN.N, where SNN.N $=-64.6$
ORBIT_PARAMETERS	Descending_Node_ Time_Min	Static	char8	Minimum local solar time of the descending node in AM hours and minutes Valid format: HH:MM, where HH:MM $=09: 10$
ORBIT_PARAMETERS	Descending_Node_ Time_Max	Static	char8	Maximum local solar time of the descending node in AM hours and minutes Valid format: $\mathrm{HH}: \mathrm{MM}$, where $\mathrm{HH}: \mathrm{MM}=10: 15$
ORBIT_PARAMETERS	$\begin{aligned} & \text { Nodal_Regression_ } \\ & \text { Rate } \end{aligned}$	Static	float64	Rate in degrees per day that the orbital plane rotates with respect to the Earth Valid format: N.NNNNNNNNN
SCANNER PARAMETERS	Lines_Per_Scan_30	Static	uint8	Detectors per scan for Bands 1-5 and 7 Valid format: NN , where $\mathrm{NN}=16$
SCANNER PARAMETĒRS	Lines_Per_Scan_120	Static	uint8	Detectors per scan for Band 6 Valid format: N , where $\mathrm{N}=4$
SCANNER PARAMETĒRS	Scans_Per_Scene	Static	int16	Scans per nominal WRS scene Valid format: NNN, where NNN = 374
SCANNER PARAMETĒRS	Swath_Angle	Dynamic	float32	Object space angle in radians of scan mirror travel during active scan time Valid format: N.NNNNN
SCANNER PARAMETĒRS	Scan_Rate	Static	float32	Angular scan velocity in radians per second of the scan mirror Valid format: N.NNNNN
SCANNER PARAMETĒRS	Dwell_Time_30	Static	float64	Detector sample time in microseconds for Bands $1-5$ and 7 Valid format: N.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
SCANNER PARAMETERS	Dwell_Time_120	Static	float64	Detector sample time in microseconds for Band 6 Valid format: N.NNNNNNN
SCANNER PARAMETERS	IC_Line_Length_30	Static	int16	Nominal number of detector samples for the internal calibrator for Bands 1-5 and 7 Valid format: NNNN, where NNNN = 1100
SCANNER PARAMETĒRS	IC_Line_Length_120	Static	int16	Nominal number of detector samples for the internal calibrator for Band 6 Valid format: NNN, where NNN = 275
SCANNER PARAMETĒRS	Scan_Line_Length_30	Static	int16	Nominal number of detector samples during active scan time for Bands 1-5 and 7 Valid format: NNNN, where NNNN $=6320$
SCANNER PARAMETĒRS	Scan_Line_Length_120	Static	int16	Nominal number of detector samples during active scan time for Band 6 Valid format: NNNN, where NNNN = 1580
SCANNER PARAMETERS	Filter_Frequency_30	Static	float32	Bandwidth in kilohertz (kHz) of detector presample filter (defined by 3 -dB roll-off point) for Bands 1-5 and 7 Valid format: NN.NN, where NN.NN = 52.02
SCANNER PARAMETĒRS	Filter_Frequency_120	Static	float32	Bandwidth in kHz of detector presample filter (defined by $3-\mathrm{dB}$ roll-off point) for Band 6 Valid format: NN.NNN, where NN.NNN $=13.005$
SCANNER PARAMETĒRS	IFOV_B1234	Static	float32	Angle in μ rad subtended by a detector in Bands $1,2,3$, and 4 when the scanning motion is stopped Valid format: NN.N, where NN.N $=42.5$
SCANNER PARAMETĒRS	IFOV_B57_along_ scan	Static	float32	Along-scan angle in μ rad subtended by a detector in Bands 5 and 7 when the scanning motion stops Valid format: NN.N, where NN.N $=42.5$
SCANNER PARAMETERS	$\begin{aligned} & \text { IFOV_B57_across_ } \\ & \text { scan } \end{aligned}$	Static	float32	Across-scan angle in μ rad subtended by a detector in Bands 5 and 7 when the scanning motion stops Valid format: NN.N, where NN.N $=42.5$
SCANNER PARAMETĒRS	IFOV_B6	Static	float32	Angle in μ rad subtended by a Band 6 detector when the scanning motion stops Valid format: NN.N, where NNN.N $=170.0$
SCANNER PARAMETĒRS	Scan_Period	Static	float64	Time in milliseconds of a complete scan cycle, including forward and reverse scans Valid format: NNN.NNNNNN, where NNN.NNNNNN = 142.922000
SCANNER PARAMETĒRS	Scan_Frequency	Static	float32	Number of scans in one second (hertz [Hz]) Valid format: N.NNNN, where N.NNNN $=6.9968$
SCANNER PARAMETĒRS	Active_Scan_Time	Static	float32	Time in μ s required for the scan mirror to travel from its scan-line-start to End-Of-Line (EOL) Valid format: NNNNN.NNN, where NNNNN.NNN $=60743.013$
SCANNER PARAMETERS	Turn_Around_Time	Static	float32	Time in milliseconds from EOL to the next scan-line-start, during which the scan mirror motion reverses direction Valid format: NN.NNN, where NN.NNN $=10.719$
SPACECRAFT PARAMETERS	ADS_Interval	Static	float32	Time in milliseconds between Angular Displacement Sensor (ADS) samples Valid format: N.N, where N.N $=2.0$
SPACECRAFT PARAMETERS	ADS_Roll_Offset	Static	float32	Amount of time in milliseconds from the start of a Payload Correction Data (PCD) cycle to the roll axis measurement Valid format: N.NNN, where N.NNN $=0.375$

Parameter Groups	Parameter Name	Value Type	Data Type	Description
SPACECRAFT PARAMETERS	ADS_Pitch_Offset	Static	float32	Amount of time in milliseconds from the start of a PCD cycle to the pitch axis measurement Valid format: N.NNN, where N.NNN $=0.875$
SPACECRAFT PARAMETERS	ADS_Yaw_Offset	Static	float32	Amount of time in milliseconds from the start of a PCD cycle to the yaw axis measurement Valid format: N.NNN, where N.NNN $=1.375$
SPACECRAFT PARAMETERS	Data_Rate	Static	float32	TM output bit rate in megabits per second (Mbps) Valid format: NN.NNN, where NN.NNN = 84.903
GROUP: MIRROR_PARAMETERS	Error_Conversion_ Factor	Static	float32	First half and second half scan mirror error measurement units in microseconds Valid format: N.NNNNNNNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Along_ SME1_SAM	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the departure from linearity of forward alongscan mirror motion; Scan Angle Monitor (SAM) mode with Scan Mirror Electronics (SME) number 1 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Cross_ SME1_SAM	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle1_ SME1_SAM	Dynamic	float32	Angle in μ rad from the start of the scan to the mid-scan point in the forward direction; SAM mode with SME number 1 Valid format NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Forward_Angle2 SME1_SAM	Dynamic	float32	Angle in μ rad from the mid-scan point to the end of the scan in the forward direction; SAM mode with SME number 1 Valid format NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Along_ SME1_SAM	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	$\begin{aligned} & \hline \text { Reverse_Cross_ } \\ & \text { SME1_SAM } \end{aligned}$	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; SAM mode with SME number 1 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Angle1_ SME1_SAM	Dynamic	float32	Angle in μ rad from the start of the scan to the mid-scan point in the reverse direction; SAM mode with SME number 1 Valid format NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_SAM	Reverse_Angle2_ SME1_SAM	Dynamic	float32	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; SAM mode with SME number 1 Valid format NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Forward_Along_ SME2_SAM	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward along-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	$\begin{aligned} & \text { Forward_Cross_ } \\ & \text { SME2_SAM } \end{aligned}$	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNENNSNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Forward_Angle1_ SME2_SAM	Dynamic	float32	Angle in μ rad from the start of the scan to the mid-scan point in the forward direction; SAM mode with SME number 2 Valid format: NNNNN.N

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Forward_Angle2 SME2_SAM	Dynamic	float32	Angle in μ rad from the mid-scan point to the end of the scan in the forward direction; SAM mode with SME number 2 Valid format: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Along_ SME2_SAM	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of the reverse along-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Cross SME2_SAM	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of the reverse cross-scan mirror motion from linear; SAM mode with SME number 2 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Angle1_ SME2_SAM	Dynamic	float32	Angle in μ rad from the start of the scan to the mid-scan point in the reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_SAM	Reverse_Angle2 SME2_SAM	Dynamic	float32	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; SAM mode with SME number 2 Valid format: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_Along_ SME1_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward along-scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward Cross SME1_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; bumper mode with SME number 1 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_Angle1_ SME1_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 1 Valid format: NNNNN.N
		For L5 CPFs with effective dates of March 1, 2002 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 1 ; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_Angle2 SME1_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in μ rad from the mid-scan point to the end of the scan in the forward direction; bumper mode with SME number 1 Valid format: NNNNN.N
		For L5 CPFs with effective dates of March 1, 2002 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in the forward direction; bumper mode with SME number 1; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_FHSERR_SME1 Bump (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the forward-scan angle; bumper mode with SME number 1; array contains daily values over one CPF interval Valid format for each term: SNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Forward_SHSERR_SME1 _Bump (available in all L5 CPFs with effective dates of March 1,2002 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the forward-scan angle; bumper mode with SME number 1; array contains daily values over one CPF interval Valid format for each term: SNNNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Along_ SME1_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along-scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Cross_ SME1_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; bumper mode with SME number 1 Valid format: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Angle1_ SME1_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in μ rad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 1 Valid format: NNNNN.N
		For L5 CPFs with effective dates of March 1, 2002 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 1 ; array contains daily values over one CPF interval Valid format for each term: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_Angle2 SME1_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 1 Valid format: NNNNN.N
		For L5 CP	Fs with effe	ctive dates of March 1, 2002 and thereafter
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in the reverse direction; bumper mode with SME number 1 ; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_FHSERR_SME1 -Bump (available in all L5 CPFs with effective dates of March 1,2002 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the reverse-scan angle; bumper mode with SME number 1; array contains daily values over one CPF interval Valid format for each term: SNNNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME1_BUMP	Reverse_SHSERR_SME1 _Bump (available in all L5 CPFs with effective dates of March 1,2002 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the reverse-scan angle; bumper mode with SME number 1; array contains daily values over one CPF interval Valid format for each term: SNNNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Along_ SME2_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward along-scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward Cross SME2_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of forward cross-scan mirror motion from linear; bumper mode with SME number 2 Valid format: SN.NNNNNNESNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Angle1_ SME2_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 2 Valid format: NNNNN.N
		For L5 CPFs with effective dates of March 1, 2002 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in the forward direction; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_Angle2_ SME2_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in μ rad from the mid-scan point to the end of the scan in the forward direction; bumper mode with SME number 2 Valid format: NNNNN.N
		For L5 CPFs with effective dates of March 1, 2002 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the mid-scan point to the end of the scan in the forward direction; bumper mode with SME number 2; the array contains daily values over one CPF interval Valid format for each term: NNNNN.N
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_FHSERR_SME2 _Bump (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	int16 array of flexible length	First-half error of the forward-scan angle; bumper mode with SME number 2; array contains daily values over one CPF interval Valid format for each term: SNNNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Forward_SHSERR_SME2 _Bump (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	int16 array of flexible length	Second-half error of the forward-scan angle; bumper mode with SME number 2; array contains daily values over one CPF interval Valid format for each term: SNNNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Along_ SME2_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse along-scan mirror motion from linear; bumper mode with SME number 2 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Cross SME2_Bump	Dynamic	float64 array (6 values)	Fifth-order polynomial coefficients that describe the deviation of reverse cross-scan mirror motion from linear; bumper mode with SME number 2 Valid format for each term: SN.NNNNNNESNN
GROUP: MIRROR_PARAMETERS GROUP: ANGLES_SME2_BUMP	Reverse_Angle1_ SME2_Bump	For CPFs with effective dates prior to March 1, 2002		
		Static	float32	Angle in $\mu \mathrm{rad}$ from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2 Valid format: NNNNN.N
		For L5 CPFs with effective dates of March 1, 2002 and thereafter		
		Dynamic	float32 array of flexible length	Angle in μ rad from the start of the scan to the mid-scan point in the reverse direction; bumper mode with SME number 2; array contains daily values over one CPF interval Valid format for each term: NNNNN.N

| Parameter
 Groups | Parameter
 Name | Value
 Type | Data
 Type | Description |
| :--- | :--- | :--- | :--- | :--- | | GROUP:
 MIRROR_PARAMETERS
 GROUP:
 ANGLES_SME2_BUMP | Reverse_Angle2_
 SME2_Bump | For CPFs with effective dates prior to March 1, 2002 |
| :--- | :--- | :--- | :--- |

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: BUMPER_MODE PARAMETERS	SME1_BumperB_Pickoff_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter-time from the end of the reversescan linear motion to the bumper B pickoff signal in microseconds; array contains daily values over one CPF interval Valid format for each term: NNNNN.NN
GROUP: BUMPER_MODE_ PARAMETERS	SME1_BumperB_Offset_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter-time from the bumper B pickoff signal to the start of the forward active scan in microseconds Valid format: NNNNN.NN
GROUP: BUMPER MODE PARAMETERS	SME1_BumperB_Angle (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter-mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians Valid format: SNNNNN.N
GROUP: BUMPER_MODE PARAMETERS	SME2_BumperA_Dwell_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter-time from the bumper A pickoff signal to the start of the reverse-scan linear motion in microseconds; array contains daily values over one CPF interval Valid format for each term: NNNNN.NN
GROUP: BUMPER_MODE_ PARAMETERS	SME2_BumperA_Pickoff_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter-time from the end of the forwardscan linear motion to the bumper A pickoff signal in microseconds; array contains daily values over one CPF interval Valid format for each term: NNNNN.NN
GROUP: BUMPER_MODE PARAMETERS	SME2_BumperA_Offset_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter-time from the bumper A pickoff signal to the start of the reverse active scan in microseconds Valid format: NNNNN.NN
GROUP: BUMPER_MODE PARAMETERS	SME2_BumperA_Angle (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter-mirror field angle at which linear scanning motion begins (reverse) and ends (forward) at bumper A in microradians Valid format: SNNNNN.N
GROUP: BUMPER_MODE PARAMETERS	SME2_BumperB_Dwell_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter-time from the bumper B pickoff signal to the start of the forward-scan linear motion in microseconds; array contains daily values over one CPF interval Valid format for each term: NNNNN.NN
GROUP: BUMPER MODE PARAMETERS	SME2_BumperB_Pickoff_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Dynamic	float32 array of flexible length	"Physical" bumper mode mirror model parameter-time from the end of the reversescan linear motion to the bumper B pickoff signal in microseconds; array contains daily values over one CPF interval Valid format for each term: NNNNN.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: BUMPER_MODE PARAMETERS	SME2_BumperB_Offset_ Time (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter-time from the bumper B pickoff signal to the start of the forward active scan in microseconds Valid format: NNNNN.NN
GROUP: BUMPER_MODE PARAMETERS	SME2_BumperB_Angle (available in all L5 CPFs with effective dates of March 1, 2002 and thereafter)	Static	float32	"Physical" bumper mode mirror model parameter-mirror field angle at which linear scanning motion begins (forward) and ends (reverse) at bumper B in microradians Valid format: SNNNNN.N
GROUP: SCAN_LINE_CORRECTOR	Primary_Angular_ Velocity	Static	float32	Angular velocity in radians per second of the primary scan line corrector Valid format: N.NNNNN
GROUP: SCAN_LINE_CORRECTOR	Secondary_Angular_ Velocity	Static	float32	Angular velocity in radians per second of the secondary scan line corrector Valid format: N.NNNNN
GROUP: SCAN_LINE_CORRECTOR	Primary_Corrector_ Motion	Static	float32 array (6 values)	Fifth-order polynomial coefficients that describe the motion of the primary scan line corrector Valid format for each term: N.NNNNN
GROUP: SCAN_LINE_CORRECTOR	Secondary_Corrector_ Motion	Static	float32 array (6 values)	Fifth-order polynomial coefficients that describe the motion of the secondary scan line corrector Valid format for each term: N.NNNNN
GROUP: SCAN_LINE_CORRECTOR	Unpowered_Pointing_Bias	Dynamic	Float32	The best estimate of the scan line corrector pointing angle in its unpowered "at-rest" pointing position Valid format: N.NNNNNNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND OFFSETS	Along_Scan_Band_ Offsets	Static	float32 array (7 values)	Nominal displacement in μ rad from the center of the focal plane to each Band's optical axis Valid format: SNNNN.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Across_Scan_Band Offsets	Static	float32 array (7 values)	Nominal displacement in μ rad from the center of the focal plane to each band's scan motion axis Valid format: SNNNN.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Forward_Focal Plane_Offsets	Static	float32 array (7 values)	Offset in Instrument Fields of View (IFOVs) for focal plane forward scans Valid format: SNNN.N
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: BAND_OFFSETS	Reverse_Focal Plane_Offsets	Static	float32 array (7 values)	Offset in IFOVs for focal plane reverse scans Valid format: SNNN.N
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	$\begin{array}{\|l} \hline \text { Forward_Along_ } \\ \text { Scan_DO_B1 } \end{array}$	Static	float32 array (16 values)	Forward along-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DŌ_B1	Static	float32 array (16 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B2	Static	float32 array (16 values)	Forward along-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR OFFSETS	$\begin{array}{\|l} \hline \text { Reverse_Along_ } \\ \text { Scan_DO_B2 } \end{array}$	Static	float32 array (16 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B3	Static	float32 array (16 values)	Forward along-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	$\begin{aligned} & \hline \text { Reverse_Along_ } \\ & \text { Scan_DO_B3 } \end{aligned}$	Static	float32 array (16 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B4	Static	float32 array (16 values)	Forward along-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN
GROUP: FOCAL_PLANE PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B4	Static	float32 array (16 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B5	Static	float32 array (16 values)	Forward along-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	$\begin{aligned} & \hline \text { Reverse_Along_ } \\ & \text { Scan_DO_B5 } \end{aligned}$	Static	float32 array (16 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Along_ Scan_DO_B6	Static	float32 array (4 values)	Forward along-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B6	Static	float32 array (4 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR OFFSETS	Forward_Along_ Scan_DO_B7	Static	float32 array (16 values)	Forward along-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN
GROUP: FOCAL_PLANE PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Along_ Scan_DO_B7	Static	float32 array (16 values)	Reverse along-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward Across Scan_DO_B1	Static	float32 array (16 values)	Forward across-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse Across Scan_DO_B1	Static	float32 array (16 values)	Reverse across-scan detector offsets in IFOV for each detector in Band 1 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across Scan_DO_B2	Static	float32 array (16 values)	Forward across-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN
GROUP: FOCAL_PLANE PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across Scan_DO_B2	Static	float32 array (16 values)	Reverse across-scan detector offsets in IFOV for each detector in Band 2 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	$\begin{aligned} & \text { Forward_Across_ } \\ & \text { Scan_DO_B3 } \end{aligned}$	Static	float32 array (16 values)	Forward across-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR OFFSETS	Reverse_Across Scan_DO_B3	Static	float32 array (16 values)	Reverse across-scan detector offsets in IFOV for each detector in Band 3 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR OFFSETS	Forward Across Scan_DO_B4	Static	float32 array (16 values)	Forward across-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B4	Static	float32 array (16 values	Reverse across-scan detector offsets in IFOV for each detector in Band 4 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across Scan_DO_B5	Static	float32 array (16 values	Forward across-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN
FOCAL_PLANE PARAMETERS GROUP: DETECTOR_OFFSETS	$\begin{aligned} & \text { Reverse_Across_ } \\ & \text { Scan_DO_B5 } \end{aligned}$	Static	float32 array (16 values	Reverse across-scan detector offsets in IFOV for each detector in Band 5 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	$\begin{aligned} & \hline \text { Forward_Across_Scan_D } \\ & \text { O_B6 } \end{aligned}$	Static	float32 array (4 values)	Forward across-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B6	Static	float32 array (4 values)	Reverse across-scan detector offsets in IFOV for each detector in Band 6 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Forward_Across Scan_DO_B7	Static	float32 array (16 values	Forward across-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: DETECTOR_OFFSETS	Reverse_Across_ Scan_DO_B7	Static	float32 array (16 values	Reverse across-scan detector offsets in IFOV for each detector in Band 7 Valid format: N.NNN
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Forward Even Detector_Shift	Static	float32 array (7 values)	Adjustments in IFOVs to compensate for forward scan band offsets, even detector layout geometry, and multiplexer sampling for Bands 1 through 7 Valid format: NNN.N
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Forward_Odd Detector_Shift	Static	float32 array (7 values)	Adjustments in IFOVs to compensate for forward scan band offsets, odd detector layout geometry, and multiplexer sampling for Bands 1 through 7 Valid format: NNN.N
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Reverse_Even_ Detector_Shift	Static	float32 array (7 values)	Adjustments in IFOVs to compensate for reverse scan band offsets, even detector layout geometry, and multiplexer sampling for Bands 1 through 7 Valid format: NNN.N
GROUP: FOCAL_PLANE_ PARAMETERS GROUP: ODD_EVEN_OFFSETS	Reverse_Odd Detector_Shift	Static	float32 array (7 values)	Adjustments in IFOVs to compensate for reverse scan band offsets, odd detector layout geometry, and multiplexer sampling for Bands 1 through 7 Valid format: NNN.N
GROUP: ATTITUDE_PARAMETERS	Gyro_To_Attitude_ Matrix	Static	$\begin{aligned} & \text { float32 } \\ & \text { array } \\ & \text { (9 values) } \end{aligned}$	Matrix describing the relationship of the gyro axis to the attitude control reference axis Valid format: SN.NNNNNNNNESNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: ATTITUDE_PARAMETERS	$\begin{aligned} & \hline \text { ADSA_To_TM_ } \\ & \text { Matrix } \end{aligned}$	Static	float32 array (9 values)	Matrix describing the relationship of the Attitude Displacement Sensor Assembly (ADSA) to the TM+ optical Axis Valid format: SN.NNNNNNNNESNN
GROUP: ATTITUDE_PARAMETERS	$\begin{array}{\|l} \hline \text { Attitude_To_TM_ } \\ \text { Matrix } \end{array}$	Dynamic	float32 array (9 values)	Matrix describing the relationship of the attitude control reference axis to the TM optical axis Valid format: SN.NNNNNNNNESNN
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Roll_Bias	Static	float32	Spacecraft roll bias in radians Valid format: N.NNNNNNN
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Pitch_ Bias	Static	float32	Spacecraft pitch bias in radians Valid format: N.NNNNNNN
GROUP: ATTITUDE_PARAMETERS	Spacecraft_Yaw_Bias	Static	float32	Spacecraft yaw bias in radians Valid format: N.NNNNNNN
GROUP: TIME_PARAMETERS	Scan_Time	Static	float32	Nominal scan time in microseconds Valid format: NNNNN.N
GROUP: TIME_PARAMETERS	Forward_First_Half_ Time	Static	float32	Nominal forward first half scan time in microseconds Valid format: NNNNN.N
GROUP: TIME_PARAMETERS	Forward Second Half_Time	Static	float32	Nominal forward second half scan time in microseconds Valid format: NNNNN.N
GROUP: TIME_PARAMETERS	Reverse_First_Half_ Time	Static	float32	Nominal reverse first half scan time in microseconds Valid format: NNNNN.N
GROUP: TIME PARAMETERS	Reverse_Second_ Half_Time	Static	float32	Nominal reverse second half scan time in microseconds Valid format: NNNNN.N
GROUP: TRANSFER_FUNCTION GROUP: IMU	Fn	Static	float64	Inertial measurement unit transfer function resonant frequency (Hz) Valid format: N.NNNN
GROUP: TRANSFER FUNCTION GROUP: IMU	Zeta	Static	float64	Inertial measurement unit transfer function damping coefficient Valid format: N.NNNN
GROUP: TRANSFER_FUNCTION GROUP: IMU	Tau	Static	float64	Inertial measurement unit transfer function denominator time constant (seconds) Valid format: NN.NNNNESN
GROUP: TRANSFER_FUNCTION GROUP: IMU	P	Static	float64	Inertial measurement unit transfer function numerator time constant (seconds) Valid format: SN.NNNNESN
GROUP: TRANSFER FUNCTION GROUP: IMU	Ak	Static	float64	Inertial measurement unit transfer function Direct Current (DC) gain Valid format: N.NNNNN
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_num	Static	float64 array (18 values)	Transfer function numerator coefficients in order a0, a1, a2, a3, a4, a5; one set of six coefficients for each of three ADS units; determined at 15 degrees C Valid format: N.NNNNEN
GROUP: TRANSFER FUNCTION GROUP: ADS	ADS_den	Static	float64 array (18 values)	Transfer function denominator coefficients in order b0, b1, b2, b3, b4, b5; one set of six coefficients for each of three ADS units; determined at 15 degrees C Valid format: N.NNNNEN
GROUP: TRANSFER_FUNCTION GROUP: ADS	ADS_num_temp	Static	float64 array (18 values)	Temperature-dependent part of the ADS transfer function numerator coefficients in order daO, da1, da2, da3, da4, da5; one set of six coefficients for each of three ADS units; change per degree C Valid format: N.NNNNEN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: TRANSFER FUNCTION GROUP: ADS	ADS_den_temp	Static	float64 array (18 values)	Temperature-dependent part of the ADS transfer function denominator coefficients in order da0, da1, da2, da3, da4, da5; one set of six coefficients for each of three ADS units; change per degree C Valid format: N.NNNNEN
GROUP: TRANSFER FUNCTION GROUP: PREFILTER	ADSPre_W	Static	float64 array (5 values)	ADS prefilter transfer function quadratic term resonant periods (Note: Given as period instead of frequency so that the transfer function can be set to unity, if necessary, by setting all five values to zero.) Valid format: N.N
GROUP: TRANSFER_FUNCTION GROUP: PREFILTER	ADSPre_H	Static	float64 array (5 values)	ADS prefilter transfer function quadratic term damping coefficients Valid format: N.N
GROUP: TRANSFER FUNCTION GROUP: PREFILTER	ADSPre_T	Static	float64 array (5 values)	ADS prefilter transfer function linear term time constants Valid format: N.N
GROUP: UT1_TIME_PARAMETERS	UT1_Year	Dynamic	int16 array (180 values)	Year of UT1 time correction prediction; values span 180 days Valid format: NNNN, where NNNN = 1982-2020
GROUP: UT1_TIME_PARAMETERS	UT1_Month	Dynamic	char8 array (180 values)	Month of UT1 time correction prediction; values span 180 days Valid format: MMM, where MMM = Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec
GROUP: UT1_TIME_PARAMETERS	UT1_Day	Dynamic	uint8 array (180 values)	Day of UT1 time correction prediction; values span 180 days Valid format: NN, where NN = 1-31
GROUP: UT1_TIME_PARAMETERS	UT1_Modified_Julian	Dynamic	int32 array (180 values)	Modified Julian day; values span 180 days; MJD = Julian day - 2400000.5 ; Julian date is a running day count starting 1 January 4713 B.C. Valid format: NNNNN
GROUP: UT1_TIME_PARAMETERS	UT1_X	Dynamic	float32 array (180 values)	X shift pole wander in arc seconds; values span 180 days Valid format: N.NNNNN
GROUP: UT1_TIME_PARAMETERS	UT1_Y	Dynamic	float32 array (180 values)	Y shift pole wander in arc seconds; values span 180 days Valid format: N.NNNNN
GROUP: UT1_TIME_PARAMETERS	UT1_UTC	Dynamic	float32 array (180 values)	UT1 - UTC time difference in seconds Values span 180 days Valid format: SN.NNNNN
GROUP: TIME_SINCE_LAUNCH	Decimal_Years	Dynamic	float32 array of flexible length	Day since the satellite's launch expressed in decimal years; array contains daily values over a given CPF interval Valid format: NNNN.NNNN
GROUP: TIME_SINCE_LAUNCH	Days_Since_Launch	Dynamic	int32 array of flexible length	Day since the satellite's launch, where the launch date corresponds to day 1; array contains daily values over a given CPF interval Valid format: NNNN
GROUP: TIME_SINCE_LAUNCH	Day_Of_Year	Dynamic	int16 array of flexible length	Day of the current year; array contains daily values over a given CPF interval Valid format: NNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_STATUS	Status_Band1	Dynamic	char8 array (16 values)	Health status of Band 1's 16 detectors Valid format: ABCDE, where A = 0 (live), 1 (dead), 2 (intermittent) $B=0$ (noise in spec), 1 (noisy low signal), 2 (noisy high signal), 3 (both noisy signals) C = 0 (MTF in spec), 1 (MTF out of spec) $\mathrm{D}=0$ (dynamic range in spec) 1 (fail, high end), 2 (fail, low end), 3 (fail, both ends) $\mathrm{E}=0$ (reserved)
GROUP: DETECTOR_STATUS	Status_Band2	Dynamic	char8 array (16 values)	Health status of Band 2's 16 detectors Valid format: same as above
GROUP: DETECTOR_STATUS	Status_Band3	Dynamic	char8 array (16 values)	Health status of Band 3's 16 detectors Valid format: same as above
GROUP: DETECTOR_STATUS	Status_Band4	Dynamic	char8 array (16 values)	Health status of Band 4's 16 detectors Valid format: same as above
GROUP: DETECTOR_STATUS	Status_Band5	Dynamic	char8 array (16 values)	Health status of Band 5's 16 detectors Valid format: as above
GROUP: DETECTOR_STATUS	Status_Band6	Dynamic	char8 array (4 values)	Health status of Band 6's 4 detectors Valid format: same as above
GROUP: DETECTOR_STATUS	Status_Band7	Dynamic	char8 array (16 values)	Health status of Band 7's 16 detectors Valid format: same as above
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_1_Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 1 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_2_Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 2 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band 3 Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 3 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band 4 Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 4 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band 5 Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 5 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band 6 Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 6 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator blackbody Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_7_Normalized IC_Model_Coefficients	Dynamic	float32 array (4 values)	Band 7 normalized lifetime gain model coefficients derived from detector responses to the internal calibrator Valid format: N.NNNNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Time_Zero	Static	float32	Date in decimal years when the first scene used in derivation of the normalized lifetime models was acquired Valid format: NNNN.NNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_1_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band 1 (Note: The L4 model applies to time expressed in Days Since Launch (DSL); the L5 model applies to time expressed in Decimal Years (DY), where DY = year + (day of year/total days in year) e.g., February 12, 1987, DY = $1987+(33 / 365)$ Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_2_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band 2 (Note: The L4 model applies to time expressed in DSL; the L5 model applies to time expressed in DY, where DY is defined as above) Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_3_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band 3 (Note: The L4 model applies to time expressed in DSL; the L5 model applies to time expressed in DY, where DY is defined as above) Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_4_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band (Note: The L4 model applies to time expressed in DSL; the L5 model applies to time expressed in DY, where DY is defined as above) Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_5_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band 5 (Note: The L4 model applies to time expressed in DSL; the L5 model applies to time expressed in DY, where DY is defined as above) Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_6_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band 6 (Note: The L4 model applies to time expressed in DSL; the L5 model applies to time expressed DY, where DY is defined as above) Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: GAIN_MODEL_PARAMETERS	Band_7_LT_Model_ Coefficients	Dynamic	float32 array (15 values)	Absolute radiometric gain model parameters for Band 7 (Note: The L4 model applies to time expressed in DSL; the L5 model applies to time expressed in DY, where DY is defined as above) Valid format: NN.NNNNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Outgassing_Events	Dynamic	$\begin{array}{\|l} \hline \begin{array}{l} \text { int16 array } \\ \text { (50 } \\ \text { values) } \end{array} \\ \hline \end{array}$	Imaging start days, in days-since-launch, following the outgassing events Valid format: NNNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_Film_Refractive_ Index_Part_1	Dynamic	float32 array (16 values)	Index of refraction for the contaminant, as used in the single outgassing cycle thin-film models for Band 5 , for the time from the beginning of a calendar quarter until the next outgassing event; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_Film_Absorption_ Index_Part_1	Dynamic	float32 array (16 values)	Index of absorption for the contaminant, as used in the single outgassing cycle thin-film models for Band 5 , for the time from the beginning of a calendar quarter until the next outgassing event; array contains one value per detector Valid format: N.NNESN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_ARC_Refractive_ Index_Part_1	Dynamic	float32 array (16 values)	Index of refraction for the antireflective coating, as used in the single outgassing cycle thin-film models for Band 5, for the time from the beginning of a calendar quarter until the next outgassing event; array contains one value per detector Valid format: N.NNNN

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Parameter } \\ \text { Groups }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Value } \\ \text { Type }\end{array} & \begin{array}{l}\text { Data } \\ \text { Type }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \hline \begin{array}{l}\text { GROUP: DETECTOR_GAINS } \\ \text { GROUP: } \\ \text { OUTGASSING_CORRECTION }\end{array} & \begin{array}{l}\text { Band_5_ARC_Thickness_- } \\ \text { Part_1_1 }\end{array} & \text { Dynamic } & \begin{array}{l}\text { float32 } \\ \text { array (16 } \\ \text { values) }\end{array} & \begin{array}{l}\text { Thickness of the antireflective coating in } \\ \text { nanometers (nm), as used in the single } \\ \text { outgassing cycle thin--film models for Band 5, for } \\ \text { the time from the beginning of a calendar quarter } \\ \text { until the next outgassing event; array contains } \\ \text { one value per detector } \\ \text { Valid format: NNN.N }\end{array} \\ \hline \begin{array}{l}\text { GROUP: DETECTOR_GAINS } \\ \text { GROUP: } \\ \text { OUTGASSING_CORRECTION }\end{array} & \begin{array}{l}\text { Band_5_Oscillating_ } \\ \text { Period_Part_1 }\end{array} & \text { Dynamic } & \begin{array}{l}\text { float32 } \\ \text { array (16 } \\ \text { values) }\end{array} & \begin{array}{l}\text { Period of gain oscillations in days, as used in the } \\ \text { single outgassing cycle thin-film models for Band } \\ \text { 5, for the time from the beginning of a calendar } \\ \text { quarter until the next outgassing event; array }\end{array} \\ \text { contains one value per detector } \\ \text { Valid format: NNN.NN }\end{array}\right]$

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_ARC_Refractive_ Index_Part_2	Dynamic	float32 array (16 values)	Index of refraction for the antireflective coating, as used in the single outgassing cycle thin-film models for Band 5, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_ARC_Thickness_ Part_2	Dynamic	float32 array (16 values)	Thickness of the antireflective coating in nm, as used in the single outgassing cycle thin-film models for Band 5, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: NNN.N
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_Oscillating_ Period_Part_2	Dynamic	float32 array (16 values)	Period of gain oscillations in days, as used in the single outgassing cycle thin-film models for Band 5 , for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: NNN.NN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_Film_Refractive_ Index_Part_2	Dynamic	float32 array (16 values)	Index of refraction for the contaminant, as used in the single outgassing cycle thin-film models for Band 7, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_Film_Absorption_ Index_Part_2	Dynamic	float32 array (16 values)	Index of absorption for the contaminant, as used in the single outgassing cycle thin-film models for Band 7, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detectors Valid format: N.NNESN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_ARC_Refractive_ Index_Part_2	Dynamic	float32 array (16 values)	Index of refraction for the antireflective coating, as used in the single outgassing cycle thin-film models for Band 7, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_ARC_Thickness_ Part_2	Dynamic	float32 array (16 values)	Thickness of the antireflective coating in nm, as used in the single outgassing cycle thin-film models for Band 7, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: NNN.N
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_Oscillating_ Period_Part_2	Dynamic	float32 array (16 values)	Period of gain oscillations in days, as used in the single outgassing cycle thin-film models for Band 7, for the time from the first outgassing event that occurred in a given quarter to the next one; if no outgassing was performed in a given quarter, the values are the same as in Part 1; array contains one value per detector Valid format: NNN.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_Film_Refractive_ Index_Part_3	Dynamic	float32 array (16 values)	Index of refraction for the contaminant, as used in the single outgassing cycle thin-film models for Band 5 , for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_Film_Absorption_ Index_Part_3	Dynamic	float32 array (16 values)	Index of absorption for the contaminant, as used in the single outgassing cycle thin-film models for Band 5 , for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: N.NNESN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_ARC_Refractive_ Index_Part_3	Dynamic	float32 array (16 values)	Index of refraction for the antireflective coating, as used in the single outgassing cycle thin-film models for Band 5, for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_ARC_Thickness_ Part_3	Dynamic	float32 array (16 values)	Thickness of the antireflective coating in nm, as used in the single outgassing cycle thin-film models for Band 5, for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: NNN.N
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_5_Oscillating_ Period_Part_3	Dynamic	float32 array (16 values)	Period of gain oscillations in days, as used in the single outgassing cycle thin-film models for Band 5 , for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: NNN.NN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_Film_Refractive_ Index_Part_3	Dynamic	float32 array (16 values)	Index of refraction for the contaminant, as used in the single outgassing cycle thin-film models for Band 7, for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: N.NNNN
GROUP: DETECTOR_GAINS GROUP: OUTGASSING_CORRECTION	Band_7_Film_Absorption_ Index_Part_3	Dynamic	float32 array (16 values)	Index of absorption for the contaminant, as used in the single outgassing cycle thin-film models for Band 7, for the time from the second outgassing event that occurred in a given quarter to the next one; if no second outgassing was performed in a given quarter, the values are the same as in part 2; array contains one value per detector Valid format: N.NNESN

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Parameter } \\ \text { Groups }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Value } \\ \text { Type }\end{array} & \begin{array}{l}\text { Data } \\ \text { Type }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \hline \begin{array}{l}\text { GROUP: DETECTOR_GAINS } \\ \text { GROUP: } \\ \text { OUTGASSING_CORRECTION }\end{array} & \begin{array}{l}\text { Band_7_ARC_Refractive_- } \\ \text { Index_Part_3 }\end{array} & \text { Dynamic } & \begin{array}{l}\text { float32 } \\ \text { array (16 } \\ \text { values) }\end{array} & \begin{array}{l}\text { Index of refraction for the antireflective coating, } \\ \text { as used in the single outgassing cycle thin-film } \\ \text { models for Band 7, for the time from the second } \\ \text { outgassing event that occurred in a given quarter } \\ \text { to the next one; if no second outgassing was } \\ \text { performed in a given quarter, the values are the } \\ \text { same as in part 2; array contains one value per } \\ \text { detector } \\ \text { Valid format: N.NNNN }\end{array} \\ \hline \begin{array}{l}\text { GROUP: DETECTOR_GAINS } \\ \text { GROUP: } \\ \text { OUTGASSING_CORRECTION }\end{array} & \begin{array}{l}\text { Band_7_ARC_Thickness_- } \\ \text { Part_3 }\end{array} & \text { Dynamic } & \begin{array}{l}\text { float32 } \\ \text { array (16 } \\ \text { values) }\end{array} & \begin{array}{l}\text { Thickness of the antireflective coating in nm, as } \\ \text { used in the single outgassing cycle thin-film } \\ \text { models for Band 7, for the time from the second } \\ \text { outgassing event that occurred in a given quarter } \\ \text { to the next one; if no second outgassing was } \\ \text { performed in a given quarter, the values are the } \\ \text { same as in part 2; array contains one value per } \\ \text { detector } \\ \text { Valid format: NNN.N }\end{array} \\ \hline \begin{array}{l}\text { GROUP: DETECTOR_GAINS } \\ \text { GROUP: } \\ \text { OUTGASSING_CORRECTION }\end{array} & \begin{array}{l}\text { Band_7_Oscillating_ } \\ \text { Period_Part_3 }\end{array} & \text { Dynamic } & \begin{array}{l}\text { float32 } \\ \text { array (16 } \\ \text { values) }\end{array} & \begin{array}{l}\text { Period of gain oscillations in days, as used in the } \\ \text { single outgassing cycle thin-film models for Band } \\ \text { 7, for the time from the second outgassing event }\end{array} \\ \text { that occurred in a given quarter to the next one; } \\ \text { if no second outgassing was performed in a } \\ \text { given quarter, the values are the same as in part } \\ \text { 2; array contains one value per detector } \\ \text { Valid format: NNN.NN }\end{array}\right\}$

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: BAND_AVERAGE_GAINS	Band_1_Average_Gain	Dynamic	float32 array of flexible length	Band 1 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: BAND_AVERAGE_GAINS	Band_2_Average_Gain	Dynamic	float32 array of flexible length	Band 2 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: BAND_AVERAGE_GAINS	Band_3_Average_Gain	Dynamic	float32 array of flexible length	Band 3 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: BAND_AVERAGE_GAINS	Band_4_Average_Gain	Dynamic	float32 array of flexible length	Band 4 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: BAND_AVERAGE_GAINS	Band_5_Average_Gain	Dynamic	float32 array of flexible length	Band 5 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$.; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: BAND_AVERAGE_GAINS	Band_6_Average_Gain	Dynamic	float32 array of flexible length	Band 6 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: BAND_AVERAGE_GAINS	Band_7_Average_Gain	Dynamic	float32 array of flexible length	Band 7 detector-averaged gain in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2-$ ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: BAND_AVERAGE_GAINS	Band_5_Average_Gain_ No_OG_Cor	Dynamic	float32 array of flexible length	Band 5 detector-averaged gain without applied correction for the outgassing effects, in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: BAND_AVERAGE_GAINS	Band_7_Average_Gain_ No_OG_Cor	Dynamic	float32 array of flexible length	Band 7 detector-averaged gain without applied correction for the outgassing effects, in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; array contains daily values over a given CPF interval Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: BAND_AVERAGE_GAINS	Prelaunch_Average_ Gains	Static	$\begin{aligned} & \hline \text { Float32 } \\ & \text { array (7 } \\ & \text { values) } \end{aligned}$	Prelaunch average detector gain in counts/W/m^2-ster- $\mu \mathrm{m}$; array contains one value per spectral band Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: PRELAUNCH_GAINS	Band_1_Prelaunch_Gain	Static	float32 array (16 values)	Band 1 prelaunch detector gains in counts/W/m^2-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: PRELAUNCH_GAINS	Band_2_Prelaunch_Gain	Static	float32 array (16 values)	Band 2 prelaunch detector gains in counts/W/m^2-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: PRELAUNCH_GAINS	Band_3_Prelaunch_Gain	Static	float32 array (16 values)	Band 3 prelaunch detector gains in counts/W/m^2-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: PRELAUNCH_GAINS	Band_4_Prelaunch_Gain	Static	float32 array (16 values)	Band 4 prelaunch detector gains in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: PRELAUNCH_GAINS	Band_5_Prelaunch_Gain	Static	float32 array (16 values)	Band 5 prelaunch detector gains in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR_GAINS GROUP: PRELAUNCH_GAINS	Band_6_Prelaunch_Gain	Static	float32 array (16 values)	Band 6 prelaunch detector gains in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: PRELAUNCH_GAINS	Band_7_Prelaunch_Gain	Static	float32 array (16 values)	Band 7 prelaunch detector gains in counts $/ \mathrm{W} / \mathrm{m}^{\wedge} 2$-ster- $\mu \mathrm{m}$; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR GAINS GROUP: PRELAUNCH_GAINS	Bandwidth	Static	Float32 array (7 values)	Spectral bandwidth in $\mu \mathrm{m}$, used to calculate the above prelaunch gains; array contains one value per spectral band Valid format: N.NNN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_1_Relative_Gain_ Slope	Dynamic	float32 array (16 values)	Band 1 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_2_Relative_Gain_ Slope	Dynamic	float32 array (16 values)	Band 2 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_3_Relative_Gain_ Slope	Dynamic	float32 array (16 values)	Band 3 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_4_Relative_Gain_ Slope	Dynamic	float32 array (16 values)	Band 4 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_5_Relative_Gain_ Slope	Dynamic	float32 array (16 values)	Band 5 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_6_Relative_Gain_ Slope	Dynamic	float32 array (4 values)	Band 6 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_7_Relative_Gain_ Slope	Dynamic	float32 array (16 values)	Band 7 relative gain linear model slopes; array contains one value for each detector Valid format: SNN.NNNNNNESN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_1_Relative_Gain_ Intercept	Dynamic	float32 array (16 values)	Band 1 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_2_Relative_Gain_ Intercept	Dynamic	float32 array (16 values)	Band 2 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_3_Relative_Gain_ Intercept	Dynamic	float32 array (16 values)	Band 3 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_4_Relative_Gain_ Intercept	Dynamic	float32 array (16 values)	Band 4 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_5_Relative_Gain_ Intercept	Dynamic	float32 array (16 values)	Band 5 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_6_Relative_Gain_ Intercept	Dynamic	float32 array (4 values)	Band 6 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_7_Relative_Gain_ Intercept	Dynamic	float32 array (16 values)	Band 7 relative gain linear model intercepts; array contains one value for each detector Valid format: N.NNNNNN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_1_RG_ExpPar1	Dynamic	float32 array (16 values)	Reserved Band 1 relative gain exponential model coefficient 1 ; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_2_RG_ExpPar1	Dynamic	float32 array (16 values)	Reserved Band 2 relative gain exponential model coefficient 1 ; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_3_RG_ExpPar1	Dynamic	float32 array (16 values)	Reserved Band 3 relative gain exponential model coefficient 1 ; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_4_RG_ExpPar1	Dynamic	float32 array (16 values)	Reserved Band 4 relative gain exponential model coefficient 1 ; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_5_RG_ExpPar1	Dynamic	float32 array (16 values)	Reserved Band 5 relative gain exponential model coefficient 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_6_RG_ExpPar1	Dynamic	float32 array (4 values)	Reserved Band 6 relative gain exponential model coefficient 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_7_RG_ExpPar1	Dynamic	float32 array (16 values)	Reserved Band 7 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_1_RG_ExpPar2	Dynamic	float32 array (16 values)	Reserved Band 1 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_2_RG_ExpPar2	Dynamic	float32 array (16 values)	Reserved Band 2 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_3_RG_ExpPar2	Dynamic	float32 array (16 values)	Reserved Band 3 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_4_RG_ExpPar2	Dynamic	float32 array (16 values)	Reserved Band 4 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_5_RG_ExpPar2	Dynamic	float32 array (16 values)	Reserved Band 5 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_6_RG_ExpPar2	Dynamic	float32 array (4 values)	Reserved Band 6 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_7_RG_ExpPar2	Dynamic	float32 array (16 values)	Reserved Band 7 relative gain exponential model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_1_RG_AddPar1	Dynamic	float32 array (16 values)	Reserved additional Band 1 relative gain model coefficient 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_2_RG_AddPar1	Dynamic	float32 array (16 values)	Reserved additional Band 2 relative gain model coefficient 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_3_RG_AddPar1	Dynamic	float32 array (16 values)	Reserved additional Band 3 relative gain model parameter 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_4_RG_AddPar1	Dynamic	float32 array (16 values)	Reserved additional Band 4 relative gain model parameter 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_5_RG_AddPar1	Dynamic	float32 array (16 values)	Reserved additional Band 5 relative gain model parameter 1; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_6_RG_AddPar1	Dynamic	float32 array (4 values)	Reserved additional Band 6 relative gain model parameter 1 ; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_7_RG_AddPar1	Dynamic	float32 array (16 values)	Reserved additional Band 7 relative gain model parameter Automated Cloud Cover Assessment (ACCA); array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_1_RG_AddPar2	Dynamic	float32 array (16 values)	Reserved additional Band 1 relative gain model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_2_RG_AddPar2	Dynamic	float32 array (16 values)	Reserved additional Band 2 relative gain model coefficient 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_3_RG_AddPar2	Dynamic	float32 array (16 values)	Reserved additional Band 3 relative gain model parameter 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN PARAMETERS	Band_4_RG_AddPar2	Dynamic	float32 array (16 values)	Reserved additional Band 4 relative gain model parameter 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE GAIN_PARAMETERS	Band_5_RG_AddPar2	Dynamic	float32 array (16 values)	Reserved additional Band 5 relative gain model parameter 2; array contains one value for each detector Valid format: N.NN
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_6_RG_AddPar2	Dynamic	float32 array (4 values)	Reserved additional Band 6 relative gain model parameter 2; array contains one value for each detector Valid format: N.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_GAINS GROUP: DETECTOR_RELATIVE_ GAIN_PARAMETERS	Band_7_RG_AddPar2	Dynamic	float32 array (16 values)	Reserved additional Band 7 relative gain model parameter 2; array contains one value for each detector Valid format: N.NN
GROUP: BIAS_LOCATIONS	Forward_Bias_ Location_30	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (left offset) to the bias location starting point (start of DC restore) for Bands 1-5 and 7 Valid format: NNN
GROUP: BIAS_LOCATIONS	Forward_Bias_ Length_30	Dynamic	int16	Number of pixels to use, per line, in calculating bias for Bands 1-5 and 7 Valid format: NNN
GROUP: BIAS_LOCATIONS	Forward_IC_ Region_30	Dynamic	int16	Length of useable Internal Calibrator (IC) region, in pixels, from the start of the bias region (DC restore) to the end of the calibration pulse region for Bands 1-5 and 7 Valid format: NNN
GROUP: BIAS_LOCATIONS	Reverse_Bias_ Location_30	Dynamic	int16	Offset, per line, in pixels, from the beginning of the data (right offset) to the bias location starting point (start of DC restore) for Bands 1-5 and 7 7 Valid format: NNN
GROUP: DETECTOR_BIASES	Band_3_Detector_Bias	Static	float32 array values)	(16
GRand 3 average on-orbit prelaunch detector bias				
in digital counts; array contains one value per				
detector				
Valid format: N.N				

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_BIASES	Band_4_Detector_Bias	Static	float32 array (16 values)	Band 4 average on-orbit prelaunch detector bias in digital counts; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES	Band_5_Detector_Bias	Static	float32 array (16 values)	Band 5 average on-orbit prelaunch detector bias in digital counts; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES	Band_6_Detector_Bias	Static	float32 array (4 values)	Band 6 average on-orbit prelaunch detector bias in digital counts; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES	Band_7_Detector_Bias	Static	float32 array (16 values)	Band 7 average on-orbit prelaunch detector bias in digital counts; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_1_Lower_Limit	Static	float32 array (16 values)	Valid lower limit for bias in digital counts for Band 1; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_2_Lower_Limit	Static	float32 array (16 values)	Valid lower limit for bias in digital counts for Band 2; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_3_Lower_Limit	Static	float32 array (16 values)	Valid lower limit for bias in digital counts for Band 3; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_4_Lower_Limit	Static	float32 array (16 values)	Valid lower limit for bias in digital counts for Band 4; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_5_Lower_Limit	Static	float32 array (16 values)	Valid lower limit for bias in digital counts for Band 5; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_7_Lower_Limit	Static	float32 array (16 values)	Valid lower limit for bias in digital counts for Band 7; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_1_Lower_Limit	Static	float32 array (16 values)	Valid upper limit for bias in digital counts for Band 1; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_2_Upper_Limit	Static	float32 array (16 values)	Valid upper limit for bias in digital counts for Band 2; array contains one value per detector Valid format: N.N, where N.N = 6.0
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_3_Upper_Limit	Static	float32 array (16 values)	Valid upper limit for bias in digital counts for Band 3; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_4_Upper_Limit	Static	float32 array (16 values)	Valid upper limit for bias in digital counts for Band 4; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_5_Upper_Limit	Static	float32 array (16 values)	Valid upper limit for bias in digital counts for Band 5; array contains one value per detector Valid format: N.N
GROUP: DETECTOR_BIASES GROUP: BIAS_LIMITS	Band_7_Upper_Limit	Static	float32 array (16 values)	Valid upper limit for bias in digital counts for Band 7; array contains one value per detector Valid Format: N.N
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH_BIASES	Band_1_Prelaunch_Bias	Static	float32 array (16 values)	Band 1 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH BIASES	Band_2_Prelaunch _Bias	Static	float32 array (16 values)	Band 2 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH_BIASES	Band_3_Prelaunch _Bias	Static	float32 array (16 values)	Band 3 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH BIASES	Band_4_Prelaunch _Bias	Static	float32 array (16 values)	Band 4 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH_BIASES	Band_5_Prelaunch _Bias	Static	float32 array (16 values)	Band 5 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH BIASES	Band_6_Prelaunch _Bias	Static	float32 array (4 values)	Band 6 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN
GROUP: DETECTOR_BIASES GROUP: PRELAUNCH BIASES	Band_7_ Prelaunch _Bias	Static	float32 array (16 values)	Band 7 prelaunch detector bias in digital counts; array contains one value per detector Valid format: NNN.NNNN
GROUP: ACCA_BIASES	B1_ACCA_BIAS	Dynamic	float32 array (16 values)	Band 1 ACCA bias in digital count; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_BIASES	B2_ACCA_BIAS	Dynamic	float32 array (16 values)	Band 2 ACCA bias in digital counts; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_BIASES	B3_ACCA_BIAS	Dynamic	float32 array (16 values)	Band 3 ACCA bias in digital counts; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_BIASES	B4_ACCA_BIAS	Dynamic	float32 array (16 values)	Band 4 ACCA bias in digital counts; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_BIASES	B5_ACCA_BIAS	Dynamic	float32 array (16 values)	Band 5 ACCA bias in digital counts; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_BIASES	B6_ACCA_BIAS	Dynamic	float32 array (4 values)	Band 6 ACCA bias in digital counts; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_BIASES	B7_ACCA_BIAS	Dynamic	float32 array (16 values)	Band 7 ACCA bias in digital counts; array contains one value per each detector Valid format: NN.NN
GROUP: ACCA_THRESHOLDS	Thresh_B3	Dynamic	float32	Band 3 ACCA threshold Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_B3_Lower	Dynamic	float32	Band 3 land reflectance threshold Valid format: NN.NN
GROUP: ACCA_THRESHOLDS	Thresh_B56	Dynamic	float32	Band 5-6 composite threshold Valid format: NNN.NNN
GROUP: ACCA_THRESHOLDS	Thresh_B6	Dynamic	float32	Band 6 threshold - maximum cloud temperature Valid format: NNN.NNN
GROUP: ACCA_THRESHOLDS	Thresh_B45_Ratio	Dynamic	float32	Band 4-5 ratio threshold Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_B42_Ratio	Dynamic	float32	Band 4-2 ratio threshold Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_B43_Ratio	Dynamic	float32	Band 4-3 ratio threshold Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_NDSI_Max	Dynamic	float32	Normalized Difference Snow Index (NDSI) ceiling Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_NDSI_Min	Dynamic	float32	NDSI floor Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_NDSI_Snow	Dynamic	float32	NDSI threshold used to identify snow Valid format: NN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: ACCA_THRESHOLDS	Cloud_Percent_Min	Dynamic	float32	Minimum cloud cover percentage required for pass two Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Desert_Index	Dynamic	float32	Desert Index (Thresh_45_Ratio / Thresh_42_Ratio) Valid format: N.NNNN
GROUP: ACCA_THRESHOLDS	Thresh_Snow_Percent	Dynamic	float32	Maximum snow cover percentage allowed to use looser cloud properties for pass two Valid format: N.NNN
GROUP: ACCA_THRESHOLDS	Thermal_Effect_High	Dynamic	float32	Maximum allowable pass 2 percentage cloud cover increase allowed using looser cloud properties Valid format: NNN.NNN
GROUP: ACCA_THRESHOLDS	Thermal_Effect_Low	Dynamic	float32	Maximum allowable pass 2 percentage cloud cover increase allowed using narrower cloud properties Valid format: NNN.NNN
GROUP: ACCA_THRESHOLDS	B6Max_Maxthresh_Diff	Dynamic	float32	Minimum difference allowed between maximum cloud temperature and maximum thermal threshold Valid format: NN.NNN
GROUP: SOLAR_SPECTRAL IRRADIANCES	B1_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 1 in W/m^2-ster Valid format: NNNN.NNN
GROUP: SOLAR_SPECTRAL IRRADIANCES	B2_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 2 in W/m^2-ster Valid format: NNNN.NNN
GROUP: SOLAR_SPECTRAL IRRADIANCES	B3_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 3 in W/m^2-ster Valid format: NNNN.NNN
GROUP: SOLAR_SPECTRAL IRRADIANCES	B4_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 4 in W/m^2-ster Valid format: NNNN.NNN
GROUP: SOLAR_SPECTRAL_ IRRADIANCES	B5_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 5 in W/m^2-ster Valid format: NNNN.NNN
GROUP: SOLAR_SPECTRAL IRRADIANCES	B7_Solar_Irradiance	Static	float32	Mean solar exoatmospheric irradiance for Band 7 in W/m^2-ster Valid format: NNNN.NNN
GROUP: BAND_6_CALIBRATION COEFFICIENTS	Temp_To_Rad	Static	float64 array (3 values)	Coefficients used to extract the effective spectral radiance of the calibration shutter and the blackbody, expressed in $\mathrm{W} / \mathrm{m}^{2} \mathrm{sr}$ r Valid format: N.NNNNESN
GROUP: BAND_6_CALIBRATION COEFFICIENTS	a	Static	float32 array (4 values)	Constants used to estimate the thermal detector gains Valid format: N.NNNN
GROUP: BAND_6_CALIBRATION_COE FFICIENTS	b	Static	float32 array (4 values)	Constants used to estimate the thermal detector biases Valid format: N.NNNN
GROUP: BAND_6_CALIBRATION COEFFICIENTS	c	Static	float32 array (4 values)	Constants used to estimate the thermal detector biases Valid format: N.NNNN
GROUP: THERMAL_CONSTANTS	K1_Constant	Static	float32	Thermal calibration constant 1 in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: NNNNN.NNN
GROUP: THERMAL_CONSTANTS	K2_Constant	Static	float32	Thermal calibration constant 2 in degrees Kelvin Valid format: NNNNN.NNN
GROUP: SCALING_PARAMETERS	B1_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 1 , in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: SCALING_PARAMETERS	B2_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 2, in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B3_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 3 , in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP. SCALING_PARAMETERS	B4_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 4, in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B5_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 5 , in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING PARAMETERS	B6_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 6, in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP. SCALING_PARAMETERS	B7_Lmin_Lmax	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors for Band 7, in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B1_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 1 , in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B2_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 2, in W/m²-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B3_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 3 , in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B4_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 4, in W/m²-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B5_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 5, in W/m²-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B6_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 6, in W/m²-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B7_Lmin_Lmax_LUT03	Static	float32 array (2 values)	L5 postcalibration 8-bit dynamic range scaling factors used in radiometric processing based on the application of the LUT 03 gain model for Band 7, in W/m²-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B1_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 1 , in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B2_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 2 , in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: SCALING_PARAMETERS	B3_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 3 , in W $/ \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B4_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 4, in W/m²-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B5_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 5 , in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B6_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 6 , in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: SCALING_PARAMETERS	B7_Lmin_Lmax_IC	Static	float32 array (2 values)	Postcalibration 8-bit dynamic range scaling factors used in processing based on the Internal Calibrator gains for Band 7 , in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ Valid format: SNNN.NNNN
GROUP: MTF_COMPENSATION	B1_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan Modulation Transfer Function Compensation (MTFC) for Band 1 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B1_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 1 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B2_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 2 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B2_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 2 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B3_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 3 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B3_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 3 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B4_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 4 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B4_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 4 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B5_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 5 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B5_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 5 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B6_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 6 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B6_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 6 Valid format: SNN.NNNN
GROUP: MTF_COMPENSATION	B7_weights_along	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute along-scan MTFC for Band 7 Valid format: SNN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: MTF_COMPENSATION	B7_weights_across	Dynamic	float64 array (5 values)	Weighting function coefficients used to compute across-scan MTFC for Band 7 Valid format: SNN.NNNN
GROUP: MEMORY EFFECT GROUP: ME_MAGNITUDES	B1_kME_Magnitude	Dynamic	Float64 array (16 values)	Band 1 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY EFFECT GROUP: ME_MAGNITUDES	B2_kME_Magnitude	Dynamic	float64 array (16 values)	Band 2 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY_EFFECT GROUP: ME_MAGNITUDES	B3_kME_Magnitude	Dynamic	float64 array (16 values)	Band 3 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY EFFECT GROUP: ME_MAGNITUDES	B4_kME_Magnitude	Dynamic	float64 array (16 values)	Band 4 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY EFFECT GROUP: ME_MAGNITUDES	B5_kME_Magnitude	Dynamic	float64 array (16 values)	Band 5 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY EFFECT GROUP: ME_MAGNITUDES	B6_kME_Magnitude	Dynamic	float64 array (4 values)	Band 6 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY EFFECT GROUP: ME_MAGNITUDES	B7_kME_Magnitude	Dynamic	float64 array (16 values)	Band 7 memory effect magnitude measured in DNs; array contains one value per detector Valid format: SN.NNNNNESNN
GROUP: MEMORY EFFECT GROUP: ME_SCALING	B1_ME_Scal_Factor	Dynamic	Float32 array (16 values)	Band 1 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY EFFECT GROUP: ME_SCALING	B2_ME_Scal_Factor	Dynamic	Float32 array (16 values)	Band 2 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY EFFECT GROUP: ME_SCALING	B3_ME_Scal_Factor	Dynamic	Float32 array (16 values)	Band 3 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY_EFFECT GROUP: ME_SCALING	B4_ME_Scal_Factor	Dynamic	Float32 array (16 values)	Band 4 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY_EFFECT GROUP: ME_SCALING	B5_ME_Scal_Factor	Dynamic	Float32 array (16 values)	Band 5 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY EFFECT GROUP: ME_SCALING	B6_ME_Scal_Factor	Dynamic	Float32 array (4 values)	Band 6 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY_EFFECT GROUP: ME_SCALING	B7_ME_Scal_Factor	Dynamic	Float32 array (16 values)	Band 7 memory effect magnitude scaling factor; array contains one value per detector Valid format: N.N
GROUP: MEMORY_EFFECT GROUP: ME TIME CONSTANTS	B1_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 1 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN
GROUP: ME_TIME_CONSTANTS	B2_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 2 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B3_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 3 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B4_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 4 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: MEMORY_EFFECT GROUP: ME TIME CONSTANTS	B5_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 5 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B6_ME_Time_Constant	Dynamic	float32 array (4 values)	Band 6 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN
GROUP: MEMORY_EFFECT GROUP: ME_TIME_CONSTANTS	B7_ME_Time_Constant	Dynamic	float32 array (16 values)	Band 7 time constant measured in minor frames; array contains one value per detector Valid format: NNNN.NN
GROUP: MEMORY_EFFECT GROUP: ME_FILTER_PARAMETERS	ME_Filter_Widths	Dynamic	$\begin{array}{\|l} \hline \text { int16 array } \\ \text { (30 } \\ \text { values }) \\ \hline \end{array}$	Convolution 30-step filter widths Valid format: NNN
GROUP: GHOST_PULSE	Ghost_Pulse_ Endpoints	Dynamic	float32 array (2 values)	Beginning and ending fractional minor frames that bound IC ghost pulse Valid format: NNNN.NNNN
GROUP: SCAN_CORRELATED_SHIFT	SCS_Reference_ Detector_1	Dynamic	uint8 array (3 values)	First (default) Scan-Correlated Shift (SCS) reference detector; array contains band number, detector number, and phase (1-in phase, 0 -out of phase), respectively Valid format: NN , where $\mathrm{N}=0$ to 9
GROUP: SCAN_CORRELATED_SHIFT	SCS_Reference_ Detector_2	Dynamic	uint8 array (3 values)	Second SCS reference detector; array contains band number, detector number, and phase (1-in phase, 0-out of phase), respectively Valid format: NN , where $\mathrm{N}=0$ to 9
GROUP: SCAN_CORRELATED_SHIFT	SCS_Reference_ Detector_3	Dynamic	uint8 array (3 values)	Optional SCS reference detector; array contains band number, detector number, and phase (1-in phase, 0-out of phase), respectively Valid format: NN , where $\mathrm{N}=0$ to 9
GROUP: SCAN_CORRELATED_SHIFT	SCS_State_Mask_ Parameters	Dynamic	float32 array (6 values)	SCS state mask parameters Valid format: (A, B, C, D, E), where A = slope of the linear model for the bias state $B=$ day-since-launch when the reference single orbit night data set was acquired $C=$ intercept of the linear model for the bias state D = high delta value used to determine the upper limit for detector bias levels $\mathrm{E}=$ lower delta value used to determine the upper limit for detector bias levels
GROUP: SCAN_CORRELATED_SHIFT	B1_SCS_Additive Correction_Factors	Dynamic	float64 array (16 values)	L5 Band 1 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B2_SCS_Additive_ Correction_Factors	Dynamic	float64 array (16 values)	L5 Band 2 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B3 SCS Additive Correction_Factors	Dynamic	float64 array (16 values)	L5 Band 3 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B4 SCS Additive Correction_Factors	Dynamic	float64 array (16 values)	L5 Band 4 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B5 SCS Additive Correction_Factors	Dynamic	float64 array (16 values)	L5 Band 5 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B6 SCS Additive Correction_Factors	Dynamic	float64 array (4 values)	L5 Band 6 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B7_SCS_Additive_ Correction_Factors	Dynamic	float64 array (16 values)	L5 Band 7 SCS correction magnitude in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: SCAN_CORRELATED_SHIFT	B1_SCS_Magnitude_ LL_LH	Dynamic	float64 array (16 values)	L4 Band 1 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B1_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 1 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \hline \text { B1_SCS_Magnitude_ } \\ & \text { HH_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 1 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B2_SCS_Magnitude_ LL_LH	Dynamic	float64 array (16 values)	L4 Band 2 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \hline \text { B2_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 2 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \hline \text { B2_SCS_Magnitude_ } \\ & \text { HH_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 2 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B3_SCS_Magnitude_ LL_LH	Dynamic	float64 array (16 values)	L4 Band 3 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B3_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 3 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B3_SCS_Magnitude_ } \\ & \text { HH_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 3 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B4_SCS_Magnitude_ LL_LH	Dynamic	float64 array (16 values)	L4 Band 4 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \hline \text { B4_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 4 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B4_SCS_Magnitude_ } \\ & \text { HH_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 4 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B5_SCS_Magnitude_ LL_LH	Dynamic	float64 array (16 values)	L4 Band 5 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B5_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 5 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B5_SCS_Magnitude_ } \\ & \text { HH_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 5 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: SCAN_CORRELATED_SHIFT	B6_SCS_Magnitude_ LL_LH	Dynamic	float64 array (4 values)	L4 Band 6 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B6_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (4 values)	L4 Band 6 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B6_SCS_Magnitude_ } \\ & \text { HH_LH } \end{aligned}$	Dynamic	float64 array (4 values)	L4 Band 6 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B7_SCS_Magnitude_ LL_LH	Dynamic	float64 array (16 values)	L4 Band 7 SCS correction magnitude for 'lowlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	$\begin{aligned} & \text { B7_SCS_Magnitude_ } \\ & \text { HL_LH } \end{aligned}$	Dynamic	float64 array (16 values)	L4 Band 7 SCS correction magnitude for 'highlow' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: SCAN_CORRELATED_SHIFT	B7_SCS_Magnitude_ HH_LH	Dynamic	float64 array (16 values)	L4 Band 7 SCS correction magnitude for 'highhigh' state in digital numbers; array contains one value per detector Valid format: SN.NNNNNNNESNN
GROUP: STRIPING	Correction Reference_B1	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 1 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING	Correction Reference_B2	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 2 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING	Correction Reference_B3	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 3 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING	Correction Reference_B4	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 4 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING	Correction Reference_B5	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 5 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING	Correction Reference_-B6	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 6 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: STRIPING	Correction Reference_B7	Static	uint8	Striping correction methodology flag, relative to the band average or reference detector, for Band 7 Valid format: N , where $\mathrm{N}=0$ (band average), 1 (reference detector), or 2 (no correction)
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level_B1	Dynamic	float32 array (16 values)	Standard deviation of the image region data for each detector of Band 1 Valid format: NN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level B2	Dynamic	float32 array (16 values)	Standard deviation of the image region data for each detector of Band 2 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level_B3	Dynamic	float32 array (16 values)	Standard deviation of the image region data for each detector of Band 3 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level_B4	Dynamic	float32 array (16 values)	Standard deviation of the image region data for each detector of Band 4 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level_B5	Dynamic	float32 array (16 values)	Standard deviation of the image region data for each detector of Band 5 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level_B $\overline{6}$	Dynamic	float32 array (4 values)	Standard deviation of the image region data for each detector of Band 6 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DETECTOR_NOISE	Detector_Noise_ Level_B7	Dynamic	float32 array (16 values)	Standard deviation of the image region data for each detector of Band 7 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE	Det_Shutter_Noise_ Level_B1	Dynamic	float32 array (16 values)	Standard deviation of the shutter region data for each detector of Band 1 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE	Det_Shutter_Noise_ Level_B2	Dynamic	float32 array (16 values)	Standard deviation of the shutter region data for each detector of Band 2 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET SHUTTER NOISE	Det_Shutter_Noise_ Level_B3	Dynamic	float32 array (16 values)	Standard deviation of the shutter region data for each detector of Band 3 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE	Det_Shutter_Noise_ Level_B4	Dynamic	float32 array (16 values)	Standard deviation of the shutter region data for each detector of Band 4 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET SHUTTER NOISE	Det_Shutter_Noise_ Level_B5	Dynamic	float32 array (16 values)	Standard deviation of the shutter region data for each detector of Band 5 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET_SHUTTER_NOISE	Det_Shutter_Noise_ Level_B6	Dynamic	float32 array (4 values)	Standard deviation of the shutter region data for each detector of Band 6 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: DET SHUTTER NOISE	Det_Shutter_Noise_ Level_B7	Dynamic	float32 array (16 values)	Standard deviation of the shutter region data for each detector of Band 7 Valid format: NN.NNNN
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B1	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 1 Valid format: NN
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B2	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 2 Valid format: NN
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B3	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 3 Valid format: NN
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B4	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 4 Valid format: NN
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B5	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 5 Valid format: NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B6	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 6 Valid format: NN
GROUP: HISTOGRAM GROUP: REFERENCE_DETECTORS	Reference_Detector_B7	Dynamic	uint8	Detector used as a reference when computing relative detector gains and biases (least noisy), Band 7 Valid format: NN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation_Bin Threshold_B1	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 1 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation Bin Threshold_B2	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 2 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation Bin Threshold_B3	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 3 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation Bin Threshold_B4	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 4 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation Bin Threshold_B5	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 5 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation_Bin_ Threshold_B6	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 6 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: SATURATION THRESHOLDS	Saturation Bin Threshold_B7	Dynamic	uint16	Number of pixels that a bin must have to test as a saturation bin, Band 7 Valid format: NNNNN
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B1	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 1 Valid format: N
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B2	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 2 Valid format: N
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B3	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 3 Valid format: N
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B4	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 4 Valid format: N
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B5	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 5 Valid format: N
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B6	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 6 Valid format: N

Parameter Groups	Parameter Name	Value Type	Data Type	Description		
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_NUMBER	Adjacent_Bin_ Number_B7	Dynamic	uint8	Bins adjacent to a possible saturation bin that must have fewer pixels than "adjacent bin threshold" to declare a possible bin as a saturation bin, Band 7 Valid format: N		
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_- Threshold_B1	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 1 candidate saturation bin to be a valid saturation bin Valid format: NNNN		
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_- Threshold_B2	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 2 candidate saturation bin to be a valid saturation bin Valid format: NNNN		
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_- Threshold_B3	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 3 candidate saturation bin to be a valid saturation bin Valid format: NNNN		
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_- Threshold_B4	Dynamic	uint8	Number of adjacent bin pixels that cannot be exceeded for the Band 4 candidate saturation bin to be a valid saturation bin Valid format: NNNN		
GROUP: HISTOGRAM GROUP: ADJACENT_BINS GROUP: BIN_THRESHOLD	Adjacent_Bin_- Threshold_B5	Window_Samples_B5	Dynamic	uint8		Window_Samples_B6
:---						

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: HISTOGRAM GROUP: WINDOW WIDTH	Window_Samples_B7	Dynamic	uint8	Width of the window, in pixels, to test Band 7 Valid format: NNNN
GROUP: HISTOGRAM GROUP: WINDOW LENGTH	Window_Scans_B1	Dynamic	uint8	Number of scans in the window to test, Band 1 Valid format: NNN
GROUP: HISTOGRAM GROUP: WINDOW LENGTH	Window_Scans_B2	Dynamic	uint8	Number of scans in the window to test, Band 2 Valid format: NNN
GROUP: HISTOGRAM GROUP: WINDOW LENGTH	Window_Scans_B3	Dynamic	uint8	Number of scans in the window to test, Band 3 Valid format: NNN
GROUP: HISTOGRAM GROUP: WINDOW LENGTH	Window_Scans_B4	Dynamic	uint8	Number of scans in the window to test, Band 4 Valid format: NNN
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B5	Dynamic	uint8	Number of scans in the window to test, Band 5 Valid format: NNN
GROUP: HISTOGRAM GROUP: WINDOW LENGTH	Window_Scans_B6	Dynamic	uint8	Number of scans in the window to test, Band 6 Valid format: NNN
GROUP: HISTOGRAM GROUP: WINDOW_LENGTH	Window_Scans_B7	Dynamic	uint8	Number of scans in the window to test, Band 7 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING SCANS	Overlap_Scans_B1	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 1 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING_ SCANS	Overlap_Scans_B2	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 2 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING SCANS	Overlap_Scans_B3	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 3 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING_ SCANS	Overlap_Scans_B4	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 4 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING_ SCANS	Overlap_Scans_B5	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 5 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING SCANS	Overlap_Scans_B6	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 6 Valid format: NNN
GROUP: HISTOGRAM GROUP: OVERLAPPING SCANS	Overlap_Scans_B7	Dynamic	uint8	Number of overlapping scans between the windows to test, Band 7 Valid format: NNN
GROUP: IMPULSE_NOISE	Median_Filter_Width	Static	uint8	Width of median filter Valid format: N , where $\mathrm{N}=3$
GROUP: IMPULSE_NOISE GROUP: IN_THRESHOLD	B1_Threshold	Dynamic	float32 array (16 values)	Band 1 noise threshold for an unequal case Valid format: NN.NNNNNN
GROUP: IMPULSE NOISE GROUP: IN_THRESHOLD	B2_Threshold	Dynamic	float32 array (16 values)	Band 2 noise threshold for an unequal case Valid format: NN.NNNNNNN
GROUP: IMPULSE NOISE GROUP: IN_THRESHOLD	B3_Threshold	Dynamic	float32 array (16 values)	Band 3 noise threshold for an unequal case Valid format: NN.NNNNNN
GROUP: IMPULSE NOISE GROUP: IN_THRESHOLD	B4_Threshold	Dynamic	float32 array (16 values)	Band 4 noise threshold for an unequal case Valid format: NN.NNNNNN
GROUP: IMPULSE NOISE GROUP: IN_THRESHOLD	B5_Threshold	Dynamic	float32 array (16 values)	Band 5 noise threshold for an unequal case Valid format: NN.NNNNNN
GROUP: IMPULSE NOISE GROUP: IN THRESHOLD	B6_Threshold	Dynamic	float32 array (4 values)	Band 6 noise threshold for an unequal case Valid format: NN.NNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: IMPULSE NOISE GROUP: IN_THRESHOLD	B7_Threshold	Dynamic	float32 array (16 values)	Band 7 noise threshold for an unequal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN SIGMA THRESHOLD	B1_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 1 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B2_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 2 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN SIGMA THRESHOLD	B3_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 3 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B4_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 4 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN_SIGMA_THRESHOLD	B5_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 5 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN SIGMA THRESHOLD	B6_Sigma_Threshold	Dynamic	float32 array (4 values)	Band 6 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: IMPULSE_NOISE GROUP: IN SIGMA THRESHOLD	B7_Sigma_Threshold	Dynamic	float32 array (16 values)	Band 7 noise threshold for an equal case Valid format: NN.NNNNNN
GROUP: COHERENT_NOISE	Frequency_Components	Dynamic	uint8	Number of frequency components derived during waveform analysis for coherent noise correction Valid format: NN, where NN $=10$
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER \bar{S} GROUP: FREQUENCY_MEANS	B1_Frequency_Mean	Dynamic	float32 array (10 values)	Band 1 frequency measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B2_Frequency_Mean	Dynamic	float32 array (10 values)	Band 2 frequency measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B3_Frequency_Mean	Dynamic	float32 array (10 values)	Band 3 frequency measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT NOISE GROUP: CN_FREQUENCY_ PARAMETER \bar{S} GROUP: FREQUENCY_MEANS	B4_Frequency_Mean	Dynamic	float32 array (10 values)	Band 4 frequency measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_MEANS	B5_Frequency_Mean	Dynamic	float32 array (10 values)	Band 5 frequency measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_MEANS	B6_Frequency_Mean	Dynamic	float32 array (10 values)	Band 6 frequency measured in inverse minor frames Valid format: N.NNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_MEANS	B7_Frequency_Mean	Dynamic	float32 array (10 values)	Band 7 frequency measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER \bar{S} GROUP: FREQUENCY_SIGMAS	B1_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 1 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B2_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 2 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B3_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 3 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B4_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 4 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETE $\bar{R} S$ GROUP: FREQUENCY_SIGMAS	B5_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 5 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT NOISE GROUP: CN_FREQUENCY_ PARAMETER \bar{S} GROUP: FREQUENCY_SIGMAS	B6_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 6 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_SIGMAS	B7_Frequency_Sigma	Dynamic	float32 array (10 values)	Band 7 frequency sigmas measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B1_Frequency_Min	Dynamic	float32 array (10 values)	Band 1 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY PARAMETE $\bar{R} S$ GROUP: FREQUENCY_ MINIMUMS	B2_Frequency_Min	Dynamic	float32 array (10 values)	Band 2 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETE $\bar{R} S$ GROUP: FREQUENCY_ MINIMUMS	B3_Frequency_Min	Dynamic	float32 array (10 values)	Band 3 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETE $\bar{R} S$ GROUP: FREQUENCY_ MINIMUMS	B4_Frequency_Min	Dynamic	float32 array (10 values)	Band 4 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_ MINIMUMS	B5_Frequency_Min	Dynamic	float32 array (10 values)	Band 5 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MINIMUMS	B6_Frequency_Min	Dynamic	float32 array (10 values)	Band 6 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_ MINIMUMS	B7_Frequency_Min	Dynamic	float32 array (10 values)	Band 7 frequency minimums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_ MAXIMUMS	B1_Frequency_Max	Dynamic	float32 array (10 values)	Band 1 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B2_Frequency_Max	Dynamic	float32 array (10 values)	Band 2 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_ MAXIMUMS	B3_Frequency_Max	Dynamic	float32 array (10 values)	Band 3 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER \bar{S} GROUP: FREQUENCY_ MAXIMUMS	B4_Frequency_Max	Dynamic	float32 array (10 values)	Band 4 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_ MAXIMUMS	B5_Frequency_Max	Dynamic	float32 array (10 values)	Band 5 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETERS GROUP: FREQUENCY_ MAXIMUMS	B6_Frequency_Max	Dynamic	float32 array (10 values)	Band 6 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_FREQUENCY_ PARAMETER̄S GROUP: FREQUENCY_ MAXIMUMS	B7_Frequency_Max	Dynamic	float32 array (10 values)	Band 7 frequency maximums measured in inverse minor frames Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B1_Phase_Mean	Dynamic	float32 array (10 values)	Band 1 phase measured in radians Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B2_Phase_Mean	Dynamic	float32 array (10 values)	Band 2 phase measured in radians Valid format: N.NNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE MEANS	B3_Phase_Mean	Dynamic	float32 array (10 values)	Band 3 phase measured in radians Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN PHASE PARAMETERS GROUP: PHASE_MEANS	B4_Phase_Mean	Dynamic	float32 array (10 values)	Band 4 phase measured in radians Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B5_Phase_Mean	Dynamic	float32 array (10 values)	Band 5 phase measured in radians Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN PHASE PARAMETERS GROUP: PHASE_MEANS	B6_Phase_Mean	Dynamic	float32 array (10 values)	Band 6 phase measured in radians Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_PHASE_PARAMETERS GROUP: PHASE_MEANS	B7_Phase_Mean	Dynamic	float32 array (10 values)	Band 7 phase measured in radians Valid format: N.NNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MEANS	B1_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 1 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B2_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 2 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MEANS	B3_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 3 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER \bar{S} GROUP: MAGNITUDE_MEANS	B4_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 4 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MEANS	B5_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 5 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B6_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 6 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MEANS	B7_Magnitude_Mean	Dynamic	float32 array (10 values)	Band 7 magnitude measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B1_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 1 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_SIGMAS	B2_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 2 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE SIGMAS	B3_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 3 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE SIGMAS	B4_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 4 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_SIGMAS	B5_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 5 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B6_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 6 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_SIGMAS	B7_Magnitude_Sigma	Dynamic	float32 array (10 values)	Band 7 magnitude sigmas measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS	B1_Magnitude_Min	Dynamic	float32 array (10 values)	Band 1 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MINIMUMS	B2_Magnitude_Min	Dynamic	float32 array (10 values)	Band 2 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS	B3_Magnitude_Min	Dynamic	float32 array (10 values)	Band 3 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETERS GROUP: MAGNITUDE_MINIMUMS	B4_Magnitude_Min	Dynamic	float32 array (10 values)	Band 4 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MINIMUMS	B5_Magnitude_Min	Dynamic	float32 array (10 values)	Band 5 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MINIMUMS	B6_Magnitude_Min	Dynamic	float32 array (10 values)	Band 6 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE_ PARAMETER̄S GROUP: MAGNITUDE_MINIMUMS	B7_Magnitude_Min	Dynamic	float32 array (10 values)	Band 7 magnitude minimums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT NOISE GROUP: CN_MAGNITUDE_ PARAMETER \bar{S} GROUP: MAGNITUDE MAXIMUMS	B1_Magnitude_Max	Dynamic	$\begin{aligned} & \hline \text { float32 } \\ & \text { array (10 } \\ & \text { values) } \end{aligned}$	Band 1 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT NOISE GROUP: CN_MAGNITUDE PARAMETERS GROUP: MAGNITUDE MAXIMUMS	B2_Magnitude_Max	Dynamic	float32 array (10 values)	Band 2 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE PARAMETE $\bar{R} S$ GROUP: MAGNITUDE_MAXIMUMS	B3_Magnitude_Max	Dynamic	float32 array (10 values)	Band 3 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE PARAMETER \bar{S} GROUP: MAGNITUDE_MAXIMUMS	B4_Magnitude_Max	Dynamic	float32 array (10 values)	Band 4 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT NOISE GROUP: CN_MAGNITUDE PARAMETERS GROUP: MAGNITUDE_MAXIMUMS	B5_Magnitude_Max	Dynamic	$\begin{aligned} & \hline \text { float32 } \\ & \text { array (10 } \\ & \text { values) } \end{aligned}$	Band 5 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE PARAMETER \bar{S} GROUP: MAGNITUDE_MAXIMUMS	B6_Magnitude_Max	Dynamic	float32 array (10 values)	Band 6 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: COHERENT_NOISE GROUP: CN_MAGNITUDE PARAMETER \bar{S} GROUP: MAGNITUDE_MAXIMUMS	B7_Magnitude_Max	Dynamic	float32 array (10 values)	Band 7 magnitude maximums measured in DNs Valid format: NNN.NNNNNNN
GROUP: CHANNEL_SATURATION	High_Level_B1	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the high end in Band 1 ; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	High_Level_B2	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the high end in Band 2; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	High_Level_B3	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the high end in Band 3 ; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	High_Level_B4	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the high end in Band 4; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	High_Level_B5	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the high end in Band 5 ; array contains one value per detector Valid format: NNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: CHANNEL_SATURATION	High_Level_B6	Dynamic	uint8 array (4 values)	Digital count at which the channel saturates at the high end in Band 6; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	High_Level_B7	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the high end in Band 7; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B1	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the low end in Band 1; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B2	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the low end in Band 2; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B3	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the low end in Band 3; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B4	Dynamic	$\begin{aligned} & \hline \text { uint8 array } \\ & \text { (16 } \\ & \text { values) } \end{aligned}$	Digital count at which the channel saturates at the low end in Band 4; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B5	Dynamic	uint8 array (16 values)	Digital count at which the channel saturates at the low end in Band 5; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B6	Dynamic	uint8 array (4 values)	Digital count at which the channel saturates at the low end in Band 6; array contains one value per detector Valid format: NNN
GROUP: CHANNEL_SATURATION	Low_Level_B7	Dynamic	uint8 array (16 values)	Digital count at which the channel saturates at the low end in Band 7; array contains one value per detector Valid format: NNN
GROUP: REFERENCE TEMPERATURES	B1_RTemp	Static	float64	Band 1 calibration reference temperature in degrees C Valid format: SNNN.NNN
GROUP: REFERENCE TEMPERATURES	B2_RTemp	Static	float64	Band 2 calibration reference temperature in degrees C Valid format: SNNN.NNN
GROUP: REFERENCE TEMPERATURES	B3_RTemp	Static	float64	Band 3 calibration reference temperature in degrees C Valid format: SNNN.NNN
GROUP: REFERENCE TEMPERATURES	B4_RTemp	Static	float64	Band 4 calibration reference temperature in degrees C Valid format: SNNN.NNN
GROUP: REFERENCE TEMPERATURES	B5_RTemp	Static	float64	Band 5 calibration reference temperature in degrees C Valid format: SNNN.NN
GROUP: REFERENCE TEMPERATURES	B6_RTemp	Static	float64	Band 6 calibration reference temperature in degrees C Valid format: SNNN.NN
GROUP: REFERENCE TEMPERATURES	B7_RTemp	Static	float64	Band 7 calibration reference temperature in degrees C Valid format: SNNN.NN
GROUP: SENSITIVITY TEMPERATURES	B1_SCoeff	Dynamic	float64 array (16 values)	Band 1 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: SENSITIVITY TEMPERATURES	B2_SCoeff	Dynamic	float64 array (16 values)	Band 2 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: SENSITIVITY TEMPERATURES	B3_SCoeff	Dynamic	float64 array (16 values)	Band 3 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: SENSITIVITY TEMPERATURES	B4_SCoeff	Dynamic	float64 array (16 values)	Band 4 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: SENSITIVITY TEMPERATURES	B5_SCoeff	Dynamic	float64 array (16 values)	Band 5 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: SENSITIVITY TEMPERATURES	B6_SCoeff	Dynamic	float64 array (4 values)	Band 6 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: SENSITIVITY TEMPERATURES	B6_SCoeff_Off	Dynamic	float64 array (4 values)	Band 6 offset calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: SENSITIVITY TEMPERATURES	B7_SCoeff	Dynamic	float64 array (16 values)	Band 7 calibration temperature sensitivity coefficient; array contains one value per detector Valid format: SNNN.NNNN
GROUP: LAMP_RADIANCE GROUP: TRENDING_COEFFS	Lamp1_Coeffs	Static	float32 array (2 values)	Time since launch trending coefficients for Lamp 1 Valid format: SNNN.NNNNNNN
GROUP: LAMP_RADIANCE GROUP: TRENDING COEFFS	Lamp2_Coeffs	Static	float32 array (2 values)	Time since launch trending coefficients for Lamp 2 Valid format: SNNN.NNNNNNN
GROUP: LAMP_RADIANCE GROUP: TRENDING_COEFFS	Lamp3_Coeffs	Static	float32 array (2 values)	Time since launch trending coefficients for Lamp 3 Valid format: SNNN.NNNNNNN
GROUP: LAMP_RADIANCE GROUP: STATE_000_RADIANCE	B1_Rad_State_000	Static	float32 array (16 values)	Band 1 internal calibrator prelaunch lamp effective per-detector spectral radiance in W/m ${ }^{2}$-ster- $\mu \mathrm{m}$ State 000: Off-Off-Off Valid format: SNNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_000_RADIANCE	B2_Rad_State_000	Static	float32 array (16 values)	Band 2 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$ -ster- $\mu \mathrm{m}$ State 000: Off-Off-Off Valid format: SNNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_000_RADIANCE	B3_Rad_State_000	Static	float32 array (16 values)	Band 3 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 000: Off-Off-Off Valid format: SNNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_000_RADIANCE	B4_Rad_State_000	Static	float32 array (16 values)	Band 4 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 000: Off-Off-Off Valid format: SNNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_000_RADIANCE	B5_Rad_State_000	Static	float32 array (16 values)	Band 5 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 000: Off-Off-Off Valid format: SNNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_000_RADIANCE	B7_Rad_State_000	Static	float32 array (16 values)	Band 7 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 000: Off-Off-Off Valid format: SNNN.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: STATE_001_RADIANCE	B1_Rad_State_001	Static	float32 array (16 values)	Band 1 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 001: Off-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_001_RADIANCE	B2_Rad_State_001	Static	float32 array (16 values)	Band 2 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- mm State 001: Off-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_001_RADIANCE	B3_Rad_State_001	Static	float32 array (16 values)	Band 3 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mathrm{\mu m}$ State 001: Off-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_001_RADIANCE	B4_Rad_State_001	Static	float32 array (16 values)	Band 4 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 001: Off-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_001_RADIANCE	B5_Rad_State_001	Static	float32 array (16 values)	Band 5 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 001: Off-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_001_RADIANCE	B7_Rad_State_001	Static	float32 array (16 values)	Band 7 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 001: Off-Off-On Valid format: NNN.NN
GROUP: LAMP RADIANCE GROUP: STATE_010_RADIANCE	B1_Rad_State_010	Static	float32 array (16 values)	Band 1 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 010: Off-On-Off Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_010_RADIANCE	B2_Rad_State_010	Static	float32 array (16 values)	Band 2 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- mm State 010: Off-On-Off Valid format: NNN.NN
GROUP: LAMP RADIANCE GROUP: STATE_010_RADIANCE	B3_Rad_State_010	Static	float32 array (16 values)	Band 3 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 010: Off-On-Off Valid format: NNN.NN
GROUP: LAMP RADIANCE GROUP: STATE_010_RADIANCE	B4_Rad_State_010	Static	float32 array (16 values)	Band 4 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mathrm{\mu m}$ State 010: Off-On-Off Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_010_RADIANCE	B5_Rad_State_010	Static	float32 array (16 values)	Band 5 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 010: Off-On-Off Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_010_RADIANCE	B7_Rad_State_010	Static	float32 array (16 values)	Band 7 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 010: Off-On-Off Valid format: NNN.NN

$\left.\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { Parameter } \\ \text { Groups }\end{array} & \begin{array}{l}\text { Parameter } \\ \text { Name }\end{array} & \begin{array}{l}\text { Value } \\ \text { Type }\end{array} & \begin{array}{l}\text { Data } \\ \text { Type }\end{array} & \begin{array}{l}\text { Description }\end{array} \\ \hline \begin{array}{l}\text { GROUP: LAMP_RADIANCE } \\ \text { GROUP: } \\ \text { STATE_011_RADIANCE }\end{array} & \text { B1_Rad_State_011 } & \text { Static } & \begin{array}{l}\text { float32 } \\ \text { array (16 } \\ \text { values) }\end{array} & \begin{array}{l}\text { Band 1 internal calibrator prelaunch lamp } \\ \text { effective per-detector spectral radiance in } \\ \text { W/m } \\ \text { State }\end{array} \\ \text { Ster- }- \text { 01: Off-On-On } \\ \text { Valid format: NNN.NN }\end{array}\right]$

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: STATE_101_RADIANCE	B1_Rad_State_101	Static	float32 array (16 values)	Band 1 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 101: On-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_101_RADIANCE	B2_Rad_State_101	Static	float32 array (16 values)	Band 2 internal calibrator prelaunch lamp effective per-detector spectral radiance in W/m ${ }^{2}$-ster- μ State 101: On-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_101_RADIANCE	B3_Rad_State_101	Static	float32 array (16 values)	Band 3 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mathrm{\mu m}$ State 101: On-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_101_RADIANCE	B4_Rad_State_101	Static	float32 array (16 values)	Band 4 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 101: On-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_101_RADIANCE	B5_Rad_State_101	Static	float32 array (16 values)	Band 5 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 101: On-Off-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_101_RADIANCE	B7_Rad_State_101	Static	float32 array (16 values)	Band 7 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 101: On-Off-On Valid format: NNN.NN
GROUP: LAMP RADIANCE GROUP: STATE_110_RADIANCE	B1_Rad_State_110	Static	float32 array (16 values)	Band 1 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 110: Off-On-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_110_RADIANCE	B2_Rad_State_110	Static	float32 array (16 values)	Band 2 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- mm State 110: On-On-Off Valid format: NNN.NN
GROUP: LAMP RADIANCE GROUP: STATE_110_RADIANCE	B3_Rad_State_110	Static	float32 array (16 values)	Band 3 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 110: On-On-Off Valid format: NNN.NN
GROUP: LAMP RADIANCE GROUP: STATE_110_RADIANCE	B4_Rad_State_110	Static	float32 array (16 values)	Band 4 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mathrm{\mu m}$ State 110: On-On-Off Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_110_RADIANCE	B5_Rad_State_110	Static	float32 array (16 values)	Band 5 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 110: On-On-Off Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_110_RADIANCE	B7_Rad_State_110	Static	float32 array (16 values)	Band 7 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 110: On-On-Off Valid format: NNN.NN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: LAMP_RADIANCE GROUP: STATE_111_RADIANCE	B1_Rad_State_111	Static	float32 array (16 values)	Band 1 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 111: On-On-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_111_RADIANCE	B2_Rad_State_111	Static	float32 array (16 values)	Band 2 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 111: On-On-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_111_RADIANCE	B3_Rad_State_111	Static	float32 array (16 values)	Band 3 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 111: On-On-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_111_RADIANCE	B4_Rad_State_111	Static	float32 array (16 values)	Band 4 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 111: On-On-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_111_RADIANCE	B5_Rad_State_111	Static	float32 array (16 values)	Band 5 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- -m State 111: On-On-On Valid format: NNN.NN
GROUP: LAMP_RADIANCE GROUP: STATE_111_RADIANCE	B7_Rad_State_111	Static	float32 array (16 values)	Band 7 internal calibrator prelaunch lamp effective per-detector spectral radiance in $\mathrm{W} / \mathrm{m}^{2}$-ster- $\mu \mathrm{m}$ State 111: On-On-On Valid format: NNN.NN
GROUP: LAMP_REFERENCE	Lmp_Rtemp	Static	float32 array (10 values)	Internal calibrator lamp radiance reference temperatures in degrees C Valid format: SNNN.N T1 = Blackbody temp T2 = Silicon focal plane array temp T3 = Cal shutter flag temp T4 = Baffle temp T5 = Cold stage focal plane array temp T6 = Scan line corrector temp T7 = Cal shutter hub temp T8 = Relay optics temp T9 = Primary mirror temp T10 = Secondary mirror temp
GROUP: REFLECTIVE_IC_ COEFFS	B1 Coefficients Detector1	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 1 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients_ Detector2	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 2 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE IC COEFFS	B1 Coefficients Detector3	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 3 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients_ Detector4	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 4 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients Detector5	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 5 Valid format: SNNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC COEFFS	B1_Coefficients Detector6	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 6 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients Detector7	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 7 Valid format: SNNN.NNNNNNNhere $\mathrm{S}=+$ or - , and $\mathrm{N}=0$ to 9
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients_ Detector8	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 8 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1 Coefficients Detector9	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 9 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1 Coefficients Detector10	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 10 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients Detector11	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 11 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients Detector12	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 12 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1 Coefficients Detector13	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 13 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients Detector14	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 14 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1_Coefficients_ Detector15	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 15 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B1 Coefficients Detector16	Dynamic	float32 array (14 values)	IC coefficients for Band 1, detector 16 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector1	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 1 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector2	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 2 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector3	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 3 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector4	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 4 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector5	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 5 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector6	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 6 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector7	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 7 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector8	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 8 Valid format: SNNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector9	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 9 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector10	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 10 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector11	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 11 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector12	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 12 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector13	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 13 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector14	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 14 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2_Coefficients Detector15	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 15 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B2 Coefficients Detector16	Dynamic	float32 array (14 values)	IC coefficients for Band 2, detector 16 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector1	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 1 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector2	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 2 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector3	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 3 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector4	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 4 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector5	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 5 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector6	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 6 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector7	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 7 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector8	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 8 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector9	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 9 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector10	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 10 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector11	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 11 Valid format: SNNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector12	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 12 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3_Coefficients Detector13	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 13 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector14	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 14 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector15	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 15 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B3 Coefficients Detector16	Dynamic	float32 array (14 values)	IC coefficients for Band 3, detector 16 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector1	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 1 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector2	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 2 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector3	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 3 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector4	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 4 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector5	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 5 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector6	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 6 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector7	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 7 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector8	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 8 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector9	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 9 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector10	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 10 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector11	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 11 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector12	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 12 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector13	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 13 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4 Coefficients Detector14	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 14 Valid format: SNNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector15	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 15 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B4_Coefficients Detector16	Dynamic	float32 array (14 values)	IC coefficients for Band 4, detector 16 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector1	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 1 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector2	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 2 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector3	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 3 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5_Coefficients Detector4	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 4 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5_Coefficients Detector5	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 5 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector6	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 6 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5_Coefficients_ Detector7	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 7 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector8	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 8 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector9	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 9 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector10	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 10 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5_Coefficients Detector11	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 11 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5_Coefficients Detector12	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 12 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5_Coefficients_ Detector13	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 13 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector14	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 14 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector15	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 15 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B5 Coefficients Detector16	Dynamic	float32 array (14 values)	IC coefficients for Band 5, detector 16 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE IC COEFFS	B7 Coefficients Detector1	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 1 Valid format: SNNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients_ Detector2	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 2 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector3	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 3 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients_ Detector4	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 4 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector5	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 5 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients_ Detector6	Dynamic	$\begin{aligned} & \text { float32 } \\ & \text { array (14 } \end{aligned}$ values)	IC coefficients for Band 7, detector 6 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients Detector7	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 7 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients_ Detector8	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 8 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector9	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 9 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector10	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 10 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients_ Detector11	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 11 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients_ Detector12	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 12 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7_Coefficients Detector13	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 13 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector14	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 14 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector15	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 15 Valid format: SNNN.NNNNNNN
GROUP: REFLECTIVE_IC_ COEFFS	B7 Coefficients Detector16	Dynamic	float32 array (14 values)	IC coefficients for Band 7, detector 16 Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR COEFFS	Black_Body_Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw blackbody temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR COEFFS	$\begin{aligned} & \hline \text { Silicon_FP_Array_ } \\ & \text { Temp } \end{aligned}$	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw primary focal plane temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR COEFFS	Cal_Shutter_Flag_Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw calibration shutter flag temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR_ COEFFS	Baffle_Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw baffle temperature Valid format: SNNN.NNNNNNN

Parameter Groups	Parameter Name	Value Type	Data Type	Description
GROUP: THERMISTOR_ COEFFS	Cold_Stage_FP_Array_Te mp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw cold focal plane temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR_ COEFFS	$\begin{aligned} & \hline \text { Scan_Line_Corrector_ } \\ & \text { Temp } \end{aligned}$	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw scan-line corrector temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR COEFFS	Cal_Shutter_Hub_ Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw calibration shutter hub temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR_ COEFFS	Relay_Optics_Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw relay optics temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR_ COEFFS	Primary_Mirror_Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw primary mirror temperature Valid format: SNNN.NNNNNNN
GROUP: THERMISTOR_ COEFFS	Secondary_Mirror_ Temp	Static	float32 array (6 values)	Housekeeping telemetry conversion coefficients for raw secondary mirror temperature Valid format: SNNN.NNNNNNN
GROUP: FILL_PATTERNS	Band_Fill_Pattern	Static	uint8 array (2 values)	Fill pattern used by Landsat 7 Processing System (LPS) for filling erroneous or missing image data minor frames Valid format: NNN, where NNN $=(0,255)$ (alternating 0, 255s)
GROUP: CHAR_CN_FFT_ GENERATION	Forward_Scan_IC_Offset	Dynamic	uint8	Forward scan offset from the calibration pulse edge in pixels that defines the shutter region used in CN characterization Valid format: NN
GROUP: CHAR_CN_FFT_ GENERATION	Reverse_Scan_IC_Offset	Dynamic	uint8	Reverse scan offset from the calibration pulse edge in pixels that defines the shutter region used in CN characterization Valid format: NN

Table 3-1. Landsat TM CPF Parameters

Section 4 CPF ODL

4.1 Introduction to ODL Syntax

The ODL syntax employs the following conventions:

- The parameter definition is in the form of parameter = value.
- The value can be either a scalar or an array. Array values are enclosed in parentheses and separated by commas.
- Parameter arrays exist on multiple lines.
- A carriage return <CR> and line feed <LF> end each line in the file.
- Blank spaces and lines are ignored.
- Each comment line must begin with /* and end with */, including comments embedded on the same line as a parameter definition.
- Quotation marks are required for values that are text strings, including single characters. The exceptions to this rule are the GROUP and END_GROUP identifiers or values, which do not use quotation marks. The third and fourth parameters in the file, Effective_Date_Begin and Effective_Date_End, also do not have quotation marks. ODL recognizes dates that follow prescribed formats.
- In general, case is not significant for the ODL. For the CPF, however, the case is significant for keyword and group names of the CPF. Group names are all uppercase letters and keywords are mixed case.
- Indentation is not significant but used for readability.
- The reserve word END concludes the file.

Unavailable parameter values are denoted by TBS (To Be Supplied). During the initial phases of IAS development TM functionality, many of the parameters are TBS. Once full IAS TM functionality is in place, the parameters are populated, and the CPFs are distributed appropriately.

4.2 Sample TM CPF ODL File

The following is a prototype of a CPF file that contains valid parameter values for the third calendar quarter of 2005:

```
GROUP = FILE_ATTRIBUTES
    Spacecraft_Name = "Landsat_5"
    Sensor_Name = "Thematic_Mapper"
    Effective_Date_Begin = 2005-07-01
    Effective Date End = 2005-09-30
    CPF_File_Name = "L5CPF20050701_20050930.03"
END_GROUP = FILE_ATTRIBUTES
GROUP = EARTH_CONSTANTS
    Ellipsoid_Name = "WGS84"
    Semi_Major_Axis = 6378137.0000
    Semi_Minor_Axis = 6356752.3142
    Ellipticity = 0.00335281066474
    Eccentricity = 0.00669437999013
    Earth Spin Rate =72.921158553E-06
    Gravity_Constant = 3.986005E14
    J2_Earth_Model_Term = 1082.63E-06
END_GROUP = EARTH_CONSTANTS
```

```
GROUP = ORBIT_PARAMETERS
    WRS_Cycle_Days = 16
    WRS_Cycle_Orbits = 233
    Scenes_Per_Orbit = 248
    Orbital_Period = 5933.0472
    Angular_Momentum = 53.136250E9
    Orbit_Radius = 7083.4457
    Orbit_Semimajor_Axis = 7083.4457
    Orbit_Semiminor_Axis = 7083.4408
    Orbit_Eccentricity = 0.00117604
    Inclination_Angle = 98.2096
    Argument_Of_Perigee = 90.0
    Descending_Node_Row = 60
    Long_Path1_Row60 = -64.6
    Descending_Node_Time_Min = "09:10"
    Descending_Node_Time_Max = "10:15"
    Nodal_Regression_Rate = 0.985647366
END_GROUP = ORBIT_PARAMETERS
GROUP = SCANNER_PARAMETERS
    Lines_Per_Scan_30= 16
    Lines_Per_Scan_120=4
    Scans_Per_Scene= = 374
    Swath_Angle = 0.26861
    Scan_Rate = 2.21095
    Dwell_Time_30=9.6106302
    Dwell_Time_120 = 38.4425208
    IC_Line_Length_30 = 1100
    IC_Line_Length_120 = 275
    Scan_Line_Length_30 = 6320
    Scan_Line_Length_120 = 1580
    Filter_Frequency_30=52.02
    Filter_Frequency_120=13.005
    IFOV_B1234 = 42.5000
    IFOV_B57_along_scan = 42.5
    IFOV_B57_across_scan = 42.5
    IFOV_B6 = 170.0
    Scan_Period = 142.922000
    Scan_Frequency = 6.9968
    Active_Scan_Time =60743.013
    Turn_Around_Time = 10.719
END_GROUP = SCANNER_PARAMETERS
GROUP = SPACECRAFT_PARAMETERS
    ADS_Interval = 2.0
    ADS_Roll_Offset = 0.375
    ADS_Pitch_Offset =0.875
    ADS_Yaw_Offset = 1.375
    Data Rate = 84.903
END_GROUP = SPACECRAFT_PARAMETERS
GROUP = MIRROR_PARAMETERS
    Error_Conversion_Factor = 0.18845000
    GROUP = ANGLES_SME1_SAM
    Forward_Along_SME1_SAM = (+0.0000E0, -2.0846E-3, +2.4365E-1, -1.1042E1, +2.1349E2, -1.4560E3)
    Forward_Cross_SME1_SAM = (+0.0000E0, -1.2639E-4, +3.5312E-3, -4.8660E-2, +5.4476E-1, -2.2077E0)
    Forward_Angle1_SME1_SAM = 67171.0
    Forward_Angle2_SME1_SAM = 67159.0
    Reverse_Along_SME1_SAM = (+0.0000E0, +2.5179E-3, -3.0669E-1, +1.3025E1, -2.3212E2, +1.4747E3)
    Reverse_Cross_SME1_SAM = (+0.0000E0, -9.9308E-5, +2.6935E-3, -6.8859E-2, +1.4509E0, -9.9468E0)
    Reverse_Angle1_SME1_SAM = 67159.0
    Reverse_Angle2_SME1_SAM = 67171.0
END_GRO\overline{UP}=\overline{ANGLES_SME1_SAM}
GROUP = ANGLES_SME2_SAM
    Forward_Along_SME2_SAMM = (+0.0000E0, -1.6484E-3, +2.4464E-1,-1.1422E1, +2.1987E2, -1.4945E3)
    Forward_Cross_SME2_SAM = (+0.0000E0, -1.2101E-4, +2.9221E-3, -2.9348E-2, +3.3941E-1, -1.7827E0)
    Forward_Angle}1_\mathrm{ _SME2_SAM = 67182.0
    Forward_Angle2_SME2_SAM = 67160.0
    Reverse_Along_SME2_SAM = (+0.0000E0, +3.1143E-3,-3.2331E-1, +1.3313E1, -2.3650E2, +1.4991E3)
```

Reverse_Cross_SME2_SAM $=(+0.0000 \mathrm{E} 0,-9.0740 \mathrm{E}-5,+1.5799 \mathrm{E}-3,-1.3242 \mathrm{E}-2,+2.9615 \mathrm{E}-1,-1.6706 \mathrm{E} 0)$
Reverse_Angle1_SME2_SAM $=67160.0$
Reverse_Angle2_SME2_SAM $=67182.0$
END_GROUP = ANGLES_SME2_SAM
GROUP = ANGLES_SME $1 _B U M \bar{P}$
Forward_Along_SME1_Bump $=(1.251220 \mathrm{E}-11,-9.068689 \mathrm{E}-03,4.031291 \mathrm{E}-01,-1.339203 \mathrm{E}+01,2.606205 \mathrm{E}+02,-1.793570 \mathrm{E}+03)$
Forward_Cross_SME1_Bump $=(3.714633 E-05,-3.501001 \mathrm{E}-04,-1.098810 \mathrm{E}-02,4.363837 \mathrm{E}-01,-4.996861 \mathrm{E}+00,1.733860 \mathrm{E}+01)$ Forward_Angle1_SME1_Bump =
(68060.7,68060.7,68060.3,68060.2,68060.2,68060.1,68060.1,68060.0,68060.0,68059.9,68059.8,68059.9,68059.8,68059.5,68059.5 ,68059.5,68059.5,68059.5,68059.5,68059.0,68059.0,68058.9,68059.0,68058.8,68058.7,68058.5,68058.3,68058.3,68058.2,68058.1 ,68058.1,68058.0,68057.9,68057.8,68058.0,68058.0,68057.8,68057.7,68057.7,68057.6,68057.7,68057.6,68057.4,68056.9,68056.9 ,68056.9,68056.8,68056.8,68056.8,68056.8,68056.9,68056.8,68056.8,68056.8,68056.8,68056.7,68056.7,68056.7,68056.6,68056.6 ,68056.6,68056.6,68056.7,68056.7,68056.7,68056.7,68056.7,68056.7,68056.8,68056.8,68056.9,68057.0,68057.0,68057.1,68057.1 ,68057.5,68057.6,68057.6,68057.7,68058.0,68058.2,68058.3,68058.2,68058.3,68058.6,68058.7,68058.8,68059.0,68059.1,68059.2 ,68059.4,68059.5)

Forward_Angle2_SME1_Bump =
(70088.3,70088.7,70088.3,70088.8,70088.9,70089.3,70089.7,70090.1,70090.3,70090.5,70090.7,70091.1,70091.3,70091.5,70091.6 ,70091.7,70091.8,70091.9,70091.9,70093.3,70093.6,70093.7,70093.9,70094.0,70094.2,70094.3,70094.5,70094.4,70094.9,70095.4 ,70095.9,70096.4,70096.9,70097.4,70097.4,70097.9,70098.0,70098.5,70099.1,70099.6,70100.3,70100.7,70101.0,70102.1,70102.2 ,70102.3,70102.4,70102.4,70102.5,70102.6,70102.9,70103.2,70103.4,70103.6,70103.8,70104.0,70104.3,70104.5,70104.7,70104.6 ,70105.0,70105.3,70105.7,70106.0,70106.4,70106.7,70106.4,70106.6,70106.9,70107.1,70107.5,70107.8,70108.2,70108.5,70108.8 ,70109.3,70109.5,70109.8,70110.6,70111.0,70111.3,70111.5,70111.9,70112.3,70112.4,70112.8,70113.2,70113.6,70114.0,70114.4 ,70114.8,70114.7)

Forward_FHSERR_SME1_Bump =
(2147,2147,2147,2148,2148,2148,2149,2149,2150,2150,2150,2151,2151,2152,2152,2152,2152,2152,2152,2154,2155,2155,2155,2 $155,2156,2156,2156,2156,2157,2158,2158,2159,2160,2160,2160,2161,2161,2162,2162,2163,2164,2164,2165,2167,2167,2167,21$ 67,2167,2167,2168,2168,2168,2168,2169,2169,2169,2170,2170,2170,2170,2171,2171,2171,2172,2172,2172,2172,2172,2173,217 $3,2173,2173,2174,2174,2174,2174,2175,2175,2176,2176,2176,2176,2177,2177,2177,2177,2177,2178,2178,2178,2178,2178)$

Forward_SHSERR_SME1_Bump $=(-2101,-2101,-2101,-2102,-2102,-2103,-2103,-2104,-2104,-2104,-2105,-2105,-2105,-2106,-$ $2106,-2106,-2106,-2106,-2106,-2108,-2109,-2109,-2109,-2109,-2110,-2110,-2111,-2111,-2111,-2112,-2113,-2113,-2114,-2115,-$ $2114,-2115,-2115,-2116,-2117,-2117,-2118,-2119,-2119,-2121,-2121,-2121,-2121,-2122,-2122,-2122,-2122,-2122,-2123,-2123,-$ $2123,-2124,-2124,-2124,-2124,-2124,-2125,-2125,-2125,-2126,-2126,-2127,-2126,-2127,-2127,-2127,-2127,-2128,-2128,-2128,-$ $2129,-2129,-2129,-2129,-2130,-2130,-2130,-2130,-2131,-2131,-2131,-2131,-2132,-2132,-2132,-2132,-2133,-2132)$

Reverse_Along_SME1_Bump $=(-7.338293 \mathrm{E}-12,-2.992738 \mathrm{E}-03,-2.619761 \mathrm{E}-01,1.526341 \mathrm{E}+01,-2.732670 \mathrm{E}+02$, $1.750636 \mathrm{E}+03$)

Reverse_Cross_SME1_Bump $=(1.779879 \mathrm{E}-05,3.316772 \mathrm{E}-04,-1.641136 \mathrm{E}-02,6.902699 \mathrm{E}-01,-9.899752 \mathrm{E}+00,5.043054 \mathrm{E}+01)$ Reverse_Angle1_SME1_Bump =
(68348.9,68349.1,68348.4,68348.5,68348.5,68348.5,68348.6,68348.7,68348.6,68348.6,68348.5,68348.8,68348.7,68348.7,68348.5 ,68348.4,68348.3,68348.2,68348.1,68348.8,68348.9,68348.9,68348.8,68348.7,68348.6,68348.5,68348.5,68347.8,68348.0,68348.2 ,68348.4,68348.5,68348.7,68348.9,68349.0,68349.2,68349.3,68349.4,68349.5,68349.7,68350.1,68350.1,68350.0,68350.5,68350.6 ,68350.6,68350.6,68350.6,68350.7,68350.7,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68351.0 ,68351.0,68351.1,68351.2,68351.3,68351.3,68351.4,68351.6,68351.8,68352.0,68352.2,68352.4,68352.6,68352.9,68353.1,68353.2 ,68354.4,68354.7,68355.0,68354.8,68355.3,68355.7,68356.1,68355.4,68355.8,68356.3,68356.9,68357.4,68357.9,68358.9,68359.3 ,68359.8,68360.4)

Reverse_Angle2_SME1_Bump =
(69377.0,69377.2,69377.2,69377.3,69377.5,69377.7,69377.8,69378.0,69378.1,69378.1,69378.2,69378.6,69378.7,69378.6,69378.8 ,69378.9,69379.0,69379.2,69379.3,69379.2,69379.4,69379.5,69379.7,69379.8,69379.8,69379.8,69379.9,69379.8,69379.9,69380.0 ,69380.1,69380.2,69380.3,69380.3,69380.4,69380.6,69380.7,69380.8,69380.9,69381.0,69381.4,69381.4,69381.5,69381.0,69381.1 ,69381.2,69381.3,69381.4,69381.5,69381.5,69381.6,69381.7,69381.9,69382.0,69382.2,69382.3,69382.5,69382.6,69382.8,69382.7 ,69382.9,69383.1,69383.3,69383.6,69383.8,69384.0,69383.7,69383.9,69384.0,69384.1,69384.3,69384.5,69384.7,69384.8,69385.0 ,69385.8,69385.9,69385.9,69386.3,69386.6,69386.8,69387.0,69387.0,69387.1,69387.4,69387.6,69387.8,69388.0,69388.1,69388.3 ,69388.6,69388.6)

Reverse_FHSERR_SME1_Bump =
(1442,1442,1443,1443,1443,1444,1444,1444,1444,1444, 1444, 1444, 1444, 1445, 1445, 1445, 1445, 1446, 1446, 1445, 1445, 1445, 1446, 1 $446,1446,1446,1446,1447,1447,1447,1447,1446,1446,1446,1446,1446,1446,1446,1446,1446,1446,1446,1446,1445,1445,1445,14$ $45,1445,1445,1446,1445,1446,1446,1446,1446,1446,1446,1447,1447,1446,1447,1447,1447,1447,1447,1448,1447,1447,1447,144$ $7,1447,1447,1447,1447,1446,1446,1446,1446,1446,1446,1446,1445,1446,1446,1446,1445,1445,1444,1443,1443,1443,1442)$

Reverse_SHSERR_SME1_Bump $=(-1397,-1397,-1397,-1397,-1398,-1398,-1398,-1398,-1398,-1398,-1398,-1398,-1399,-1399$,-1399,-1399,-1400,-1400,-1400,-1399,-1399,-1400,-1400,-1400,-1400,-1400,-1400,-1401,-1401,-1401,-1401,-1401,-1401,-1400,-$1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1399,-1399,-1399,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-$ $1400,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1402,-1402,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-$ $1401,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1399,-1399,-1399,-1398,-1397,-1397,-1396)$
END_GROUP = ANGLES_SME1_BUMP
GROUP = ANGLES_SME2_BUMP
Forward_Along_SME2_Bump $=(1.251220 \mathrm{E}-11,-9.068689 \mathrm{E}-03,4.031291 \mathrm{E}-01,-1.339203 \mathrm{E}+01,2.606205 \mathrm{E}+02,-1.793570 \mathrm{E}+03)$ Forward_Cross_SME2_Bump $=(3.714633 \mathrm{E}-05,-3.501001 \mathrm{E}-04,-1.098810 \mathrm{E}-02,4.363837 \mathrm{E}-01,-4.996861 \mathrm{E}+00,1.733860 \mathrm{E}+01)$ Forward_Angle1_SME2_Bump =
(68060.7,68060.7,68060.3,68060.2,68060.2,68060.1,68060.1,68060.0,68060.0,68059.9,68059.8,68059.9,68059.8,68059.5,68059.5 ,68059.5,68059.5,68059.5,68059.5,68059.0,68059.0,68058.9,68059.0,68058.8,68058.7,68058.5,68058.3,68058.3,68058.2,68058.1 ,68058.1,68058.0,68057.9,68057.8,68058.0,68058.0,68057.8,68057.7,68057.7,68057.6,68057.7,68057.6,68057.4,68056.9,68056.9
,68056.9,68056.8,68056.8,68056.8,68056.8,68056.9,68056.8,68056.8,68056.8,68056.8,68056.7,68056.7,68056.7,68056.6,68056.6 ,68056.6,68056.6,68056.7,68056.7,68056.7,68056.7,68056.7,68056.7,68056.8,68056.8,68056.9,68057.0,68057.0,68057.1,68057.1 ,68057.5,68057.6,68057.6,68057.7,68058.0,68058.2,68058.3,68058.2,68058.3,68058.6,68058.7,68058.8,68059.0,68059.1,68059.2 ,68059.4,68059.5)
Forward_Angle2_SME2_Bump =
(70088.3,70088.7,70088.3,70088.8,70088.9,70089.3,70089.7,70090.1,70090.3,70090.5,70090.7,70091.1,70091.3,70091.5,70091.6 ,70091.7,70091.8,70091.9,70091.9,70093.3,70093.6,70093.7,70093.9,70094.0,70094.2,70094.3,70094.5,70094.4,70094.9,70095.4 ,70095.9,70096.4,70096.9,70097.4,70097.4,70097.9,70098.0,70098.5,70099.1,70099.6,70100.3,70100.7,70101.0,70102.1,70102.2 ,70102.3,70102.4,70102.4,70102.5,70102.6,70102.9,70103.2,70103.4,70103.6,70103.8,70104.0,70104.3,70104.5,70104.7,70104.6 ,70105.0,70105.3,70105.7,70106.0,70106.4,70106.7,70106.4,70106.6,70106.9,70107.1,70107.5,70107.8,70108.2,70108.5,70108.8 ,70109.3,70109.5,70109.8,70110.6,70111.0,70111.3,70111.5,70111.9,70112.3,70112.4,70112.8,70113.2,70113.6,70114.0,70114.4 ,70114.8,70114.7)

Forward_FHSERR_SME2_Bump =
(2147,2147,2147,2148,2148,2148,2149,2149,2150,2150,2150,2151,2151,2152,2152,2152,2152,2152,2152,2154,2155,2155,2155,2 $155,2156,2156,2156,2156,2157,2158,2158,2159,2160,2160,2160,2161,2161,2162,2162,2163,2164,2164,2165,2167,2167,2167,21$ $67,2167,2167,2168,2168,2168,2168,2169,2169,2169,2170,2170,2170,2170,2171,2171,2171,2172,2172,2172,2172,2172,2173,217$ 3,2173,2173,2174,2174,2174,2174,2175,2175,2176,2176,2176,2176,2177,2177,2177,2177,2177,2178,2178,2178,2178,2178)

Forward_SHSERR_SME2_Bump $=(-2101,-2101,-2101,-2102,-2102,-2103,-2103,-2104,-2104,-2104,-2105,-2105,-2105,-2106,-$ 2106,-2106,-2106,-2106,-2106,-2108,-2109,-2109,-2109,-2109,-2110,-2110,-2111,-2111,-2111,-2112,-2113,-2113,-2114,-2115,-2114,-2115,-2115,-2116,-2117,-2117,-2118,-2119,-2119,-2121,-2121,-2121,-2121,-2122,-2122,-2122,-2122,-2122,-2123,-2123,-2123,-2124,-2124,-2124,-2124,-2124,-2125,-2125,-2125,-2126,-2126,-2127,-2126,-2127,-2127,-2127,-2127,-2128,-2128,-2128,-2129,-2129,-2129,-2129,-2130,-2130,-2130,-2130,-2131,-2131,-2131,-2131,-2132,-2132,-2132,-2132,-2133,-2132)

Reverse_Along_SME2_Bump $=(-8.034324 \mathrm{E}-12,-3.029990 \mathrm{E}-03,-2.581620 \mathrm{E}-01,1.511157 \mathrm{E}+01,-2.706933 \mathrm{E}+02,1.735135 \mathrm{E}+03)$
Reverse_Cross_SME2_Bump $=(1.783806 \mathrm{E}-05,3.467927 \mathrm{E}-04,-1.882727 \mathrm{E}-02,8.256714 \mathrm{E}-01,-1.270779 \mathrm{E}+01,6.979331 \mathrm{E}+01)$
Reverse_Angle1_SME2_Bump =
(68348.9,68349.1,68348.4,68348.5,68348.5,68348.5,68348.6,68348.7,68348.6,68348.6,68348.5,68348.8,68348.7,68348.7,68348.5 ,68348.4,68348.3,68348.2,68348.1,68348.8,68348.9,68348.9,68348.8,68348.7,68348.6,68348.5,68348.5,68347.8,68348.0,68348.2 ,68348.4,68348.5,68348.7,68348.9,68349.0,68349.2,68349.3,68349.4,68349.5,68349.7,68350.1,68350.1,68350.0,68350.5,68350.6 ,68350.6,68350.6,68350.6,68350.7,68350.7,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68350.8,68351.0 ,68351.0,68351.1,68351.2,68351.3,68351.3,68351.4,68351.6,68351.8,68352.0,68352.2,68352.4,68352.6,68352.9,68353.1,68353.2 ,68354.4,68354.7,68355.0,68354.8,68355.3,68355.7,68356.1,68355.4,68355.8,68356.3,68356.9,68357.4,68357.9,68358.9,68359.3 ,68359.8,68360.4)
Reverse Angle2 SME2 Bump =
(69377.0,69377.2,69377.2,69377.3,69377.5,69377.7,69377.8,69378.0,69378.1,69378.1,69378.2,69378.6,69378.7,69378.6,69378.8 ,69378.9,69379.0,69379.2,69379.3,69379.2,69379.4,69379.5,69379.7,69379.8,69379.8,69379.8,69379.9,69379.8,69379.9,69380.0 ,69380.1,69380.2,69380.3,69380.3,69380.4,69380.6,69380.7,69380.8,69380.9,69381.0,69381.4,69381.4,69381.5,69381.0,69381.1 ,69381.2,69381.3,69381.4,69381.5,69381.5,69381.6,69381.7,69381.9,69382.0,69382.2,69382.3,69382.5,69382.6,69382.8,69382.7 ,69382.9,69383.1,69383.3,69383.6,69383.8,69384.0,69383.7,69383.9,69384.0,69384.1,69384.3,69384.5,69384.7,69384.8,69385.0 ,69385.8,69385.9,69385.9,69386.3,69386.6,69386.8,69387.0,69387.0,69387.1,69387.4,69387.6,69387.8,69388.0,69388.1,69388.3 ,69388.6,69388.6)
Reverse_FHSERR_SME2_Bump =
(1442,1442,1443,1443,1443,1444,1444,1444,1444,1444,1444,1444,1444,1445,1445,1445, 1445, 1446, 1446, 1445, 1445, 1445, 1446, 1 $446,1446,1446,1446,1447,1447,1447,1447,1446,1446,1446,1446,1446,1446,1446,1446,1446,1446,1446,1446,1445,1445,1445,14$ $45,1445,1445,1446,1445,1446,1446,1446,1446,1446,1446,1447,1447,1446,1447,1447,1447,1447,1447,1448,1447,1447,1447,144$ $7,1447,1447,1447,1447,1446,1446,1446,1446,1446,1446,1446,1445,1446,1446,1446,1445,1445,1444,1443,1443,1443,1442)$

Reverse_SHSERR_SME2_Bump $=(-1397,-1397,-1397,-1397,-1398,-1398,-1398,-1398,-1398,-1398,-1398,-1398,-1399,-1399,-$ 1399,-1399,-1400,-1400,-1400,-1399,-1399,-1400,-1400,-1400,-1400,-1400,-1400,-1401,-1401,-1401,-1401,-1401,-1401,-1400,--1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1399,-1399,-1399,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1401,-1401,--1401,-1401,-1401,-1401,-1401,-1401,-1401,-1402,-1402,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1401,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1400,-1399,-1399,-1399,-1398,-1397,-1397,-1396)
END_GROUP $=$ ANGLES_SME2_BUMP
END_GROUP $=$ MIRROR_PARAMETERS

GROUP = BUMPER_MODE_PARAMETERS

SME1_BumperA_Dwell_Time =
(9970.61,9970.71,9970.37,9970.45,9970.41,9970.44,9970.47,9970.50,9970.50,9970.47,9970.44,9970.58,9970.54,9970.50,9970.45 ,9970.40,9970.35,9970.31,9970.25,9970.57,9970.62,9970.59,9970.57,9970.53,9970.49,9970.45,9970.41,9970.12,9970.20,9970.29 ,9970.37,9970.45,9970.54,9970.62,9970.65,9970.74,9970.77,9970.83,9970.89,9970.94,9971.13,9971.12,9971.11,9971.34,9971.35 ,9971.36,9971.37,9971.38,9971.39,9971.40,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.53 ,9971.56,9971.59,9971.62,9971.65,9971.68,9971.71,9971.81,9971.90,9971.99,9972.07,9972.16,9972.24,9972.37,9972.45,9972.53 ,9973.06,9973.20,9973.32,9973.23,9973.42,9973.60,9973.78,9973.49,9973.68,9973.90,9974.13,9974.36,9974.60,9975.03,9975.23 ,9975.42,9975.71)
SME1_BumperA_Pickoff_Time =
(1124.01, 1124.19, $1124.00,1124.21,1124.28,1124.45,1124.63,1124.80,1124.87,1124.96,1125.05,1125.23,1125.28,1125.39,1125.43$,1125.47,1125.51,1125.55,1125.58,1126.17,1126.31,1126.37,1126.43,1126.49,1126.56,1126.62,1126.69,1126.68,1126.89,1127.11 ,1127.32,1127.54,1127.75,1127.97,1127.96,1128.19,1128.25,1128.47,1128.69,1128.91,1129.24,1129.39,1129.54,1130.02,1130.05 ,1130.09,1130.13,1130.16,1130.20,1130.24,1130.38,1130.47,1130.57,1130.67,1130.76,1130.86,1130.96,1131.05,1131.15,1131.12 ,1131.27,1131.42,1131.57,1131.73,1131.88,1132.03,1131.87,1131.99,1132.10,1132.21,1132.37,1132.52,1132.66,1132.80,1132.95 ,1133.16,1133.25,1133.38,1133.70,1133.90,1133.99,1134.09,1134.29,1134.47,1134.49,1134.65,1134.82,1134.99,1135.20,1135.36 ,1135.52,1135.48)

SME1 BumperA Offset Time $=10110.00$
SME1_BumperA_Angle $=-68665.0$
SME1-BumperB_Dwell_Time $=$
(9869.81,9869.84,9869.65,9869.62,9869.60,9869.58,9869.55,9869.52,9869.50,9869.46,9869.42,9869.47,9869.44,9869.32,9869.32 ,9869.32,9869.32,9869.31,9869.31,9869.10,9869.10,9869.07,9869.09,9869.02,9868.95,9868.87,9868.80,9868.78,9868.75,9868.72 ,9868.68,9868.65,9868.61,9868.58,9868.67,9868.64,9868.57,9868.54,9868.51,9868.48,9868.51,9868.46,9868.42,9868.19,9868.18 ,9868.17,9868.15,9868.14,9868.13,9868.11,9868.16,9868.15,9868.14,9868.13,9868.12,9868.10,9868.09,9868.08,9868.07,9868.03 ,9868.05,9868.06,9868.08,9868.09,9868.10,9868.12,9868.07,9868.10,9868.12,9868.15,9868.19,9868.21,9868.24,9868.27,9868.30 ,9868.45,9868.51,9868.50,9868.56,9868.68,9868.76,9868.83,9868.77,9868.82,9868.93,9868.99,9869.05,9869.12,9869.17,9869.23 ,9869.30,9869.35)
SME1_BumperB_Pickoff_Time =
(837.81,837.93,837.89,837.98,838.05,838.12,838.18,838.25,838.30,838.33,838.36,838.51,838.55,838.53,838.60,838.66,838.72,83 8.78,838.84,838.78,838.88,838.93,839.02,839.04,839.05,839.07,839.08,839.06,839.10,839.14,839.18,839.22,839.25,839.29,839.3 $4,839.38,839.43,839.47,839.51,839.56,839.76,839.77,839.78,839.59,839.63,839.67,839.70,839.74,839.78,839.81,839.82,839.89,8$ $39.95,840.02,840.08,840.15,840.22,840.28,840.35,840.30,840.40,840.50,840.60,840.69,840.79,840.89,840.76,840.82,840.88,840$. $94,841.04,841.10,841.18,841.24,841.31,841.67,841.73,841.73,841.89,842.02,842.10,842.19,842.17,842.25,842.35,842.44,842.53$, 842.62,842.67,842.77,842.87,842.89)

SME1_BumperB_Offset_Time = 10110.00
SME1_BumperB_Angle $=68607.0$
SME2_BumperA_Dwell_Time =
(9970.61,9970.71,9970.37,9970.45,9970.41,9970.44,9970.47,9970.50,9970.50,9970.47,9970.44,9970.58,9970.54,9970.50,9970.45 ,9970.40,9970.35,9970.31,9970.25,9970.57,9970.62,9970.59,9970.57,9970.53,9970.49,9970.45,9970.41,9970.12,9970.20,9970.29 ,9970.37,9970.45,9970.54,9970.62,9970.65,9970.74,9970.77,9970.83,9970.89,9970.94,9971.13,9971.12,9971.11,9971.34,9971.35 ,9971.36,9971.37,9971.38,9971.39,9971.40,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.44,9971.53 ,9971.56,9971.59,9971.62,9971.65,9971.68,9971.71,9971.81,9971.90,9971.99,9972.07,9972.16,9972.24,9972.37,9972.45,9972.53 ,9973.06,9973.20,9973.32,9973.23,9973.42,9973.60,9973.78,9973.49,9973.68,9973.90,9974.13,9974.36,9974.60,9975.03,9975.23 ,9975.42,9975.71)
SME2_BumperA_Pickoff_Time =
(1124.01,1124.19,1124.00,1124.21,1124.28,1124.45,1124.63,1124.80,1124.87,1124.96,1125.05,1125.23,1125.28,1125.39,1125.43 , $1125.47,1125.51,1125.55,1125.58,1126.17,1126.31,1126.37,1126.43,1126.49,1126.56,1126.62,1126.69,1126.68,1126.89,1127.11$,1127.32,1127.54,1127.75,1127.97,1127.96,1128.19,1128.25,1128.47,1128.69,1128.91,1129.24,1129.39,1129.54,1130.02,1130.05 ,1130.09,1130.13,1130.16,1130.20,1130.24,1130.38,1130.47,1130.57,1130.67,1130.76,1130.86,1130.96,1131.05,1131.15,1131.12 ,1131.27,1131.42,1131.57,1131.73,1131.88,1132.03,1131.87,1131.99,1132.10,1132.21,1132.37,1132.52,1132.66,1132.80,1132.95 ,1133.16,1133.25,1133.38,1133.70,1133.90,1133.99,1134.09,1134.29,1134.47,1134.49,1134.65,1134.82,1134.99,1135.20,1135.36 ,1135.52,1135.48)
SME2_BumperA_Offset_Time $=10110.00$
SME2_BumperA_Angle $=-68665.0$
SME2_BumperB_Dwell_Time =
(9869.81,9869.84, $9869.65,9869.62,9869.60,9869.58,9869.55,9869.52,9869.50,9869.46,9869.42,9869.47,9869.44,9869.32,9869.32$,9869.32,9869.32,9869.31,9869.31,9869.10,9869.10,9869.07,9869.09,9869.02,9868.95,9868.87,9868.80,9868.78,9868.75,9868.72 ,9868.68,9868.65,9868.61,9868.58,9868.67,9868.64,9868.57,9868.54,9868.51,9868.48,9868.51,9868.46,9868.42,9868.19,9868.18 ,9868.17,9868.15,9868.14,9868.13,9868.11,9868.16,9868.15,9868.14,9868.13,9868.12,9868.10,9868.09,9868.08,9868.07,9868.03 ,9868.05,9868.06,9868.08,9868.09,9868.10,9868.12,9868.07,9868.10,9868.12,9868.15,9868.19,9868.21,9868.24,9868.27,9868.30 ,9868.45,9868.51,9868.50,9868.56,9868.68,9868.76,9868.83,9868.77,9868.82,9868.93,9868.99,9869.05,9869.12,9869.17,9869.23 ,9869.30,9869.35)
SME2_BumperB_Pickoff_Time $=$
(837.81, $837.93,83 \overline{7} .89,83 \overline{7} .98,838.05,838.12,838.18,838.25,838.30,838.33,838.36,838.51,838.55,838.53,838.60,838.66,838.72,83$ 8.78,838.84,838.78,838.88,838.93,839.02,839.04,839.05,839.07,839.08,839.06,839.10,839.14,839.18,839.22,839.25,839.29,839.3 $4,839.38,839.43,839.47,839.51,839.56,839.76,839.77,839.78,839.59,839.63,839.67,839.70,839.74,839.78,839.81,839.82,839.89,8$ $39.95,840.02,840.08,840.15,840.22,840.28,840.35,840.30,840.40,840.50,840.60,840.69,840.79,840.89,840.76,840.82,840.88,840$. $94,841.04,841.10,841.18,841.24,841.31,841.67,841.73,841.73,841.89,842.02,842.10,842.19,842.17,842.25,842.35,842.44,842.53$, 842.62,842.67,842.77,842.87,842.89)

SME2_BumperB_Offset_Time = 10110.00
SME2_BumperB_Angle $=68607.0$
END_GROUP = BUMPER_MODE_PARAMETERS
GROUP = SCAN_LINE_CORRECTOR
Primary_Angular_Velocity $=0.00966$
Secondary_Angular_Velocity $=0.00960$
Primary_Corrector_Motion $=(0.00000,0.00000,0.00000,0.00000,0.00000,0.00000)$
Secondary_Corrector_Motion $=(0.00000,0.00000,0.00000,0.00000,0.00000,0.00000)$
Unpowered_Pointing_Bias $=0.0000000$
END_GROUP = SCAN_LINE_CORRECTOR
GROUP $=$ FOCAL_PLANE_PARAMETERS
GROUP = BAND_OFFSETS
Along_Scan_Band_Offsets $=(+3628.958,+2566.458,+1503.958,+441.458,-2576.042,-4052.917,-1471.042)$
Across_Scan_Band_Offsets $=(+1.700,+1.700,+0.425,+0.000,+4.675,+5.950,+5.100)$
Forward_Focal_Plane_Offsets $=(+25.0,+50.0,+75.0,+100.0,+171.0,+208.0,+145.0)$
Reverse_Focal_Plane_Offsets $=(-25.0,-50.0,-75.0,-100.0,-171.0,-211.0,-145.0)$

Reverse_Across_Scan_DO_B6 $=(0.000,0.000,0.000,0.000)$
Forward_Across_Scan_DO_B7 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.000,0.000$)
Reverse_Across_Scan_DO_B7 $=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000$, $0.000,0.000,0.000$)
END_GROUP = DETECTOR_OFFSETS
GROUP = ODD_EVEN_OFFSETS
Forward_Even_Detector_Shift = (51.0, 76.0, 101.0, 126.0, 197.0, 57.0, 171.0)
Forward_Odd_Detector_Shift = (53.0, 78.0, 103.0, 128.0, 199.0, 59.0, 173.0)
Reverse_Even_Detector_Shift = (43.0, 68.0, 93.0, 118.0, 189.0, 55.0, 163.0)
Reverse_Odd_Detector_Shift = (46.0, 71.0, 96.0, 121.0, 192.0, 58.0, 166.0)
END_GROUP = ODD_EVEN_OFFSETS
END_GROUP $=$ FOCAL_PLANE_PARAMETERS
GROUP = ATTITUDE_PARAMETERS
Gyro_To_Attitude_Mātrix $=(+1.0000 \mathrm{E} 0,+8.9880 \mathrm{E}-5,+1.7320 \mathrm{E}-5,+5.8319 \mathrm{E}-4,+0.9999998 \mathrm{E} 0,+7.7871 \mathrm{E}-4,-1.5694 \mathrm{E}-4,-$ $5.1692 \mathrm{E}-4,+0.9999998 \mathrm{E} 0)$
ADSA_To_TM_Matrix $=(+1.0000 \mathrm{E} 0,+0.0000 \mathrm{E} 0,+0.0000 \mathrm{E} 0,+0.0000 \mathrm{E} 0,+9.396926 \mathrm{E}-1,-3.420201 \mathrm{E}-1,+0.0000 \mathrm{E} 0,+3.420201 \mathrm{E}-$ $1,+9.396926 \mathrm{E}-\overline{1})$
Attitude_To_TM_Matrix $=(+9.99999851 \mathrm{E}-01,+5.45640973 \mathrm{E}-04,-9.00000000 \mathrm{E}-06,-5.45647569 \mathrm{E}-04,+9.99999570 \mathrm{E}-01$,
$-7.49999930 \overline{\mathrm{E}}-04,+8.59076544 \mathrm{E}-06,+7.50004729 \mathrm{E}-04,+9.99999719 \mathrm{E}-01$)

Spacecraft_Roll_Bias $=0.0000000$
Spacecraft_Pitch_Bias $=0.0000000$
Spacecraft Yaw Bias $=0.0000000$
END_GROUP = ATTITUDE_PARAMETERS
GROUP = TIME_PARAMETERS
Scan_Time $=60743.0$
Forward_First_Half_Time $=30371.4$
Forward_Second_Half_Time = 30371.6
Reverse_First_Half_Time $=30371.6$
Reverse_Second_Half_Time $=30371.4$
END_GROUP $=$ TIME_PARAMETERS
GROUP = TRANSFER_FUNCTION
GROUP = IMU
$\mathrm{Fn}=2.2010$
Zeta $=0.7022$
Tau $=11.4468 \mathrm{E}-3$
$\mathrm{P}=-3.2590 \mathrm{E}-3$
$\mathrm{Ak}=1.00518$
END_GROUP = IMU
GROUP = ADS
ADS_num $=(0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,+4.3830 \mathrm{E} 6,+5.4890 \mathrm{E} 5,-3.5290 \mathrm{E} 2,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,+5.1110 \mathrm{E} 6$,
$+5.6490 \mathrm{E} 5,-3.7400 \mathrm{E} 2,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,+4.5030 \mathrm{E} 6,+5.5060 \mathrm{E} 5,-3.5960 \mathrm{E} 2)$
ADS_den $=(+2.8470 \mathrm{E} 8,+6.2750 \mathrm{E} 8,+1.6550 \mathrm{E} 8,+1.4240 \mathrm{E} 7,+5.9530 \mathrm{E} 5,+9.2030 \mathrm{E} 2,+3.2140 \mathrm{E} 8,+7.1220 \mathrm{E} 8,+1.7910 \mathrm{E} 8$,
$+1.2780 \mathrm{E} 7,+6.0710 \mathrm{E} 5,+9.5650 \mathrm{E} 2,+4.3520 \mathrm{E} 8,+6.1010 \mathrm{E} 8,+1.5350 \mathrm{E} 8,+1.1730 \mathrm{E} 7,+6.0310 \mathrm{E} 5,+9.4910 \mathrm{E} 2)$
ADS_num_temp $=(0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$, $0.0000 \mathrm{E} 0,0 . \overline{0} 000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{EO}, 0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$)

ADS_den_temp $=(0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$, $0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E}, 0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$)
END_GROUP = ADS
GROUP = PREFILTER
ADSPre_W $=(0.0,0.0,0.0,0.0,0.0)$
ADSPre_H $=(0.0,0.0,0.0,0.0,0.0)$
ADSPre_T $=(0.0,0.0,0.0,0.0,0.0)$
END_GROUP = PREFILTER
END_GROUP = TRANSFER_FUNCTION
GROUP = UT1_TIME_PARAMETERS
UT1_Year =
(2005,2 005,20 05,200 5,2005, 2005,2 005,20 05,200 5,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005,2005)
UT1_Month =
("May","May","May","May","May","May","May","May","May","May","May","May","May","May","May","Jun","Jun","Jun","Jun","Jun","Jun ","Jun"," Jun","Jun","Jul","Jul","Jul","Jul","Jul","Jul","Jul","Jul",",Jul","Jul","Jul","Jul","Jul","Jul","Jul",","Jul","Jul","Jul","Jul","Jul","Jul","Jul","Jul","Ju l","Jul","Jul","Jul","Jul","Jul","Jul","Jul","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug"," "Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Aug","Sep","Sep","Sep","Sep","Sep","
 Sep","Sep","Sep","Sep","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct ","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Oct","Nov","Nov","Nov","Nov","Nov","Nov","Nov","Nov","Nov","Nov
","Nov","Nov")
UT1_Day =
 ,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,1 $9,20,21,22,23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,1,2,3,4,5$, $6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,1,2,3,4,5,6,7,8,9,10,11,12)$ UT1_Modified_Julian =
(53507,53508,53509,53510,53511,53512,53513,53514,53515,53516,53517,53518,53519,53520,53521,53522,53523,53524,53525, $53526,53527,53528,53529,53530,53531,53532,53533,53534,53535,53536,53537,53538,53539,53540,53541,53542,53543,53544$, $53545,53546,53547,53548,53549,53550,53551,53552,53553,53554,53555,53556,53557,53558,53559,53560,53561,53562,53563$, $53564,53565,53566,53567,53568,53569,53570,53571,53572,53573,53574,53575,53576,53577,53578,53579,53580,53581,53582$, $53583,53584,53585,53586,53587,53588,53589,53590,53591,53592,53593,53594,53595,53596,53597,53598,53599,53600,53601$, $53602,53603,53604,53605,53606,53607,53608,53609,53610,53611,53612,53613,53614,53615,53616,53617,53618,53619,53620$,
$53621,53622,53623,53624,53625,53626,53627,53628,53629,53630,53631,53632,53633,53634,53635,53636,53637,53638,53639$, $53640,53641,53642,53643,53644,53645,53646,53647,53648,53649,53650,53651,53652,53653,53654,53655,53656,53657,53658$, $53659,53660,53661,53662,53663,53664,53665,53666,53667,53668,53669,53670,53671,53672,53673,53674,53675,53676,53677$, 53678,53679,53680,53681,53682,53683,53684,53685,53686)
UT1_X = $(-0.06747,-0.06832,-0.06926,-0.07003,-0.07063,-0.07101,-0.07126,-0.07141,-0.07133,-0.07042,-0.06902,-0.06806,-$ $0.06716,-0.06602,-0.06457,-0.06294,-0.06159,-0.06045,-0.05998,-0.05958,-0.05914,-0.05856,-0.05821,-0.05763,-0.05670,-$ $0.05554,-0.05441,-0.05333,-0.05253,-0.05206,-0.05144,-0.05056,-0.04954,-0.04834,-0.04718,-0.04625,-0.04576,-0.04513$, $0.04448,-0.04379,-0.04284,-0.04160,-0.04042,-0.03993,-0.03991,-0.04003,-0.03941,-0.03852,-0.03751,-0.03620,-0.03444,-$ $0.03279,-0.03132,-0.02991,-0.02862,-0.02764,-0.02662,-0.02563,-0.02440,-0.02306,-0.02171,-0.02051,-0.01973,-0.01915,-$ $0.01837,-0.01697,-0.01545,-0.01402,-0.01298,-0.01212,-0.01128,-0.01033,-0.00934,-0.00818,-0.00644,-0.00455,-0.00289,-$ $0.00122,0.00080,0.00296,0.00484,0.00664,0.00870,0.01110,0.01382,0.01626,0.01830,0.02003,0.02159,0.02282,0.02387,0.02489$, $0.02604,0.02721,0.02845,0.02986,0.03132,0.03274,0.03426,0.03562,0.03700,0.03826,0.03945,0.04059,0.04146,0.04193,0.04192$, $0.04201,0.04211,0.04233,0.04281,0.04361,0.04469,0.04601,0.04724,0.04850,0.04942,0.05010,0.05047,0.05040,0.05016,0.05018$, $0.05092,0.05191,0.05255,0.05266,0.05266,0.05311,0.05364,0.05439,0.05535,0.05625,0.05679,0.05712,0.05784,0.05856,0.05877$, $0.05872,0.05864,0.05899,0.05991,0.06090,0.06215,0.06326,0.06399,0.06452,0.06498,0.06514,0.06531,0.06573,0.06628,0.06698$, $0.06796,0.06922,0.07052,0.07090,0.07100,0.07101,0.07101,0.07094,0.07090,0.07089,0.07057,0.07012,0.06983,0.06952,0.06946$, $0.07014,0.07115,0.07229,0.07290,0.07307,0.07307,0.07291,0.07268,0.07256,0.07245,0.07222,0.07153,0.07082)$
UT1_Y =
(0.32492,0.32630,0.32766,0.32909,0.33054,0.33214,0.33382,0.33547,0.33721,0.33917,0.34142,0.34357,0.34569,0.34780,0.34958 , $0.35094,0.35251,0.35438,0.35633,0.35811,0.35966,0.36102,0.36218,0.36326,0.36470,0.36671,0.36881,0.37094,0.37302,0.37478$, $0.37628,0.37779,0.37934,0.38096,0.38261,0.38422,0.38583,0.38712,0.38819,0.38944,0.39060,0.39180,0.39329,0.39470,0.39594$, $0.39679,0.39780,0.39878,0.39980,0.40113,0.40269,0.40445,0.40600,0.40725,0.40803,0.40865,0.40929,0.41012,0.41124,0.41253$, $0.41358,0.41428,0.41478,0.41511,0.41525,0.41552,0.41618,0.41699,0.41783,0.41856,0.41908,0.41955,0.41992,0.42013,0.42036$, $0.42074,0.42114,0.42140,0.42161,0.42186,0.42203,0.42245,0.42287,0.42337,0.42423,0.42520,0.42625,0.42712,0.42775,0.42833$, $0.42885,0.42921,0.42933,0.42923,0.42898,0.42887,0.42891,0.42884,0.42850,0.42841,0.42829,0.42788,0.42692,0.42601,0.42551$, $0.42522,0.42494,0.42504,0.42535,0.42523,0.42468,0.42405,0.42355,0.42322,0.42283,0.42282,0.42298,0.42311,0.42300,0.42237$, $0.42138,0.42098,0.42108,0.42137,0.42175,0.42161,0.42094,0.42011,0.41929,0.41877,0.41818,0.41760,0.41724,0.41686,0.41669$, $0.41686,0.41695,0.41702,0.41681,0.41626,0.41551,0.41521,0.41524,0.41559,0.41558,0.41505,0.41428,0.41337,0.41274,0.41202$, $0.41102,0.40977,0.40863,0.40802,0.40776,0.40756,0.40723,0.40687,0.40628,0.40561,0.40499,0.40441,0.40367,0.40281,0.40205$ $, 0.40141,0.40048,0.39954,0.39876,0.39822,0.39757,0.39704,0.39641,0.39590,0.39540,0.39519,0.39482,0.39449,0.39375,0.39329$)
UT1_UTC $=(-0.60960,-0.61043,-0.61138,-0.61241,-0.61337,-0.61423,-0.61485,-0.61515,-0.61513,-0.61487,-0.61457,-0.61442,-$ $0.61450,-0.61484,-0.61540,-0.61611,-0.61683,-0.61739,-0.61769,-0.61778,-0.61765,-0.61732,-0.61685,-0.61627,-0.61575,-$ $0.61536,-0.61507,-0.61491,-0.61492,-0.61508,-0.61539,-0.61579,-0.61614,-0.61631,-0.61625,-0.61596,-0.61548,-0.61497,-$ $0.61459,-0.61443,-0.61455,-0.61482,-0.61514,-0.61541,-0.61556,-0.61547,-0.61512,-0.61446,-0.61355,-0.61252,-0.61147,-$ $0.61048,-0.60963,-0.60891,-0.60835,-0.60801,-0.60785,-0.60778,-0.60777,-0.60769,-0.60749,-0.60712,-0.60651,-0.60571,-$ $0.60485,-0.60405,-0.60342,-0.60316,-0.60327,-0.60366,-0.60415,-0.60459,-0.60485,-0.60486,-0.60467,-0.60422,-0.60366,-$ $0.60304,-0.60239,-0.60178,-0.60127,-0.60097,-0.60090,-0.60107,-0.60140,-0.60185,-0.60227,-0.60257,-0.60268,-0.60259,-$ $0.60224,-0.60177,-0.60136,-0.60101,-0.60090,-0.60114,-0.60172,-0.60246,-0.60310,-0.60351,-0.60367,-0.60354,-0.60308,-$ $0.60242,-0.60158,-0.60066,-0.59981,-0.59911,-0.59866,-0.59851,-0.59862,-0.59886,-0.59923,-0.59968,-0.60015,-0.60053,-$ $0.60074,-0.60075,-0.60058,-0.60041,-0.60039,-0.60061,-0.60116,-0.60208,-0.60329,-0.60458,-0.60580,-0.60676,-0.60741,-$ $0.60773,-0.60779,-0.60767,-0.60748,-0.60733,-0.60724,-0.60732,-0.60762,-0.60807,-0.60874,-0.60949,-0.61023,-0.61088,-$ $0.61137,-0.61171,-0.61195,-0.61204,-0.61204,-0.61207,-0.61224,-0.61266,-0.61337,-0.61440,-0.61557,-0.61672,-0.61776,-$ $0.61859,-0.61917,-0.61953,-0.61974,-0.61988,-0.62002,-0.62025,-0.62055,-0.62099,-0.62166,-0.62248,-0.62350,-0.62459,-$ $0.62566,-0.62658,-0.62732,-0.62785,-0.62810,-0.62827,-0.62842,-0.62874,-0.62933,-0.63031,-0.63156,-0.63301)$ END_GROUP = UT1_TIME_PARAMETERS

GROUP = TIME_SINCE_LAUNCH

Decimal_Years =
(2005.4986,2005.5014,2005.5041,2005.5068,2005.5096,2005.5123,2005.5151,2005.5178,2005.5205,2005.5233,2005.5260,2005.5 $288,2005.5315,2005.5342,2005.5370,2005.5397,2005.5425,2005.5452,2005.5479,2005.5507,2005.5534,2005.5562,2005.5589,20$ 05.5616,2005.5644,2005.5671,2005.5699,2005.5726,2005.5753,2005.5781,2005.5808,2005.5836,2005.5863,2005.5890,2005.591 8,2005.5945,2005.5973,2005.6000,2005.6027,2005.6055,2005.6082,2005.6110,2005.6137,2005.6164,2005.6192,2005.6219,2005. $6247,2005.6274,2005.6301,2005.6329,2005.6356,2005.6384,2005.6411,2005.6438,2005.6466,2005.6493,2005.6521,2005.6548,2$ 005.6575,2005.6603,2005.6630,2005.6658,2005.6685,2005.6712,2005.6740,2005.6767,2005.6795,2005.6822,2005.6849,2005.68 $77,2005.6904,2005.6932,2005.6959,2005.6986,2005.7014,2005.7041,2005.7068,2005.7096,2005.7123,2005.7151,2005.7178,200$ $5.7205,2005.7233,2005.7260,2005.7288,2005.7315,2005.7342,2005.7370,2005.7397,2005.7425,2005.7452,2005.7479)$
Days_Since_Launch =
(7793,7794,7795,7796,7797,7798,7799,7800,7801,7802,7803,7804,7805,7806,7807,7808,7809,7810,7811,7812,7813,7814,7815,7 $816,7817,7818,7819,7820,7821,7822,7823,7824,7825,7826,7827,7828,7829,7830,7831,7832,7833,7834,7835,7836,7837,7838,78$ $39,7840,7841,7842,7843,7844,7845,7846,7847,7848,7849,7850,7851,7852,7853,7854,7855,7856,7857,7858,7859,7860,7861,786$ $2,7863,7864,7865,7866,7867,7868,7869,7870,7871,7872,7873,7874,7875,7876,7877,7878,7879,7880,7881,7882,7883,7884)$ Day_Of_Year =
(182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211 ,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241 ,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271 ,272,273)
END_GROUP = TIME_SINCE_LAUNCH
GROUP $=$ DETECTOR_STATUS

Status_Band1 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000")
Status_Band2 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000",
"00000", "00000", "00000", "00000")
Status_Band3 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000",
"00000", "00000", "00000", "00000")
Status_Band4 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000",
"00000", "00000", "00000", "00000")
Status_Band5 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000",
"00000", "00000", "00000", "00000")
Status_Band6 = ("00000", "00000", "00000", "00000")
Status_Band7 = ("00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000", "00000",
"00000", "00000", "00000", "00000")
END_GROUP = DETECTOR_STATUS
GROUP = DETECTOR GAINS
GROUP = GAIN_MODEL_PARAMETERS
Band_1_Normalized_IC_Model_Coefficients $=(0.103,0.955,0.881,0.00423766)$
Band_2_Normalized_IC_Model_Coefficients $=(0.081,0.836,0.902,0.00947568)$
Band_3_Normalized_IC_Model_Coefficients $=(0.108,1.002,0.876,0.00925087)$
Band_4_Normalized_IC_Model_Coefficients $=(0.030,1.277,0.904,0.00943492)$
Band_5_Normalized_IC_Model_Coefficients $=(0.031,1.093,0.959,0.00765694)$
Band_6_Normalized_IC_Model_Coefficients $=(0.000,0.000,0.000,0.00000000)$
Band_7_Normalized_IC_Model_Coefficients $=(0.033,0.979,0.972,0.00803238)$
Time_Zero = 1984.207
Band_1_LT_Model_Coefficients $=(0.290100,0.139900,1.209000,0,0,0,0,0,0,0,0,0,0,0,0)$
Band_2_LT_Model_Coefficients $=(0.124600,0.104500,0.630500,0,0,0,0,0,0,0,0,0,0,0,0)$
Band_3_LT-Model_Coefficients $=(0.083900,0.238600,0.902800,0,0,0,0,0,0,0,0,0,0,0,0)$
Band_4_LT_Model_Coefficients $=(0.000000,0.000000,1.082000,0,0,0,0,0,0,0,0,0,0,0,0)$
Band_5_LT_Model_Coefficients $=(0.000000,0.000000,8.209000,0,0,0,0,0,0,0,0,0,0,0,0)$
Band_6_LT_Model_Coefficients $=(0.000000,0.000000,0.000000,0,0,0,0,0,0,0,0,0,0,0,0)$
Band_7_LT-Model_Coefficients $=(0.000000,0.000000,14.695000,0,0,0,0,0,0,0,0,0,0,0,0)$
END_ḠROUP $=$ GAIIN_MODEL_PARAMETERS
GROUP = OUTGASSING_CORRECTION
Outgassing_Events $=(1,135,177,262,351,437,499,569,674,736,801,862,920,996,1065,1142,1240,1338,1436,1534$, 1632, 1723, 1856, 1961, 2108, 2212, 2332, 2468, 2619, 2773, 2983, 3088, 3584, 3640, 4020, 4368, 4762, 5126, 5494, 5867, 6861,
7330, 8052, 8353, 9439, 9999, 9999, 9999, 9999, 9999)
Band_5_Film_Refractive_Index_Part_1 = (1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, $1.2878,1.2878,1.2878,1.2878,1.2878,1.2878$)

Band_5_Film_Absorption_Index_Part_1 = (7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, $7.258 \mathrm{E}-4, \overline{7} .258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4)$

Band_5_ARC_Refractive_Index_Part_1 = (1.6739, 1.6739, 1.6739, 1.6739, 1.6739, 1.6739, 1.6739, 1.6739, 1.6739, 1.6739, $1.6739, \overline{1} . \overline{6} 739, \overline{1} .6739,1.6739,1 . \overline{6} 739,1.6739)$

Band_5_ARC_Thickness_Part_1 = (269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0, 269.0)

Band_5_Oscillating_Period_Part_1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_7_Film_Refractive_Index_Part_1 $=(1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606$,
1.2606, $\overline{1} . \overline{2} 606, \overline{1} .2606,1 . \overline{2} 06,1.2606,1.2606$)

Band_7_Film_Absorption_Index_Part_1 = (2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3,
$2.472 \mathrm{E}-\overline{3}, \overline{2} .472 \overline{\mathrm{E}}-3,2.472 \mathrm{E}-3,2.4 \overline{7} 2 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3)$
Band_7_ARC_Refractive_Index_Part_1 = (1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677,
$1.6677,1 . \overline{6} 677, \overline{1} .6677,1.6677,1 . \overline{6} 677,1.6677$)
Band_7_ARC_Thickness_Part_1 = (326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, 326.9, $\overline{2} 2 \overline{6} .9,32 \overline{6} .9)$

Band_7_Oscillating_Period_Part_1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_5_Film_Refractive_Index_Part_2 $=(1.2878,1.2878,1.2878,1.2878,1.2878,1.2878,1.2878,1.2878,1.2878,1.2878$,
$1.2878, \overline{1} . \overline{2878}, \overline{1} .2878,1.2878,1.2878,1.2878)$
Band_5_Film_Absorption_Index_Part_2 $=(7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4$,
$7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4)$
Band_5_ARC_Refractive_Index_Part_2 $=(1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739$,
$1.6739,1.6739,1.6739,1.6739,1.6739,1.6739)$
Band_5_ARC_Thickness_Part_2 $=(269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0$, 269.0, 269.0, 269.0)

Band_5_Oscillating_Period_Part_2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_7_Film_Refractive_Index_Part_2 $=(1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606, ~$
1.2606, 1.2606, 1.2606, 1.2606, 1.2606, 1.2606)

Band_7_Film_Absorption_Index_Part_2 $=(2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3$,
2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3)

Band_7_ARC_Refractive_Index_Part_2 = (1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, $1.6677, \overline{1} . \overline{6} 677,1.6677,1.6 \overline{6} 77,1 . \overline{6} 677,1.6677)$

Band_7_ARC_Thickness_Part_2 $=(326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9$, 326.9, 326.9, 326.9)

Band_7_Oscillating_Period_Part_2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$ Band_5_Film_Refractive_Index_Part_3 = (1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878, 1.2878,
$1.2878, \overline{1} . \overline{2} 878, \overline{1} .2878,1.2878,1.2878,1.2878$)
Band_5_Film_Absorption_Index_Part_3 = (7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4, 7.258E-4,
$7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4,7.258 \mathrm{E}-4)$
Band_5_ARC_Refractive_Index_Part_3 $=(1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739,1.6739$, $1.6739, \overline{1} . \overline{6} 739, \overline{1} .6739,1.6 \overline{7} 39,1 . \overline{6} 739,1.6739)$

Band_5_ARC_Thickness_Part_3 $=(269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0,269.0$, 269.0, 269.0, 269.0)

Band_5_Oscillating_Period_Part_3 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_7_Film_Refractive_Index_Part_3 $=(1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606,1.2606$,
1.2606, $\overline{1} . \overline{2} 606, \overline{1} .2606,1 . \overline{2} 06,1.2606,1.2606$)

Band_7_Film_Absorption_Index_Part_3 = (2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3, 2.472E-3,
$2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3,2.472 \mathrm{E}-3$)
Band_7_ARC_Refractive_Index_Part_3 = (1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677, 1.6677,
1.6677, $1 . \overline{6} 677, \overline{1} .6677,1.6677,1 . \overline{6} 677,1.6677$)

Band_7_ARC_Thickness_Part_3 $=(326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9,326.9$, 326.9, $\overline{2} 2 \overline{4} .9,32 \overline{6} .9)$

Band_7_Oscillating_Period_Part_3 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_5_Period_LT_Model_Exp_Scaling $=(0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000$,
0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)

Band_5_Period_LT_Model_Attenuation $=(0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{EO}, 0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$,
0.0000EO, $0.0000 \mathrm{E} 0,0.0000 \mathrm{E}, 0,0000 \mathrm{EO}, 0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{EO}, 0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$)

Band_5_Period_LT_Model_Slope $=(0.03876,0.03876,0.03876,0.03876,0.03876,0.03876,0.03876,0.03876,0.03876$,
$0.03876,0.03876,0.03876,0.03876,0.03876,0.03876,0.03876$)
Band_5_Period_LT_Model_Offset $=(-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-0.94,-$
0.94, -0.94)

Band_7_Period_LT_Model_Exp_Scaling $=(0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000$,
$0.0000, \overline{0} . \overline{0} 000,0 . \overline{0} 00 \overline{0}, 0.0000,0.0000,0.0000$)
Band_7_Period_LT_Model_Attenuation $=(0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E}, 0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$,
$0.0000 \mathrm{E} 0,0.0000 \mathrm{E} 0$)
Band_7_Period_LT_Model_Slope $=(0.06224,0.06224,0.06224,0.06224,0.06224,0.06224,0.06224,0.06224,0.06224$,
$0.06224,0.06224,0.06224,0.06224,0.06224,0.06224,0.06224)$
Band_7_Period_LT_Model_Offset $=(-18.59,-18.59,-18.59,-18.59,-18.59,-18.59,-18.59,-18.59,-18.59,-18.59,-18.59,-18.59$, -18.59, -18.59, -18.59,-18.59)
END_GROUP = OUTGASSING_CORRECTION
GROUP = BAND_AVERAGE_GAINS
Band_1_Average_Gain =
(1.2238, $1.2238,1.22 \overline{3} 7,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2237,1.2$ $237,1.2237,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236,1.2236$, $1.2236,1.2236,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2235,1.2$ $235,1.2235,1.2235,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234,1.2234$,1.2234,1.2234,1.2234,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2233,1.2 233,1.2233,1.2233,1.2233,1.2233)

Band_2_Average_Gain =
($0.6440,0.6440,0.6440,0.6440,0.6440,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6$ $439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6439,0.6438,0.6438,0.6438,0.6438$, $0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6438,0.6$ $438,0.6438,0.6438,0.6438,0.6438,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437$, $0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6437,0.6436,0.6436,0.6436,0.6$ 436,0.6436,0.6436,0.6436,0.6436)

Band_3_Average_Gain =
($0.9033, \overline{0}-\overline{9} 033,0.90 \overline{3} 3,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9$ $033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033$,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9 $033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033$,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9033,0.9 033,0.9033,0.9033,0.9033,0.9033)

Band_4_Average_Gain =
(1.0820, $1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0$ $820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820$,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0 $820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820$,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0820,1.0 820,1.0820,1.0820,1.0820,1.0820)

Band_5_Average_Gain =
(8.0310,8.0340,8.0370,8.0400,8.0431,8.0461,8.0492,8.0522,8.0553,8.0583,8.0614,8.0645,8.0675,8.0706,8.0737,8.0767,8.0798,8.0 $828,8.0858,8.0888,8.0919,8.0948,8.0978,8.1008,8.1037,8.1067,8.1096,8.1124,8.1153,8.1181,8.1210,8.1237,8.1265,8.1292,8.1319$
,8.1346,8.1372,8.1398,8.1424,8.1449,8.1474,8.1498,8.1522,8.1546,8.1569,8.1592,8.1614,8.1636,8.1658,8.1679,8.1699,8.1719,8.1 $738,8.1757,8.1776,8.1794,8.1811,8.1828,8.1844,8.1860,8.1875,8.1889,8.1903,8.1916,8.1929,8.1941,8.1953,8.1963,8.1974,8.1983$,8.1992,8.2001,8.2008,8.2015,8.2022,8.2027,8.2032,8.2037,8.2041,8.2044,8.2046,8.2048,8.2049,8.2049,8.2049,8.2048,8.2047,8.2 044,8.2041,8.2038,8.2033,8.2028)

Band_6_Average_Gain =
($0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0$ $000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000$, $0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0$ $000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000$, $0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0$ 000,0.0000,0.0000,0.0000,0.0000)

Band_7_Average_Gain =
$(14.5103,14.5098,14.5094,14.5089,14.5084,14.5078,14.5073,14.5067,14.5060,14.5053,14.5046,14.5039,14.5032,14.5024,14.5015$, 14.5007,14.4998,14.4989,14.4980,14.4970,14.4960,14.4950,14.4939,14.4928,14.4917,14.4906,14.4894,14.4882,14.4870,14.4857 ,14.4845,14.4831,14.4818,14.4804,14.4791,14.4776,14.4762,14.4747,14.4732,14.4717,14.4702,14.4686,14.4670,14.4654,14.4637 ,14.4620,14.4604,14.4586,14.4569,14.4551,14.4533,14.4515,14.4497,14.4478,14.4460,14.4441,14.4421,14.4402,14.4382,14.4362 ,14.4342,14.4322,14.4302,14.4281,14.4260,14.4239,14.4218,14.4197,14.4175,14.4154,14.4132,14.4110,14.4087,14.4065,14.4043 ,14.4020,14.3997,14.3974,14.3951,14.3928,14.3905,14.3881,14.3857,14.3834,14.3810,14.3786,14.3762,14.3738,14.3713,14.3689 ,14.3665,14.3640)

Band 5 Average Gain No OG Cor $=$
(8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2 090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090 ,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2 090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090 ,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2090,8.2 090,8.2090,8.2090,8.2090,8.2090)

Band_7_Average_Gain_No_OG_Cor =
(14.695 $\overline{0}, \overline{14} .6950,14.6950,14 . \overline{6} 950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950$,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950 ,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950 ,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950 ,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950 ,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950,14.6950 ,14.6950,14.6950)

Prelaunch_Average_Gains $=(1.5553,0.7860,1.0203,1.0821,7.8751,0.000,14.7719)$
END_GROUP = BAND_AVERAGE_GAINS
GROUP = PRELAUNCH_GAINS
Band_1_Prelaunch_Gain =
(1.5597, $\overline{1} . \overline{5} 484,1.566 \overline{2}, 1.5474,1.5713,1.5441,1.5614,1.5480,1.5508,1.5569,1.5614,1.5587,1.5582,1.5422,1.5537,1.5558)$ Band_2_Prelaunch_Gain =
($0.7878,0 . \overline{7} 848,0.784 \overline{0}, 0.7843,0.7854,0.7819,0.7837,0.7920,0.7813,0.7875,0.7893,0.7922,0.7875,0.7843,0.7912,0.7779$) Band_3_Prelaunch_Gain =
(1.0208,1.0285,1.0185,1.0275,1.0189,1.0161,1.0044,1.0246,1.0096,1.0228,1.0105,1.0280,1.0157,1.0271,1.0217,1.0302) Band_4_Prelaunch_Gain =
$(1.0895, \overline{1} . \overline{0} 842,1.077 \overline{6}, 1.0732,1.0820,1.0809,1.0796,1.0892,1.0725,1.0935,1.0802,1.0810,1.0799,1.0859,1.0778,1.0859)$ Band_5_Prelaunch_Gain =
(7.8980,7. $\overline{8} 046,7.850 \overline{3}, 7.8244,7.8647,7.8687,7.8170,7.9484,7.8722,7.8828,7.9342,7.9206,7.8783,7.8331,7.8926,7.9112$) Band_6_Prelaunch_Gain =
($0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000,0.0000$) Band_7_Prelaunch_Gain =
(14.7592,14.6212,14.7372,14.6549,14.8868,14.6334,14.8428,14.7975,14.7647,14.7310,14.8674,14.8455,14.8476,14.8371,14.7428 ,14.7810)

Bandwidth $=(0.066,0.082,0.067,0.128,0.217,1.970,0.252)$
END_GROUP = PRELAUNCH_GAINS
GROUP = DETECTOR_RELATIVE_GAIN_PARAMETERS
Band_1_Relative_Gain_Slope $=(-2.8406 \overline{7} 7 \mathrm{E}-7,0.637819 \mathrm{E}-7,-0.453487 \mathrm{E}-7,0.294604 \mathrm{E}-7,-1.043359 \mathrm{E}-7,-0.097234 \mathrm{E}-7$, $1.300783 \mathrm{E}-7,-4.889805 \mathrm{E}-7,3.257239 \mathrm{E}-7,2.935155 \mathrm{E}-7,0.370741 \mathrm{E}-7,3.635368 \mathrm{E}-7,-0.487606 \mathrm{E}-7,-2.936268 \mathrm{E}-7,-0.537611 \mathrm{E}-7$, 0.854337E-7)

Band_2_Relative_Gain_Slope $=(-2.875951 \mathrm{E}-7,-2.122416 \mathrm{E}-7,-4.207739 \mathrm{E}-7,-10.359747 \mathrm{E}-7,-2.064478 \mathrm{E}-7,-7.997079 \mathrm{E}-7,-$ $0.702890 \mathrm{E}-7,1.779881 \mathrm{E}-7,3.388579 \mathrm{E}-7,0.191252 \mathrm{E}-7,5.477989 \mathrm{E}-7,2.931633 \mathrm{E}-7,4.886511 \mathrm{E}-7,2.906302 \mathrm{E}-7,4.316067 \mathrm{E}-7$, 4.452086E-7)

Band_3_Relative_Gain_Slope $=(-1.848917 \mathrm{E}-7,-2.473247 \mathrm{E}-7,-2.973620 \mathrm{E}-7,-2.314306 \mathrm{E}-7,0.790002 \mathrm{E}-7,3.272370 \mathrm{E}-7$, $0.421390 \mathrm{E}-7,5.108955 \mathrm{E}-7,0.389347 \mathrm{E}-7,2.747092 \mathrm{E}-7,1.279057 \mathrm{E}-7,-0.780519 \mathrm{E}-7,-1.812731 \mathrm{E}-7,0.725644 \mathrm{E}-7,-0.923700 \mathrm{E}-7,-$ 1.606817E-7)

Band_4_Relative_Gain_Slope $=(-0.094401 \mathrm{E}-7,-1.487869 \mathrm{E}-7,-1.784592 \mathrm{E}-7,-2.502456 \mathrm{E}-7,-0.592337 \mathrm{E}-7,1.746026 \mathrm{E}-7$, $1.243442 \mathrm{E}-7,4.173347 \mathrm{E}-\overline{7}, 5.390481 \mathrm{E}-7,-1.756787 \mathrm{E}-7,-2.359960 \mathrm{E}-7,1.815873 \mathrm{E}-7,-2.672411 \mathrm{E}-7,-0.082633 \mathrm{E}-7,-1.765906 \mathrm{E}-7$, $0.730183 \mathrm{E}-7)$

Band_5_Relative_Gain_Slope $=(4.407965 \mathrm{E}-7,-3.669412 \mathrm{E}-7,-0.950583 \mathrm{E}-7,1.530095 \mathrm{E}-7,0.408164 \mathrm{E}-7,2.517849 \mathrm{E}-7$, $7.297025 \mathrm{E}-7,0.984112 \mathrm{E}-7,2.887332 \mathrm{E}-7,-12.465128 \mathrm{E}-7,1.743392 \mathrm{E}-7,3.965112 \mathrm{E}-7,1.405165 \mathrm{E}-7,0.273550 \mathrm{E}-7,-5.716163 \mathrm{E}-7,-$ 4.618474E-7)

Band_6_Relative_Gain_Slope $=(0.000 E 0,0.000 \mathrm{E} 0,0.000 \mathrm{E} 0,0.000 \mathrm{E} 0)$
Band_7_Relative_Gain_Slope $=(0.774561 \mathrm{E}-7,-0.381910 \mathrm{E}-7,1.204894 \mathrm{E}-7,0.399337 \mathrm{E}-7,0.741647 \mathrm{E}-7,-2.799350 \mathrm{E}-7,-$
$1.266330 \mathrm{E}-7,-0.659051 \mathrm{E}-7,0.479818 \mathrm{E}-7,1.354188 \mathrm{E}-7,-0.670541 \mathrm{E}-7,2.707472 \mathrm{E}-7,2.004347 \mathrm{E}-7,-0.412806 \mathrm{E}-7,-1.773801 \mathrm{E}-7,-$
1.702473E-7)

Band_1_Relative_Gain_Intercept $=(1.005217,0.997814,1.004207,1.003727,1.001864,0.989295,1.001400,0.989632$,
$0.997919,0.999905,1.007375,1.001667,1.000372,0.991086,1.003981,1.004539)$
Band_2_Relative_Gain_Intercept $=(0.997476,1.000167,0.993595,1.008824,0.992895,1.014107,0.990820,1.018941$,
$0.988571,1.008689,1.001347,1.017453,0.993478,0.991787,0.999934,0.981916$)
Band_3_Relative_Gain_Intercept $=(1.004214,1.018876,0.995623,1.005946,0.996870,0.990159,0.978429,1.006966$,
$0.983905,1.005666,0.985251,1.008277,0.994572,1.004898,1.004844,1.015504)$
Band_4_Relative_Gain_Intercept $=(1.006075,1.001024,0.996634,0.987920,1.007140,1.002460,1.020738,1.005942$,
0.986959, 1.008343, 0.999707, 0.993704, 0.994367, 0.993957, 0.995985, 0.999045)

Band_5_Relative_Gain_Intercept $=(0.997357,0.992960,0.993249,0.983525,1.007485,0.991294,0.982687,1.022127$,
$1.00177 \overline{8}, 1.005992,0.999070,1.002080,1.004032,1.001503,1.006445,1.008418)$
Band_6_Relative_Gain_Intercept $=(0.0000,0.0000,0.0000,0.0000)$
Band_7_Relative_Gain_Intercept $=(0.996700,0.992548,1.005695,1.004850,1.013378,0.985534,0.998672,0.995592$,
1.006528, $0.990521,1.011307,0.995497,0.997351,0.996631,1.003821,1.005378$)

Band_1_RG_ExpPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_2_RG_ExpPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_3_RG_ExpPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_4_RG_ExpPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_5_RG_ExpPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_6_RG_ExpPar1 $=(0.00,0.00,0.00,0.00)$
Band_7_RG_ExpPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_1_RG_ExpPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_2_RG_ExpPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_3_RG_ExpPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_4_RG_ExpPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_5_RG_ExpPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_6_RG_ExpPar2 $=(0.00,0.00,0.00,0.00)$
Band_7_RG_ExpPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_1_RG_AddPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_2_RG_AddPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_3_RG_AddPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_4_RG_AddPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_5_RG_AddPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_6_RG_AddPar1 $=(0.00,0.00,0.00,0.00)$
Band_7_RG_AddPar1 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_1_RG_AddPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_2_RG_AddPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_3_RG_AddPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_4_RG_AddPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_5_RG_AddPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
Band_6_RG_AddPar2 $=(0.00,0.00,0.00,0.00)$
Band_7_RG_AddPar2 $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$
END_GROUP = DETECTOR_RELATIVE_GAIN_PARAMETERS
END_GROUP = DETECTOR_ḠAINS
GROUP = BIAS_LOCATIONS
Forward_Bias_Location_30 $=160$
Forward_Bias_Length_30 $=500$
Forward_IC_Region_30 $=830$
Reverse_Bias_Location_30 $=800$
Reverse_Bias_Length_30 $=500$
Reverse_IC_Region_30 $=660$
Forward_Bias_Location_120 $=40$
Forward_Bias_Length_120 $=130$
Forward_IC_Region_120 = 169
Reverse_Bias_Location_120 $=200$
Reverse_Bias_Length_120 $=130$
Reverse_IC_Region_120 = 165
END_GRŌUP $=$ BIAS_LOCATIONS
GROUP = DETECTOR_BIASES
Band_1_Detector_Bias $=(4.1,3.7,3.5,2.9,3.5,3.4,3.2,3.5,3.0,3.1,2.9,3.1,3.3,3.4,3.2,3.3)$
Band_2_Detector_Bias $=(3.4,2.4,2.8,2.1,2.5,2.2,2.5,2.2,2.5,2.1,2.5,2.0,2.8,2.5,2.7,3.1)$
Band_3_Detector_Bias = (3.7, 2.9, 3.4, 3.0, 3.3, 3.2, 3.3, 2.6, 3.4, 2.9, 3.3, 3.0, 2.9, 2.9, 3.0, 3.0)
Band_4_Detector_Bias = (3.7, 2.8, 2.9, 2.9, 2.3, 2.6, 2.2, 2.8, 2.9, 2.5, 3.0, 2.8, 3.0, 3.3, 2.7, 3.0)
Band_5_Detector_Bias = (2.6, 2.3, 2.5, 2.3, 2.2, 2.3, 2.4, 2.5, 2.4, 2.5, 2.4, 2.3, 2.3, 2.4, 2.2, 2.3)
Band_6_Detector_Bias $=(0.0,0.0,0.0,0.0)$

```
Band_7_Detector_Bias \(=(2.8,2.3,2.3,2.3,2.2,2.3,2.3,2.4,2.3,2.2,2.3,2.2,2.2,2.4,2.2,2.3)\)
GROUP = BIAS_LIMITS
    Band_1_Lower_Limit \(=(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)\)
    Band_2_Lower_Limit \(=(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)\)
    Band_3_Lower_Limit \(=(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)\)
    Band_4_Lower_Limit \(=(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)\)
    Band_5_Lower_Limit \(=(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)\)
    Band_7_Lower_Limit \(=(0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5)\)
    Band_1_Upper_Limit = (6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 6.0)
    Band_2_Upper_Limit \(=(6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0)\)
    Band_3_Upper_Limit \(=(6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0)\)
    Band_4_Upper_Limit \(=(6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0,6.0)\)
    Band_5_Upper_Limit \(=(3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5)\)
    Band 7 Upper Limit \(=(3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5,3.5)\)
END_GROUP = BIAS_LIMITS
GROUP = PRELAUNCH_BIASES
    Band_1_Prelaunch_Bias \(=(2.2965,1.9313,1.8734,1.8895,1.7628,1.9744,1.7435,2.1147,1.6412,1.8049,1.5761,1.7649\),
1.6324, 1.8487, 1.6416, 1.8337)
    Band_2_Prelaunch_Bias \(=(2.2691,1.5379,1.8693,1.5357,1.5069,1.8161,1.5605,1.7427,1.7117,1.5873,1.8789,1.6117\),
\(1.5945, \overline{1} .5986,1.6357,1.5766)\)
    Band_3_Prelaunch_Bias \(=(2.4569,1.9920,1.9709,1.7282,1.8442,1.7437,1.8571,1.8852,2.0105,1.8130,1.8650,1.7688\),
1.7462, \(1 . \overline{8} 063,1.7881,1.8836\) )
    Band_4_Prelaunch_Bias \(=(2.6652,2.1440,2.4287,1.9523,2.2046,2.3107,2.6408,2.2091,2.1524,2.0022,2.4152,2.0702\),
\(2.1371, \overline{2} .1669,2.1682,2.1291\) )
    Band_5_Prelaunch_Bias \(=(3.5727,3.2601,3.2736,3.2701,3.1314,3.2506,3.1252,3.5024,3.2843,3.3784,3.2440,3.2882\),
\(3.1520, \overline{3} . \overline{3} 691,3.180 \overline{6}, 3.3460)\)
    Band_6_Prelaunch_Bias \(=(0.00,0.00,0.00,0.00)\)
    Band_7_Prelaunch_Bias \(=(3.8241,3.2194,3.3549,3.2758,3.1052,3.2558,3.0121,3.2427,3.1006,3.1922,3.1158,3.0190\),
3.0402, 3.2440, 3.1068, 3.2790)
    END_GROUP = PRELAUNCH_BIASES
END_GROUP = DETECTOR_BIASES
GROUP = ACCA_BIASES
    B1_ACCA_Bias \(=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)\)
    B2_ACCA_Bias \(=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)\)
    B3_ACCA_Bias \(=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)\)
    B4_ACCA_Bias \(=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)\)
    B5_ACCA_Bias \(=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)\)
    B6_ACCA_Bias \(=(0.00,0.00,0.00,0.00)\)
    B7_ACCA_Bias \(=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)\)
END_GROŪP = ACCA_BIASES
GROUP = ACCA_THRESHOLDS
    Thresh_B3 \(=0.0000\)
    Thresh_B3_Lower \(=0.00\)
    Thresh_B56 \(=0.000\)
    Thresh_B6 \(=0.000\)
    Thresh_B45_Ratio \(=0.0000\)
    Thresh_B42_Ratio \(=0.0000\)
    Thresh_B43_Ratio \(=0.0000\)
    Thresh_NDSI_Max \(=0.0000\)
    Thresh_NDSI \(\operatorname{Min}=0.0000\)
    Thresh_NDSI_Snow \(=0.0000\)
    Cloud_Percent_Min \(=0.0000\)
    Desert_Index \(=0.0000\)
    Thresh_Snow_Percent \(=0.0000\)
    Thermal_Effect_High \(=0.0000\)
    Thermal_Effect_Low \(=0.0000\)
    B6Max_Maxthresh_Diff = 0.000
END_GROUP = ACC̄A_THRESHOLDS
GROUP = SOLAR_SPECTRAL_IRRADIANCES
    B1_Solar_Irradiance \(=1957.000\)
    B2_Solar_Irradiance \(=1826.000\)
    B3_Solar_Irradiance \(=1554.000\)
    B4_Solar_Irradiance \(=1036.000\)
    B5_Solar_Irradiance \(=215.000\)
    B7_Solar_Irradiance \(=80.670\)
END_GROUP = SOLAR_SPECTRAL_IRRADIANCES
```

```
GROUP = BAND_6_CALIBRATION_COEFFICIENTS
    Temp_To_Rad = (5.1292E-4, 1.7651E-1, 1.6023E1)
    a = (0.6900, 0.6500, 0.6900, 0.6400)
    b}=(0.8410,0.8410, 0.8310, 0.8290) (
    c=(1.6390, 1.9900, 1.5830, 1.9710)
END_GROUP = BAND_6_CALIBRATION_COEFFICIENTS
GROUP = THERMAL_CONSTANTS
    K1_Constant = 607.76
    K2_Constant = 1260.56
END_GROUP = THERMAL_CONSTANTS
GROUP = SCALING_PARAMETERS
    B1_Lmin_Lmax = (-1.5200, 193.0000)
    B2_Lmin_Lmax = (-2.8400, 365.0000)
    B3_Lmin_Lmax = (-1.1700, 264.0000)
    B4_Lmin_Lmax = (-1.5100, 221.0000)
    B5_Lmin_Lmax = (-0.3700, 30.2000)
    B6_Lmin_Lmax =( 1.2378, 15.3030)
    B7_Lmin_Lmax = (-0.1500, 16.5000)
    B1_Lmin_Lmax_LUT03 = (-1.5200,193.0000)
    B2_Lmin_Lmax_LUT03 = (-2.8400,365.0000)
    B3_Lmin_Lmax_LUT03 = (-1.1700,264.0000)
    B4_Lmin_Lmax_LUT03 = (-1.5100,221.0000)
    B5_Lmin_Lmax_LUT03 = (-0.3700,30.2000)
    B6_Lmin_Lmax_LUT03 = (1.2378,15.3030)
    B7_Lmin_Lmax_LUTO3 = (-0.1500,16.5000)
    B1_Lmin_Lmax_IC = (-1.5200, 152.1000)
    B2_Lmin_Lmax_IC = (-2.8400, 296.8100)
    B3_Lmin_Lmax_IC = (-1.1700, 204.3000)
    B4_Lmin_Lmax_IC = (-1.5100, 206.2000)
    B5_Lmin_Lmax_IC = (-0.3700, 27.1900)
    B6_Lmin_Lmax_IC = (1.2378, 15.3030)
    B7_Lmin_Lmax_IC = (-0.1500, 14.3800)
END_GROUP = SCALING_PARAMETERS
GROUP = MTF_COMPENSATION
    B1_weights_along = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B1_weights_across = ( +0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B2_weights_along = ( +0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B2_weights_across = ( +0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B3_weights_along = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B3_weights_across = ( +0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B4_weights_along = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B4_weights_across = ( +0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B5_weights_along = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B5_weights_across = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B6_weights_along = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B6_weights_across = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B7_weights_along = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
    B7_weights_across = (+0.5000,+0.0000,-0.5000,+0.0000,+0.0000)
END_GROUP = MTF_COMPENSATION
GROUP = MEMORY_EFFECT
    GROUP = ME_MAGNITUDES
    B1_kME_Magnitude = (-1.76447e-05, -1.86280e-05, -1.37093e-05, -1.52647e-05, -1.35158e-05, -1.54136e-05, -1.44766e-05, -
1.56425e-05, -1.16601e-05, -1.22041e-05, -1.27097e-05, -1.22420e-05, -1.63133e-05, -1.51161e-05, -1.54951e-05, -1.60915e-05)
    B2_kME_Magnitude = (-1.54035e-05,-1.29685e-05, -1.31833e-05, -4.67519e-06, -1.25527e-05, -5.09582e-06, -1.32666e-05,-
5.02027e-06, -1.03880e-05, -3.60229e-06, -7.42092e-06, -3.30370e-06, -1.90365e-05, -9.09655e-06, -1.53207e-05, -2.02743e-05)
    B3_kME_Magnitude = (-1.76613e-05, -1.23867e-05, -1.66545e-05, -1.35345e-05, -2.19871e-05, -1.48708e-05, -2.06274e-05,-
7.82505e-06, -1.64582e-05, -1.34487e-05, -1.62413e-05, -1.23451e-05, -1.21724e-05, -1.02491e-05, -1.33464e-05, -1.27219e-05)
    B4_kME_Magnitude = (-2.61555e-05, -1.05822e-05, -1.31148e-05, -1.29141e-05, -3.95619e-06, -8.34379e-06, -2.80861e-06, -
1.17550e-05, -1.25015e-05, -6.92007e-06, -1.52136e-05, -1.10395e-05, -1.36381e-05, -1.90905e-05, -9.62389e-06, -1.41052e-05)
    B5_kME_Magnitude = (0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B6_kME_Magnitude = (0.0, 0.0, 0.0, 0.0)
    B7_kME_Magnitude = (0.0,0.0,0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0)
    END_GROUP = ME_MAGNITUDES
    GROUP = ME_SCALING
    B1_ME_Scal_Factor = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
    B2_ME_Scal_Factor = (1.7, 1.9, 1.8, 5.6, 1.8, 4.2, 2.0, 5.2, 2.6, 6.8, 2.6, 8.9, 1.4, 2.5, 1.5, 1.2)
```

```
    B3_ME_Scal_Factor = (0.8, 1.3, 1.1, 2.5, 1.3, 1.7, 1.8, 1.4, 1.7, 1.6, 1.9, 1.4, 2.7, 1.8, 1.8, 1.5)
    B4_ME_Scal_Factor = (0.6, 2.0, 1.8, 1.8, 5.3, 2.6, 9.7, 2.2, 2.0, 3.3, 1.6, 2.3, 1.6, 1.2, 2.4, 2.0)
    B5_ME_Scal_Factor = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
    B6_ME_Scal_Factor = (1.0, 1.0, 1.0, 1.0)
    B7_ME_Scal_Factor = (1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0)
    END GROUP = ME SCALING
    GROUP = ME_TIME_CONSTANTS
    B1 ME Time Constant = (1258.45, 1187.62, 1359.82, 658.490, 1557.41, 1096.47, 1071.37, 1121.04, 1311.20, 1488.32,
1205.67, \overline{1391.6}\overline{8},1148.51, 1317.53, 1193.48, 1130.78)
    B2_ME_Time_Constant = (1169.14, 1072.15, 1089.48, 1075.71, 1179.10, 1091.09, 1057.39, 1195.10, 1158.54, 1189.14,
1389.76, 625.268, 1107.47, 1391.17, 1093.13, 1236.27)
    B3 ME Time Constant = (1209.25, 1284.96, 1268.57, 1225.72, 1062.90, 1280.65, 1171.59, 1211.24, 1330.47, 1091.47,
1262.61, 1295.73, 1291.65, 1583.28, 1196.07, 1232.87)
    B4_ME_Time_Constant = (1059.56, 1211.49, 1216.66, 1195.98, 1296.84, 1264.98, 799.308, 1292.08, 1276.50, 1397.12,
1220.40, 1382.13, 1309.25, 1360.02, 1382.83, 1212.61)
    B5_ME_Time_Constant =(1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100)
    B6_ME_Time_Constant = (1100, 1100, 1100, 1100)
    B7_ME_Time_Constant = (1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100)
    END_GROUP = ME_TIME_CONSTANTS
    GROUP = ME FILTEZR PARAMETERS
    ME_Filter_Widths = (1,19, 25,25,50,50,50,75,75,75,75,100,100,100,100,100,130,130,130,130,130,130,150,150,
150, 150, 150, 150, 150, 150)
    END_GROUP = ME_FILTER_PARAMETERS
END_\overline{GROUP = MEMORY_EFFECT}
GROUP = GHOST_PULSE
    Ghost_Pulse_Endpoints = (0.00, 0.00)
END_GROUP = GHOST_PULSE
GROUP = SCAN_CORRELATED_SHIFT
    SCS_Reference_Detector_1 = (7, 7, 1)
    SCS_Reference_Detector_2 = (0, 0, 0)
    SCS Reference Detector 3 = (0, 0, 0)
    SCS_State_Mask_Parameters = (0.000007113387, 601, 2.15, 0.05, 0.05)
    B1_SCS_Additive_Correction_Factors = (1.1569804e-02, -1.5625911e-01, 3.2996424e-02, -1.1304116e-01, 1.4710412e-02,
1.6058411e-01, 7.2760472e-02, -1.2827364e-01, 1.8843410e-02, -3.3344272e-01, 1.8333317e-02, -1.9159730e-01, -3.9324667e-
02, -3.4885825e-01, -3.9938065e-02, -2.5303062e-01)
    B2_SCS_Additive_Correction_Factors = (7.2098294e-01, 3.7425930e-02, 3.6839192e-01, -5.9152038e-02, 2.5968120e-01,
8.3694987e-02, 2.8259830e-01, 9.5723345e-02, 1.6736335e-01, 1.2281209e-02, 2.2465824e-01, 3.5409573e-02, 3.6006368e-01,
1.6311572e-01, 3.0721359e-01, 6.7545385e-01)
    B3_SCS_Additive_Correction_Factors = (5.2192020e-01, 1.3320758e-01, 5.4508526e-01, 4.0118462e-01, 4.0680130e-01,
5.6667455e-01, 3.1066546e-01, 1.7622443e-01, 4.7273162e-01, 3.3055915e-01, 4.6439925e-01, 3.9249319e-01, 3.6471880e-01,
2.7372833e-01, 3.8050369e-01, 2.4974505e-01)
    B4_SCS_Additive_Correction_Factors = (4.4828032e-01, 8.9812094e-02, 7.5109591e-02, 2.4592970e-01, 3.4749578e-02,
8.6333297e-03, 1.4461188e-02, -3.4450797e-02, 6.4423982e-02, -1.6255673e-04, 7.4066195e-02, -1.4154289e-02, 1.5053092e-
01, -1.4437600e-02, 3.8741075e-02, -9.7693635e-02)
    B5_SCS_Additive_Correction_Factors = (1.7000721e-01, -1.6055916e-02, 2.4704872e-01, -5.2022618e-02, -5.3244174e-02, -
1.4390805e-01, 8.3640852e-02, -1.3654846e-01, 1.0964904e-01, 7.5864344e-02, 1.2969957e-01, -1.5621545e-01, 6.0418422e-
02, -9.2451386e-02, -7.0901081e-02, -1.5514363e-01)
    B6 SCS Additive_Correction Factors = (0.0, 0.0, 0.0, 0.0)
    B7_SCS_Additive_Correction_Factors = (7.1424251e-02, -6.9256432e-02, -2.3865368e-02, -1.7026510e-01, 5.1228012e-02, -
1.5863398e-01, 2.6906569e-01, -2.4568812e-01, 2.1776210e-01, -2.4221505e-01, 1.6413804e-01, -1.1843650e-01, 8.0542090e-
02,-8.8635934e-02, 7.5825711e-02, -1.5623075e-01)
END_GROUP = SCAN_CORRELATED_SHIFT
GROUP = STRIPING
    Correction_Reference_B1 = 0
    Correction_Reference_B2 = 0
    Correction_Reference_B3 = 0
    Correction_Reference_B4 = 0
    Correction Reference B5 =0
    Correction_Reference_B6 = 0
    Correction Reference B7 =0
END_GROUPP = STRIPING
GROUP = HISTOGRAM
    GROUP = DETECTOR NOISE
    Detector_Noise_Level_B1 = (1.01420, 1.10810, 0.97312, 1.09620, 1.02470, 1.11080, 1.02750, 1.14780, 0.85664, 0.99731,
0.87608, 0.99549, 0.92797, 1.11260, 0.91055, 0.99585)
    Detector_Noise_Level_B2 = (0.43186, 0.78657, 0.30505, 0.29766, 0.40456, 0.25636, 0.35438, 0.21768, 0.21608,0.22246,
```

```
0.22161, 0.21231, 0.36519, 0.28803, 0.30388, 0.46041)
    Detector_Noise_Level_B3 = (0.57846, 0.41966, 0.48105, 0.44310, 0.48783, 0.32639, 0.43177, 0.32664, 0.48924, 0.34578,
0.41729, 0.61269, 0.41055, 0.37578, 0.38505, 0.46610)
    Detector_Noise_Level_B4 = (0.50116, 0.25937, 0.27456, 0.09725, 0.06361, 0.29896, 0.10155,0.34510, 0.20048, 0.28941,
0.32645, 0.27481, 0.12329, 0.39061, 0.15644, 0.53212)
    Detector Noise Level B5 = (0.84463, 0.85743,1.00180, 0.95999, 0.92987, 0.86803,1.72470, 0.90295, 1.05760, 1.31020,
0.89113, 1.0}00900, 0.987\overline{61, 0.89530, 0.88833, 0.89932)
    Detector Noise Level B6 = (0.50000, 0.50000, 0.50000, 0.50000)
    Detector_Noise_Level_B7 = (0.83853, 0.89672, 0.87652, 0.89100, 0.80657, 0.94658,0.85140, 1.06780, 0.81896,1.07000,
0.86032, 1.00920, 0.79012, 0.97129, 0.79065, 0.93681)
    END_GROUP = DETECTOR_NOISE
    GROUP = DET_SHUTTER_NOISE
        Det_Shutter_Noise_Level_B1 = (0.974674, 1.085858, 0.948344, 1.074075, 1.005915, 1.084420, 1.015990, 1.115435,0.836026,
0.939500, 0.864744, 0.960542, 0.878079, 1.063528, 0.926818, 0.943876)
        Det_Shutter_Noise_Level_B2 = (0.462904, 0.780979, 0.380299, 0.276695, 0.364058, 0.282149, 0.330045, 0.234384,0.260725,
0.188100, 0.269713, 0.153767, 0.366932, 0.310009, 0.338156, 0.483779)
    Det_Shutter_Noise_Level_B3 = (0.582067, 0.430551, 0.554728, 0.491207, 0.543677, 0.434223, 0.483965, 0.389486, 0.575046,
0.424408, 0.499904, 0.652198, 0.485007, 0.430786, 0.473244, 0.503794)
    Det_Shutter_Noise_Level_B4 = (0.321735, 0.303078, 0.306971, 0.260420, 0.157535,0.295219, 0.169388, 0.294909, 0.253392,
0.266226, 0.352027, 0.244123, 0.236554, 0.357290, 0.193870, 0.509188)
    Det_Shutter_Noise_Level_B5 = (0.841330, 0.861242, 1.015888, 0.960300, 0.928367, 0.863805, 1.734060, 0.900582, 1.062418,
1.316920, 0.902176, 1.007545, 0.987794, 0.891277, 0.883873, 0.885317)
    Det_Shutter_Noise_Level_B6 = (0.50, 0.50, 0.50, 0.50)
    Det_Shutter_Noise_Level_B7 = (0.834749, 0.893375, 0.879477, 0.877903, 0.817128, 0.938552, 0.876364, 1.061585,0.843950,
1.057590, 0.882281, 1.002640, 0.799837, 0.952818, 0.800899, 0.920797)
    END_GROUP = DET_SHUTTER_NOISE
    GROUP = REFERENCE DETECTORS
        Reference_Detector_B1 = 01
        Reference Detector B2 = 01
        Reference_Detector_B3 = 01
        Reference Detector_B4 = 01
        Reference_Detector_B5 = 01
        Reference Detector B6=01
        Reference_Detector_B7 = 01
    END GROUP = REFERENCE DETECTORS
    GROUP = SATURATION_THRESHOLDS
        Saturation Bin Threshold B1 = 10000
        Saturation_Bin_Threshold_B2 = 10000
        Saturation Bin Threshold B3 =10000
        Saturation_Bin_Threshold_B4 = 10000
    Saturation_Bin_Threshold_B5 = 10000
    Saturation_Bin_Threshold_B6 = 10000
    Saturation_Bin_Threshold_B7 = 10000
    END GROUP = SATURATION THRESHOLDS
    GROUPP = ADJACENT_BINS
    GROUP = BIN NUMBER
        Adjacent_Bin_Number_B1 = 2
        Adjacent Bin Number_B2 =2
        Adjacent_Bin_Number_B3 = 2
        Adjacent_Bin_Number_B4 = 2
        Adjacent_Bin_Number_B5 = 2
        Adjacent_Bin_Number_B6 = 3
        Adjacent_Bin_Number_B7 = 2
    END_GROUP = BIN NUMBER
    GROUP = BIN_THRESHOLD
        Adjacent_Bin_Threshold B1 = 1000
        Adjacent_Bin_Threshold_B2 = 1000
        Adjacent_Bin_Threshold_B3 = 1000
        Adjacent_Bin_Threshold_B4 = 1000
        Adjacent_Bin_Threshold_B5 = 1000
        Adjacent_Bin_Threshold_B6 = 1000
        Adjacent_Bin_Threshold_B7 = 1000
    END GROUP = BIN THRESHOLD
END_GROUP = ADJACENT_BINS
GROUP = STARTING PIXEL
    Start_pixel_B1 = 1
    Start pixel B2 =1
    Start_pixel_B3 = 1
    Start pixel B4 =1
    Start_pixel_B5 = 1
```

```
    Start_pixel_B6 = 1
    Start_pixel_B7 = 1
END_GROUP = STARTING_PIXEL
GROUP = WINDOW WIDTH
    Window_Samples_\
    Window Samples B2 =6300
    Window_Samples_B3 = 6300
    Window Samples B4=6300
    Window_Samples_B5 = 6300
    Window_Samples_B6 = 1800
    Window_Samples_B7 = 6300
END GROUP = WINDOW WIDTH
GROŪP = WINDOW_LENG\overline{TH}
    Window_Scans_B1 = 374
    Window_Scans_B2 = 374
    Window Scans B3 = 374
    Window_Scans_B4 = 374
    Window Scans B5 = 374
    Window_Scans_B6 = 374
    Window_Scans_B7 = 374
END_GROUP = WINDOW LENGTH
GROUP = OVERLAPPING_SCANS
    Overlap_Scans_B1 = 0
    Overlap_Scans B2 =0
    Overlap Scans B3 =0
    Overlap_Scans_B4 = 0
    Overlap Scans B5 =0
    Overlap_Scans_B6 = 0
    Overlap Scans B7 =0
    END_GROUP = OVERLAPPING_SCANS
END GROUP = HISTOGRAM
GROUP = IMPULSE NOISE
    Median_Filter_Width = 3
    GROUP = IN_THRESHOLD
    B1_Threshold = (11.126630, 7.047142, 11.258280, 7.086417, 7.313617, 7.051933, 7.280033, 6.948550, 11.819869, 11.302503,
11.676280, 11.197291, 11.609605, 7.121575, 11.365911, 11.280620)
    B2_Threshold = (27.370958, 12.095104, 28.197010, 29.233050, 28.359418, 29.178515, 28.699555, 29.656160, 29.392755,
30.119000, 29.302868, 30.462333, 28.330680, 28.899908, 28.618438, 27.162210)
    B3_Threshold = (13.089668, 27.694488, 13.226363, 27.087933, 13.281614, 27.657768, 27.160348, 28.105145, 13.124771,
27.755923, 27.000958, 12.739013, 27.149933, 27.692145, 27.267560, 13.481029)
    B4_Threshold = (28.782648, 28.969225, 28.930288, 29.395801, 30.424654, 29.047815, 30.306125, 29.050908, 29.466080,
29.337744, 28.479733, 29.558770, 29.634457, 28.427103, 30.061300, 13.454063)
    B5_Threshold = (11.793350, 11.693791, 7.280375, 11.198499, 11.358166, 11.680976, 3.664850, 11.497091, 7.125275,
6.276933, 11.489123, 7.308183, 11.061033, 11.543616, 11.580634, 11.573416)
    B6_Threshold = (14.00, 14.00, 14.00, 14.00)
    B7_Threshold = (11.826255, 11.533128, 11.602615, 11.610484, 11.914359, 11.307243, 11.618183, 7.128050, 11.780253,
7.141367, 11.588596, 7.324533, 12.000815, 11.235910, 11.995505, 11.396015)
    END_GROUP = IN_THRESHOLD
    GROUP = IN_SIGMA_THRESHOLD
    B1 Sigma Threshold = (11.470646, 9.752749, 11.897233, 9.884621, 10.960780, 9.744098, 10.851037, 9.288015, 14.249458,
11.721827, 13.674893, 11.531426, 12.974815, 9.872976, 12.428756, 11.700274)
    B2_Sigma_Threshold = (36.577715, 15.616701, 49.727019, 57.486982, 34.521843, 66.925042, 39.557548, 88.785050,
78.132323, 88.525930, 78.823698, 90.807645, 38.055956, 53.019960, 47.984342, 29.657406)
    B3_Sigma_Threshold = (23.551293, 34.343703, 27.891597, 31.003132, 27.542815, 42.639758, 32.333824, 45.687685,
27.210565, 40.902707, 32.512785, 20.987118, 32.703827, 38.679962, 34.988554, 29.934559)
    B4_Sigma_Threshold = (29.662313,64.157919, 59.652783, 194.972189, 379.640959, 54.284023, 189.930603, 47.623189,
91.193503, 55.560118, 47.555149, 61.843089, 162.685097, 40.240850, 129.948732, 25.682897)
    B5_Sigma_Threshold = (14.147629, 13.568071, 10.888876, 11.608848, 12.162483, 13.397505, 4.239762, 12.671498,
10.084078, 7.186834, 12.898634, 10.850300, 11.171587, 12.902970, 13.054485, 12.903827)
    B6_Sigma_Threshold =(14.00, 14.00, 14.00, 14.00)
    B7_Sigma_Threshold = (14.247058, 12.840438, 13.210084, 13.027571, 14.779241, 11.935567, 13.642113, 10.025293,
14.340698, 9.998927, 13.453274, 10.904363, 15.173158, 11.638835, 15.229216, 12.227392)
    END_GROUP = IN_SIGMA_THRESHOLD
END_\overline{GROUP = IMPULSE_NOISE}
GROUP = COHERENT_NOISE
    Frequency_Components = 10
    GROUP = CN_FREQUENCY_PARAMETERS
```

GROUP $=$ FREQUENCY_MEANSB1_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B2_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B3_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B4_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B5_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B6_Frequency_Mean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B7_Frequency_Mean	ean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
END_GROUP = FREQUENCY_MEANS		
GROUP = FREQUENCY_SIGMAS		
B1_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B2_Frequency_Sigma	gma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B3_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B4_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B6_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B7_Frequency_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
END_GROUP = FREQUENCY_SIGMAS		
GROUP = FREQUENCY_MINIMUMS		
B1_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B2_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B3_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B4_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B5_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B6_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B7_Frequency_Min $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
END_GROUP = FREQUENCY_MINIMUMS		
GROUP = FREQUENCY_MAXIMUMS		
B1_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B2_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B3_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B4_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B5_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B6_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B7_Frequency_Max $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
END_GROUP = FREQUENCY_MAXIMUMS		
END_GROUP = CN_FREQUENC̄Y_PARAMETERS		
GROUP = CN_PHAS̄E_MEANS		
B1_Phase_Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B2_Phase_Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B3_Phase_Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B4_Phase_Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B5_Phase_Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B6_Phase_Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B7 Phase Mean =	$=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
END_GROUP = CN_PHASE_MEANS		
GROUP = CN_MAGNITUDE_PARAMETERS		
GROUP = MĀGNITUDE_MEANS		
B1_Magnitude_Mean		
B2_Magnitude_Mean		
	ean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B4_Magnitude_Mean	ean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B5_Magnitude_Mean	ean $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B6_Magnitude_Mean	= $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B7_Magnitude_Mean	($=$ (0.00, $0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
END_GROUP = MAGNITUDE_MEANS		
GROUP = MAGNITUDE_SIGMAS		
B1_Magnitude_Sigma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$		
B2_Magnitude_Sigma	gma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B3_Magnitude_Sigma	gma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B4_Magnitude_Sigma	gma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B5_Magnitude_Sigma	gma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B6_Magnitude_Sigma	gma $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
	END GROUP = MAGNITUDE SIGMAS	
GROUP = MAGNITUDE MINIMUMS		
B1_Magnitude_Min	$\mathrm{n}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B2_Magnitude_MinB3_Magnitude_Min	n $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
	n $=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	
B4_Magnitude_Min	$\mathrm{n}=(0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)$	

```
    B5_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7_Magnitude_Min = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END GROUP = MAGNITUDE MINIMUMS
    GROUP = MAGNITUDE_MAXIMUMS
    B1_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B2_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B3 Magnitude Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B4_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B5 Magnitude Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B6_Magnitude_Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    B7 Magnitude Max = (0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00,0.00)
    END_GROUP = MAGNITUDE_MAXIMUMS
    END_GROUP = CN_MAGNITUDE_PARAMETERS
END_GROUP = COHERENT_NOISE
```

GROUP $=$ CHANNEL_SATURATION
High_Level_B1 = ($255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)$
High_Level_B2 $=(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)$
High_Level_B3 $=(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)$
High_Level_B4 = (255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255)
High_Level_B5 $=(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)$
High_Level_B6 $=(255,255,255,255)$
High_Level_B7 $=(255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255)$
Low_Level_B1 $=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
Low_Level_B2 $=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
Low_Level_B3 $=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
Low_Level_B4 $=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
Low_Level_B5 $=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
Low_Level_B6 $=(0,0,0,0)$
Low_Level_B7 $=(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)$
END_GROUP $=$ CHANNEL_SATURATION
GROUP = REFERENCE_TEMPERATURE
B1_RTemp $=23.000$
B2_RTemp $=23.000$
B3 RTemp $=23.000$
B4_RTemp $=23.000$
B5_RTemp $=-181.00$
B6_RTemp $=-181.00$
B7_RTemp $=-181.00$
END_GROUP = REFERENCE_TEMPERATURE

```
GROUP = SENSITIVITY TEMPERATURES
    B1_SCoeff \(=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)\)
    B2_SCoeff \(\quad=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)\)
    B3_SCoeff \(\quad=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)\)
    B4 SCoeff \(\quad=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)\)
    B5_SCoeff \(\quad=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)\)
    B6_SCoeff \(=(0.0,0.0,0.0,0.0)\)
    B6_SCoeff_Off \(=(0.0,0.0,0.0,0.0)\)
    B7_SCoeff \(=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)\)
END_GROUP \(=\) SENSITIVITY_TEMPERATURES
GROUP = LAMP_RADIANCE
    GROUP = TRENDING_COEFFS
    Lamp1_Coeffs \(=(+0.0,+0.0)\)
    Lamp2_Coeffs \(=(+0.0,+0.0)\)
    Lamp3_Coeffs \(=(+0.0,+0.0)\)
    END_GROUP = TRENDING_COEFFS
    GROUP = STATE 000 RADIANCE
    B1_Rad_State_000 \(=\overline{( } 0.24,0.26,0.32,0.31,0.27,0.26,0.28,0.29,0.28,0.27,0.27,0.30,0.25,0.24,0.28,0.26)\)
    B2_Rad_State_000 \(=(0.31,0.34,0.25,0.35,0.45,0.12,0.41,0.27,0.26,0.25,0.12,0.37,0.35,0.38,0.33,0.48)\)
    B3_Rad_State_000 \(=(0.29,0.11,0.31,0.34,0.22,0.28,0.22,0.21,0.19,0.20,0.19,0.21,0.22,0.24,0.20,0.24)\)
    B4_Rad_State_000 \(=(0.13,0.11,-0.23,0.13,-0.01,-0.19,-0.57,-0.08,-0.16,0.07,-0.22,0.06,0.04,-0.04,-0.06,0.11)\)
    B5_Rad_State_000 \(=(-0.09,-0.10,-0.07,-0.10,-0.09,-0.10,-0.09,-0.10,-0.09,-0.10,-0.09,-0.09,-0.09,-0.10,-0.09,-0.10)\)
    B7_Rad_State_000 \(=(-0.07,-0.06,-0.06,-0.06,-0.06,-0.06,-0.06,-0.05,-0.05,-0.05,-0.06,-0.05,-0.05,-0.06,-0.06,-0.06)\)
    END_GRŌUP = STATE_000_RADIANCE
    GROUP = STATE 001 RADIANCE
```

B1_Rad_State_001 $=(37.33,32.39,37.17,32.83,37.02,32.81,36.78,32.70,36.74,32.76,37.20,32.58,37.08,32.58,37.69$, 32.46)

B2_Rad_State_001 $=(68.25,57.62,68.28,58.23,68.18,58.66,68.41,58.20,68.39,58.21,68.37,58.64,68.66,58.14,68.42$, 58.27)

B3_Rad_State_001 $=(57.12,58.81,57.33,58.88,57.73,58.73,57.75,58.52,57.63,58.74,57.68,58.86,57.88,58.90,57.69$, 59.16)

B4_Rad_State_001 $=(39.50,40.18,39.63,40.25,39.94,39.28,39.91,40.47,39.98,40.13,39.87,40.46,40.14,40.49,40.02$,
40.44)

B5_Rad_State_001 $=(2.05,2.07,2.00,2.03,1.98,2.05,1.97,2.03,1.97,2.02,1.97,2.03,1.98,2.03,2.03,2.08)$
B7_Rad_State_001 $=(1.70,2.12,1.67,2.11,1.66,2.10,1.65,2.10,1.64,2.08,1.62,2.08,1.63,2.07,1.64,2.11)$
END_GROUP = STATE_001_RADIANCE
GROUP = STATE_010_RADIANCE
B1_Rad_State_010 $=\overline{(52.16, ~ 46.95,51.84, ~ 47.58, ~ 51.75, ~ 47.48, ~ 51.34, ~ 47.32, ~ 51.35, ~ 47.35, ~ 51.98, ~ 47.07, ~ 51.72, ~ 47.01, ~ 52.52, ~}$ 46.69)

B2_Rad_State_010 = $(92.21,76.47,92.33,77.19,92.14,77.58,92.39,76.94,92.31,77.04,92.20,77.38,92.53,76.76,92.18$, 76.89)

B3_Rad_State_010 $=(67.09,67.60,67.37,67.65,67.76,67.37,67.79,67.06,67.59,67.27,67.55,67.45,67.68,67.45,67.43$, 67.68)

B4_Rad_State_010 $=(64.69,61.85,64.85,61.93,65.15,60.51,65.35,62.24,65.23,61.73,64.95,62.19,65.17,62.23,64.98$, 62.03)

B5_Rad_State_010 $=(3.71,3.67,3.61,3.61,3.59,3.62,3.58,3.61,3.57,3.59,3.56,3.59,3.57,3.60,3.64,3.69)$
B7_Rad_State_010 $=(2.72,2.68,2.68,2.66,2.67,2.65,2.66,2.65,2.64,2.63,2.61,2.62,2.61,2.61,2.63,2.66)$
END_GROUP = STATE_010_RADIANCE
GROUP $=$ STATE_011_RADIANCE
B1_Rad_State_011 = $(89.25,79.09,88.60,80.18,88.55,79.96,87.90,79.82,87.87,79.79,88.94,79.34,88.61,79.27,89.98$, 78.80)

B2_Rad_State_011 = $(159.84,133.57,159.98,134.88,159.79,135.70,160.21,134.64,160.13,134.78,1597.4,135.31,160.58$, 134.27, 16 $\overline{0} .00,134.43$)

B3_Rad_State_011 = $(123.81,125.98,124.34,126.05,125.12,125.67,125.24,125.17,124.78,125.64,124.83,125.89,125.09$, 125.91, 12 $\overline{4} .59,126.32)$

B4_Rad_State_011 = (103.68, 101.65, 104.00, 101.81, 104.53, 99.69, 105.01, 102.29, 104.76, 101.38, 104.34, 102.08, 104.72, 102.13, 104.35, 101.98)

B5_Rad_State_011 $=(5.83,5.82,5.70,5.73,5.65,5.76,5.64,5.73,5.63,5.71,5.62,5.71,5.64,5.73,5.73,5.84)$
B7_Rad_State_011 = (4.46, 4.85, 4.39, 4.81, 4.38, 4.79, 4.37, 4.80, 4.34, 4.76, 4.30, 4.75, 4.29, 4.73, 4.32, 4.79)
END_GROUP = STATE_011_RADIANCE
GROUP $=$ STATE_100_RADIANCE
B1_Rad_State_100 $=\overline{(} 63.82,64.28,63.49,65.11,63.53,64.99,63.01,64.83,63.06,64.90,63.80,64.53,63.52,64.40,64.53$, 63.96)

B2_Rad_State_100 $=(114.69,110.24,114.83,111.33,114.72,112.08,115.09,111.06,114.94,111.15,114.88,111.69,115.30$, 110.79, 114.73, 110.97)

B3_Rad_State_100 $=(89.03,81.93,89.28,82.01,89.69,81.81,89.83,81.39,89.35,81.58,89.39,81.75,89.60,81.75,89.28$, 82.06)

B4_Rad_State_100 $=(76.69,62.54,76.80,62.70,77.04,61.21,77.33,62.93,77.09,62.38,76.96,62.83,77.15,62.92,76.94$,
62.74)

B5_Rad_State_100 $=(3.38,3.78,3.29,3.69,3.27,3.71,3.25,3.70,3.25,3.66,3.24,3.67,3.25,3.69,3.32,3.75)$
B7_Rad_State_100 $=(4.04,4.03,3.97,3.99,3.96,3.97,3.95,3.98,3.91,3.95,3.89,3.94,3.88,3.93,3.91,3.99)$
END_GRŌUP = STATE_100_RADIANCE
GROUP $=$ STATE_101_RADIANCE
B1_Rad_State_101 $=\overline{(100.50,96.11, ~ 100.04, ~ 97.47, ~ 99.85, ~ 97.27, ~ 99.14, ~ 96.98, ~ 99.12, ~ 97.11, ~ 100.28, ~ 96.56, ~ 99.88, ~ 96.41, ~}$ 101.44, 95.88)

B2_Rad_State_101 $=(182.51,167.28,182.57,168.84,182.45,169.92,182.98,168.56,182.78,168.77,182.40,169.29,183.46$, 168.34, 182.66, 168.74)

B3_Rad_State_101 $=(145.88,140.37,146.33,140.62,147.00,140.22,147.28,139.45,146.72,140.02,146.82,140.26,147.10$, 140.27, 14 $\overline{6} .63,140.75$)

B4_Rad_State_101 $=(115.36,101.47,115.62,101.80,115.99,99.34,116.35,101.95,116.34,101.07,115.89,101.99,116.29$, 102.21, 115.98, 101.86)

B5_Rad_State_101 $=(5.55,5.94,5.44,5.84,5.37,5.84,5.35,5.82,5.35,5.82,5.34,5.80,5.36,5.81,5.42,5.91)$
B7_Rad_State_101 $=(5.76,6.18,5.67,6.14,5.67,6.12,5.66,6.12,5.62,6.07,5.57,6.06,5.55,6.05,5.58,6.12)$
END_GROUP = STATE_101_RADIANCE
GROUP $=$ STATE_110_RADIANCE
B1_Rad_State_110 = $\overline{(115.49,110.86, ~ 115.05, ~ 112.30, ~ 114.65, ~ 112.07, ~ 113.88, ~ 111.82, ~ 113.87, ~ 111.86, ~ 115.28, ~ 111.22, ~ 114.64, ~}$ 110.98, 11 $\overline{6} .39,1 \overline{1} 0.20$)

B2_Rad_State_110 = (206.04, 185.96, 206.16, 187.51, 206.03, 188.52, 206.64, 187.06, 206.43, 187.30, 205.75, 187.88, 207.01, 186.69, 20 $\overline{6} .12,186.92$)

B3_Rad_State_110 = $(155.82,149.00,156.33,149.21,157.05,148.77,157.23,148.01,156.62,148.56,156.72,148.84,156.95$, 148.69, 15 $\overline{6} .40,149.13$)

B4_Rad_State_110 $=(140.29,123.27,140.31,123.60,140.79,120.68,141.16,124.02,141.15,122.83,140.57,123.88,140.99$, 123.97, 140.62, 123.64)

B5_Rad_State_110 $=(7.19,7.50,7.04,7.39,6.96,7.40,6.95,7.37,6.93,7.36,6.91,7.34,6.93,7.35,7.02,7.48)$
B7_Rad_State_110 $=(6.77,6.74,6.67,6.69,6.66,6.67,6.65,6.67,6.60,6.63,6.55,6.61,6.52,6.58,6.55,6.65)$

END_GROUP = STATE_110_RADIANCE
GROUP = STATE_111_-RADIANCE
B1_Rad_State_111 = $(142.50,137.03,141.59,138.24,141.14,138.09,141.05,137.57,141.65,137.24,141.90,136.63,141.87$, 136.98, 142.71, 135.92)

B2_Rad_State_111 $=(273.39,242.99,273.05,245.14,273.54,246.21,274.31,244.38,273.88,244.95,272.72,245.58,274.88$, 244.06, 273.95, 244.60)

B3_Rad_State_111 $=(212.29,207.07,213.20,207.67,214.28,207.16,214.48,206.12,213.74,206.77,213.81,207.15,214.26$, 207.04, 213.43, 207.80)

B4_Rad_State_111 $=(179.00,162.02,179.06,162.57,179.92,158.58,180.21,163.09,180.59,161.66,179.75,162.82,180.48$, 162.86, 179.86, 162.56)

B5_Rad_State_111 $=(9.28,9.63,9.08,9.50,8.99,9.52,8.97,9.49,8.96,9.47,8.94,9.44,8.96,9.46,9.06,9.61)$
B7_Rad_State_111 = (8.49, 8.88, 8.39, 8.85, 8.39, 8.82, 8.37, 8.82, 8.30, 8.76, 8.24, 8.74, 8.20, 8.70, 8.22, 8.78)
END_GROUP = STATE_111_RADIANCE
END_GROUP = LAMP_RADIANCE
GROUP = LAMP_REFERENCE
Lmp_Rtemp $=(+23.0,+23.0,+23.00,+23.0,-181.0,+23.0,+23.0,+23.0,+23.0,+23.0)$
END_GROUP = LAMP_REFERENCE
GROUP = REFLECTIVE_IC_COEFFS
B1_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector11 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B1_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
B2_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector11 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B2_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector3 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector4 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector5 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector6 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector7 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector8 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector9 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector10 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector11 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector12 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector13 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector14 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector15 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B3_Coefficients_Detector16 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B4_Coefficients_Detector1 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$
B4_Coefficients_Detector2 $=(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0)$

```
    B4_Coefficients_Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector5 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B4_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector8 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B4_Coefficients_Detector9 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B4_Coefficients_Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector11 = (0.0,0.0,0.0,0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0)
    B4_Coefficients_Detector13 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B4_Coefficients_Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector2 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B5_Coefficients_Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector4 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0)
    B5_Coefficients_Detector5 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector6 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B5_Coefficients_Detector7 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector9 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector11 = (0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector14 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B5_Coefficients_Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0, 0.0)
    B7_Coefficients_Detector1 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B7_Coefficients_Detector2 = (0.0,0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0,0.0)
    B7_Coefficients_Detector3 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0,0.0,0.0)
    B7_Coefficients_Detector4 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0)
    B7_Coefficients_Detector5 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0,0.0)
    B7_Coefficients_Detector6 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector7 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0,0.0)
    B7_Coefficients_Detector8 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector9 = (0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0,0.0)
    B7_Coefficients_Detector10 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector11 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector12 = (0.0, 0.0, 0.0, 0.0, 0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector13 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector14 = (0.0, 0.0, 0.0,0.0, 0.0,0.0,0.0,0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector15 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
    B7_Coefficients_Detector16 = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
END_GROUP = \overline{REFLECTIVE_IC_COEFFS}
GROUP = THERMISTOR_COEFFS
    Black_Body_Temp = (17.073, 0.10263, 2.2576E-4, 0.0, 0.0, 0.0)
    Silicon_FP_Ärray_Temp =(10.049, 0.83456E-1, 0.14176E-3,0.0,0.0,0.0)
    Cal_Shutter_Flag_Temp = (36.898, -0.1598,1.957E-6, 0.0, 0.0,0.0)
    Baffle_Temp = (-2.9072, 0.089583, 2.7115E-4, 0.0, 0.0, 0.0)
    Cold_Stage_FP_Array_Temp = (-162.94, -0.1000, 0.0, 0.0, 0.0, 0.0)
    Scan_Line_Corrector_Temp = (147.84, -1.8384, 0.016092, -9.2715E-5, 2.839E-7, -3.683E-10)
    Cal_Shutter_Hub_Temp = (121.23,-1.9147, 0.019275, -0.11865E-3, 0.37343E-6, -0.47899E-9)
    Relay_Optics_Temp = (121.23,-1.9147, 0.019275, -0.11865E-3, 0.37343E-6, -0.47899E-9)
    Primary_Mirror_Temp = (121.23,-1.9147, 0.019275, -0.11865E-3, 0.37343E-6, -0.47899E-9)
    Secondary_Mirror_Temp = (121.23, -1.9147, 0.019275, -0.11865E-3, 0.37343E-6, -0.47899E-9)
END_GROUP = THERMISTOR_COEFFS
GROUP = FILL_PATTERNS
    Band_Fill_Pattern = (0, 255)
END_GROUP = FILL_PATTERNS
END
```


References

Please see http://landsat.usgs.gov/tools ga.php for a list of acronyms.
Jet Propulsion Laboratory (JPL). California Institute of Technology. Pasadena, California. JPL-D-7669. Part 2. Planetary Data System Standards Reference. Revision 3.6. August 1, 2003.

