CALIPSO Mission Science and Validation

dining 1

Dave Winker NASA Langley Research Center

Contraction of

CALIPSO flies as part of the A-train, providing observations needed to improve:

- Our understanding of the role of aerosols and clouds in the processes that govern climate responses and feedbacks
 - Direct and indirect aerosol effects
 - Cloud forcing and feedbacks

- The representation of aerosols and clouds in models
 - Improved climate predictions
 - Improved models of atmospheric chemistry/air quality

705 km, sun-synchronous orbit (1:30 PM)

Three co-aligned instruments:

- CALIOP: polarization lidar
 - 532 nm || and ⊥, 1064 nm
 - 0 40 km altitude, 30 60 m
- IIR: Imaging IR radiometer
 - 8.6 um, 10.5 um, 12 um
 - 64 km swath, 1 km IFOV
 - WFC: Wide-Field Camera
 - 645 nm

•

•

- 61 km swath, 125 m IFOV

Calipso Footprint

Instrument Specifications

CALIOP	
Laser	Nd: YAG, 2x110 mJ
Wavelength	532 nm, 1064 nm
Repetition rate	20.25 Hz
Receiver telescope	1.0 m diameter
Polarization	532 $^{ }$ and $^{\perp}$
Footprint/FOV	100 m / 130 ^µ rad
Vertical resolution	30 - 60 m
Horizontal resolution	333 m
Lin. dynamic range	22 bits
Wide-Field Camera (WFC)	
Wavel ength	645 nm
Spectral bandwidth	50 nm
IFOV / Swath	125 m / 61 km

Imaging Infrared Radiometer (IIR)	
8.65, 10.6,12.05 ^μ m	
0.6-1.0 ^μ m	
1 km / 64 km	
0.3 K	
±1 K	

- Motivation
 - CALIOP provides the only satellite observations of aerosol in the Arctic
 - ... as well as unique observations of smoke and clouds
- Pre-campaign activities
 - Analysis of 2006/2007 CALIOP data to support planning activities
- Support of field activities
 - CALIPSO representative in the field during campaign
 - Provide near-real time CALIPSO data products and flight planning guidance to the ARCTAS team
 - Forward trajectories initialized with CALIOP aerosol observations (Duncan Fairlie, Chieko Kittaka)
 - Identify specific CALIPSO validation needs and opportunities for incorporation into flight plans.
- Post-campaign activities
 - collaboration with other ARCTAS researchers in investigations combining CALIPSO data with aircraft measurements and modeling

Orbit Coverage

Level 1 (geolocated and calibrated)

- DP 1.1 profiles of attenuated lidar backscatter (532, 532, 1064 nm)
- DP 1.2 IR radiances (8.65, 10.6, 12.05 μm)
- DP 1.3 Visible radiances (650 nm) (WFC)

Level 2

- DP 2.1A Cloud/Aerosol layer product
 - layer base and top heights, layer-optical depth, cloud I/W phase
- DP 2.1B Aerosol profile product
 - backscatter, extinction, depolarization profiles
- DP 2.1C Cloud profile product
 - backscatter, extinction, depolarization, ice/water content profiles
- DP 2.1D Vertical Feature mask
 - cloud/aerosol locations, aerosol type
- Also: products from IIR + CALIOP + WFC: cloud $T_B(\lambda)$, emissivity, r_e

Level 3

- Summary statistics on a global grid

(available at http://eosweb.larc.nasa.gov)

Terminator Locations

April 1

April 15

Daytime Observations – March 30, 2007

(courtesy Trish Quinn)

in the Arctic, JGR 2002)

One-day Aerosol Distribution

3/21

One-day Aerosol Distribution

3/22

Monthly-mean Aerosol IAB (night)

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 [1/sr]

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 [1/sr]

Low vs. High Cloud

Occasional elevated layers: Chinese source?

Validation Activities

Validation includes:

- Targeted aircraft campaigns
- International field campaigns
- Ground-based networks
- Satellite comparisons

Activities to date:

- Flights of LaRC HSRL
- · CC-VEX (Georgia)
 - CPL, CRS (ER-2), HSRL
- Flights of CNES HSRL (Niger)
- NASA AMMA (Cape Verde)
- GoMACCS (Houston)
- DLR ASTAR (Svalbard)
- CIRCLE-2
- NASA TC⁴ (Costa Rica)

Plans for 2008:

ARCTAS, PolarCat (Kiruna, Greenland)

Jun-Sep 2006, Jan 2007

Jul-Aug 2006

Jul 2006

Aug 2006

Aug-Sep 2006

Mar-Apr

May

Jul-Aug

<image>

- Validation of 532 nm, 1064 nm calibration
 - HSRL
 - DIAL?
- Determine CALIOP detection limits (aerosol)
- Validation of cloud/aerosol discrimination
 - High SNR 532 nm, 1064 nm, and depolarization data (HSRL, DIAL)
 - HSRL allows discrimination of aerosol and tenuous water cloud via lidar ratio
 - Can use in situ data for discrimination of aerosol and thin cloud
- Validation of aerosol extinction profiles (10⁻⁴ to 10⁰ /km):
 - Profiles of aerosol extinction, backscatter: HSRL, in-situ/AATS
 - Verification of aerosol lidar ratio (σ/β): HSRL, in situ
 - > Need lidar ratios at both 532 nm and 1064 nm
- Additional in situ measurements:
 - Aerosol composition: to validate "aerosol type", aerosol lidar ratio
 - Aerosol mass, extinction, size distribution, composition: to relate CALIOP observations to models

Aerosol under marine stratocumulus?

CALIPSO-Model Intercomparisons

[ppbv]

Height of Smoke layer near the source:

