Aircraft Coordination for Interdisciplinary Science

Phil Russell

with key inputs from: Antony Clarke, Rich Ferrare, Jens Redemann, Jack Dibb

ARCTAS Science Team Meeting Lanham-Seabrook, MD 8-10 Jan 2008

Motivations for Coordinated Flight Plans

- Questions that ARCTAS and POLARCAT address involve measurements that are on different A/C.
- Some objectives require concurrent measurements with diverse platforms.
- Similar measurements on different platforms need intercomparisons to confirm a common data set.
- Scientific return and a broader spatial and temporal context are enhanced through coordinating A/C with satellite overpasses and/or surface sites.

How does Arctic aerosol radiative forcing efficiency relate to aerosol particle size distribution, composition (including water content, ionic, organic), & mixing state (internal, external)?

Science Questions

How do Arctic aerosol, cloud, and surface properties important to radiation and remote sensing relate to aerosol physiochemical properties and history?

- Properties important to radiation and remote sensing
- Aerosol radiative forcing efficiency
- Cloud albedo, optical depth and droplet size
- Surface reflectance and albedo
- Aerosol extinction-to-backscatter ratio
- Aerosol SSA(λ) & absorption Angstrom exponent
- Related aerosol physiochemical properties and history
- particle size distribution
- composition (including water content, ionic, organic)
- mixing state (internal, external)
- sizes active as cloud condensation nuclei (CCN)
- particle shape
- Gas-phase tracers, precursors & trajectories (sources)

Science Question(s)

- How do Arctic aerosol, cloud and surface properties important to <u>radiation and remote sensing</u> relate to aerosol <u>physiochemical properties and history</u>?
- Examples of properties important to <u>radiation and remote</u> <u>sensing</u>
- Aerosol radiative forcing efficiency [P-3]
- Cloud albedo, optical depth and droplet size [P-3]
- Surface reflectance and albedo [P-3]
- Aerosol extinction-to-backscatter ratio [B-200]
- Aerosol SSA(λ) & absorption Angstrom exponent [P-3]
- Examples of <u>aerosol physiochemical properties and history</u> - Aerosol particle size distribution [P-3, DC-8, B-200]
- Aerosol composition (including water content) [P-3, DC-8]
- Aerosol particle shape [B-200, others?]
- Gas-phase tracers, precursors & trajectories (sources) [DC-8]

POLARCAT-ARCTAS objectives:

- Determine the vertical layering of Arctic pollution, associated optical properties and the related physiochemistry of Arctic aerosol.
- Characterize the direct radiative effects within pollution and smoke layers in the Arctic.
- Investigate the size resolved properties of cloud condensation nuclei (CCN) and interactions of aerosols with clouds and their impact on radiative forcing.
- Measure BRDF & albedo of snow, ice & other surfaces and compare those measurements to any available surface-based measurements of snow albedo/reflectance as affected by deposition of black carbon from anthropogenic and biomass burning sources.
- Study impact of boreal forest fire emissions on the composition of the troposphere and on concentrations of soot, organics and ionic species.
- Determine the lofting, transport and evolution of smoke aerosol physiochemistry and associated optical properties.
- Validate aerosol, trace gas, and cloud products of space observations from polar orbital satellites.

Satellite field of view

Now it's time to get more specific!

Extremely laminar transport •Sloping thin layers •Strong gradients vertically & horizontally •Frequently decoupled surface layer (relevance of surface statistics?) •Highest concentrations may be aloft •Diamond dust and stratus near surface

Expected P-3 Flight Patterns for Aerosol-Cloud-Radiation Goals in ARCTAS

The following examples are in terms of Flight Modules

Because:

- The P-3 & DC-8 have long flight durations
- Coordinated flight patterns will only be part of any given flight
- It's usually easier to coordinate early in a flight than later

Clear sky, Module 1

Science objectives	P-3 instruments involved	Coord instruments w/ other aircraft	Coordination with satellite- instruments
 -Find AOD+flux gradients -Compare HSRL, AATS, HiGEAR, AERO3X, CALIPSO ext. profiles -Compare RSP retrievals to AATS AOD & HiGEAR/AERO3X properties 	AATS, SSFR, BBR, HiGEAR, AERO3X, CAR	<u>B-200</u> : HSRL+RSP	CALIPSO: CALIOP Aqua: MODIS PARASOL: POLDER Aura: OMI, TES Terra: MISR, MODIS
	/Aura POLDER	CALIPSO CloudSat MODIS,MI MODIS/ 3 (1) B-2(3) (3) (3) (3) (3) (3) (3) (3)	SR/Terra Aqua 20 (2) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0

Coordinated B200/HSRL - Airborne in situ Measurements Ex. DOE CHAPS – June 2007

Clear sky, Module 2

	Invervea		Instruments
-Find AOD+flux gradientsAATS-Compare HSRL, AATS, HiGEAR, AERO3X, CALIPSO ext. profilesHiGE CAR-Compare DC-8 & B-200 backscat profiles-Compare DC-8 & P-3 in situ	S, SSFR, BBR, EAR, AERO3X,	<u>B-200</u> : HSRL+RSP <u>DC-8</u> : Lidar + in situ	<u>CALIPSO</u> : CALIOP <u>Aqua</u> : MODIS <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES <u>Terra</u> : MISR, MODIS

- (1) Compare DC-8 & B-200 lidar profiles (+ CALIPSO if available)
- (2) Nested spirals give
 - comparisons of DC-8 in situ to
 - P-3 in situ
 - AATS & HSRL ext

Clear sky, Module 3

Science objectives	P-3 instruments involved	Coord with instruments on other aircraft	Coordination with satellite-instruments
-SSFR+AATS flux divergence for aerosol absorption compared to HiGEAR, AERO3X in situ	AATS, SSFR, BBR, HiGEAR, AERO3X, CAR	<u>B-200</u> : HSRL+RSP	<u>Aqua</u> : MODIS (possibly in-glint) <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES

Background on Radiative Flux Divergence & Closure, Absorption Spectra, etc.

- **Upwelling Flux: F**↑
- Net Flux: F↓- F↑

Flux Divergence (absorption): (F↓- F↑)_{2000m}- (F↓- F↑)_{43m}

Fractional absorption: $[(F\downarrow - F\uparrow)_{2000m} - (F\downarrow - F\uparrow)_{43m}]/F\downarrow_{2000m}$

Pilewskie, Bergstrom, Schmid et al.

Aerosol Single Scattering Albedo Spectrum

Wavelength, nm

Derived from measured flux and AOD spectra.

Desirable features:

- Describes aerosol in its ambient state (incl volatiles like water, organics, nitrates)
- Wide λ range: UV-Vis-SWIR
- Includes λ range of OMI-UV, OMI-MW, MISR, MODIS, CALIPSO, HSRL, Glory ASP, RSP, POLDER,

. . .

• Coalbedo (1-SSA) varies by factor 4, λ = 350-900 nm

1700 [Bergstrom, Pilewskie, Schmid et al., *JGR* 2004]

P. Russell, Earth Science Seminar, NASA Ames, 19 July 2007

SSA Spectra from 4 Experiments

Figure 3. The single scattering albedo for the cases presented in Figu

Bergstrom et al., ACP, 2007

Aerosol <u>Absorption</u> Optical Depth (AAOD) Spectra from 5 Experiments

Bergstrom et al., ACP, 2007

MlabsangAMSorgmassfracscaang2.fig, MlabsangAMSorgmassfrac.m, Yohei, 2007

Shinozuka, Clarke et al., 2007

Clear sky, Module 3

Science objectives	P-3 instruments involved	Coord instruments w/ other aircraft	Coordination with satellite-instruments
-SSFR+AATS flux divergence for aerosol absorption compared to HiGEAR, AERO3X in situ	AATS, SSFR, BBR, HiGEAR, AERO3X, CAR	<u>B-200</u> : HSRL+RSP	<u>Aqua</u> : MODIS (possibly in-glint) <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES

Radiative Flux Closure with In Situ

Science objectives	P-3 instruments involved	Coord with instruments on other aircraft	Coordination with satellite-instruments
-Radiative flux divergence for closure & aerosol absorption (compare abs to HiGEAR & AERO3X in situ, + DC-8 in situ)	AATS, SSFR, BBR, HiGEAR, AERO3X	<u>B-200</u> : HSRL + RSP <u>DC-8</u> : in situ + lidar <u>NOAA P-3</u> : SSFR + BBR +?	Aura: OMI, TES <u>Terra</u> : MISR <u>Aqua</u> : MODIS (possibly in glint) <u>PARASOL</u> : POLDER

Compare NASA & NOAA P-3 SSFRs & BBRs, NASA P-3 & DC-8 in situ (2) Flux divergence by 2 P-3s while DC-8 samples within layer & B-200 profiles from above. (3) P-3 spiral in HSRL curtain gives 4-way extinction comparison (HSRL, AATS, **HiGEAR, AERO3X)** (4) Flux divergence with 2 P-3s in swapped positions

Caveat: Only Summer smoke may have large enough AOD

Partly cloudy, Module 1

Science objectives	P-3 instruments involved	Coord instruments w/ other aircraft	Coordination with satellite instruments
-Study AOD in vicinity of clouds (aerosol-cloud sep.) -Aerosol indirect effect -Compare RSP+SSFR cloud retrievals	AATS, SSFR, HiGEAR, AERO3X	<u>B-200</u> : HSRL+RSP	<u>CALIPSO</u> : CALIOP <u>Aqua</u> : MODIS <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES

Partly cloudy, Module 1

Science objectives	P-3 instruments involved	Coord with instruments on other aircraft	Coordination with satellite instruments
-Study AOD in vicinity of clouds (aerosol-cloud sep.) -Aerosol indirect effect -Compare RSP+SSFR cloud retrievals	AATS, SSFR, HiGEAR, AERO3X	<u>B-200</u> : HSRL+RSP <u>DC-8</u> : In situ	<u>CALIPSO</u> : CALIOP <u>Aqua</u> : MODIS <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES

Add DC-8 for belowcloud aerosol & within-cloud measurements

Partly cloudy, Module 1

Science objectives	P-3 instruments involved	Coord with instruments on other aircraft	Coordination with satellite instruments
-Study AOD in vicinity of clouds (aerosol-cloud sep.) -Aerosol indirect effect -Compare RSP+SSFR cloud retrievals with in-cloud meas	AATS, SSFR, HiGEAR, AERO3X	<u>B-200</u> : HSRL+RSP <u>CV-580</u> : In situ	<u>CALIPSO</u> : CALIOP <u>Aqua</u> : MODIS <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES

Add CV-580 for belowcloud aerosol & within-cloud measurements

Cloudy, Module 1

Science objectives	P-3 instruments involved	Coordination with instruments on other aircraft	Coordination with satellite-instruments
-Compare RSP+SSFR cloud	AATS, SSFR, BBR,	<u>B-200</u> : HSRL+RSP	<u>Aqua</u> : MODIS
retrievals	HiGEAR, AERO3X,		<u>PARASOL</u> : POLDER
-Aerosol above clouds	CAR		<u>Aura</u> : OMI, TES

Cloudy, Module 1

Science objectives	P-3 instruments involved	Coordination with instruments on other aircraft	Coordination with satellite-instruments
-Compare RSP+SSFR cloud retrievals -Aerosol above clouds	AATS, SSFR, BBR, HiGEAR, AERO3X, CAR	<u>B-200</u> : HSRL+RSP <u>DC-8: In situ</u>	<u>Aqua</u> : MODIS <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES

Add DC-8 for belowcloud aerosol & within-cloud measurements

Cloudy, Module 1

Science objectives	P-3 instruments involved	Coordination with instruments on other aircraft	Coordination with satellite-instruments
-Compare RSP+SSFR cloud retrievals with in-cloud measurements -Aerosol above clouds	AATS, SSFR, BBR, HiGEAR, AERO3X, CAR	<u>B-200</u> : HSRL+RSP <u>CV-580</u> : In situ	<u>Aqua</u> : MODIS <u>PARASOL</u> : POLDER <u>Aura</u> : OMI, TES
OMI, TES/Aura POLDER	CALIPSO CloudSat	MODIS, MISR/Terra MODIS/Aqua	CV-580 for below- loud aerosol & /ithin-cloud neasurements

End of Presentation Remaining slides are backup

ICEALOT Cruise, 17 March-28 April 2008

Working

Area

Port Stop -Tromso,

Norway

11-15 April

Cruise begins Woods Hole, MA, USA 17 March 2008 Initial work in Boston Harbor and Gulf of Maine before heading to ICEALOT working area

> Cruise ends Iceland 28 April 2008

Clear sky, Module 2

Science objectives	P-3 instruments involved	Coord with instruments on other aircraft	Coordination with satellite-instruments
-MISR local mode val. -Closure AATS+SSFR vs. DC-8 in situ -Compare HSRL+AATS+HiGEAR+AERO3X+C ALIPSO ext.	AATS, SSFR, HiGEAR, AERO3X, CAR	<u>B-200</u> : HSRL+RSP <u>DC-8: in situ + lidar</u>	<u>Terra</u> : MISR, MODIS <u>CALIPSO</u> <u>A-Train</u>

The A-Train is a set of satellites that fly in sequence

Many P-3 flights will include legs or profiles under the A-Train or other satellites

Coordinated B200/HSRL - Airborne in situ Measurements Ex. INTEX-B/MILAGRO/MAX-Mex – March 2006

