METEOROLOGICAL OVERVIEW OF ARCTAS

Henry Fuelberg Florida State University

David Atkinson University of Alaska--Fairbanks

Extreme Arctic Haze

This and weaker events are what ARCTAS is about !

Picture courtesy: Ann-Christine Engvall

Our "Stomping Ground"

General Circulation Concepts

© 2007 Thomson Higher Education

Situation more complicated—Arctic Front

The Arctic Front

Arctic Oscillation

Positive PhaseNegative PhaseClosely related to North Atlantic Oscillation

Time Series of Arctic Oscillation 1950-2006

Potential Temperature (θ)

- The temperature that a parcel of air would have if brought dry adiabatically to a pressure of 1000 mb
- Parcels conserve θ as long as no heat is added or subtracted, i.e, an adiabatic process

Cross Section of θ at 90° W--January

NCEP/NCAR Reanalysis

Potential Temperature (K) Composite Mean

Cross Section of θ at 90°W--April

Cross Section of θ at 90°W--July

NCEP/NCAR Reanalysis

Potential Temperature (K) Composite Mean

Ocean Currents

Historical Mean April Sea Ice Extent and Snow Water Equivalent

Max ice in FebruaryStarts retreat AprilMin ice September

NSIDC April-July Maximum/ Minimum Sea Ice Extents, 2000-2004

Vertical Structure of Atmosphere

Arctic atmosphere tends to be **very** stable:

- Cooled from below via negative radiation balance
- Strong surface based temperature inversions
- Positive surface radiation balances are often spent thawing snow/ice
- Mixing heights/boundary layer heights are low
- Weak mixing
- Tropopause is low (can go below 500 mb)
- Summer convection in interior small scale by lower 48 standards

Synoptic Aspects & Extremes

Synoptic Aspects

- Arctic regions usually removed from areas of strong steering (e.g., mid-latitude jet)
- Systems do not always move through as quickly
- Systems can get trapped by topography and stall
- Ice edge can form a baroclinic zone for local storm development

Arctic sees extremes

- For example late Jan 2007 at FAI warmest 850 mb temp ever for the entire Oct - May period (+12 C)
- Then coldest Feb 15 Mar 15 (2007) in 100 years.
- Climatologies can only provide rough guidance

Operational Considerations

Geosynchronous Satellite Support Poor

- Angle is too great
- Polar orbiters high repeat rate but images not lined up

Met. Forecast Models have Difficulty

- Forecast models depend on observational data for constraint - very little in situ observed data available
- Problem in Bering/Chukchi Sea storm forecasting
- Strong surface inversions difficult for models
- Moisture contents low get localized, small amounts of precipitation that the models cannot capture
- Local cloudiness also difficult, especially where sea ice is involved

ARCTAS-SPRING

Weather on the Ground--April

	Avg Max	Avg Min	Avg Precip
	(deg F)	(deg F)	(inches)
Cold Lake	49.1	27.5	0.43
Thule	10.0	-7.0	0.20
Fairbanks	43.6	19.8	0.21
Barrow	6.3	-7.3	0.12

April Mean Sea Level Pressure

Apr: 1970 to 2000

April Mean 300 mb Winds

Apr: 1970 to 2000

Preferred Pathway to Arctic--Winter

Eurasian route preferred

Stohl, JGR, 2006

Transport

Number of continuous days that lowest 100 m of atmosphere has spent in the Arctic

Pretty Stagnant

July

Stohl, JGR, 2006

daya

High topo. In Greenland

Shorter Arctic Ages Aloft

Stratospheric Contribution?

Winter

Probability that air in lowest 500 m had a stratospheric origin within the previous 10 days

Summer

Stohl, JGR 2006

Satellite Inter-comparisons

"The A-Train." Listed under each satellite's name is its equator crossing time.

Many Overpasses Each Day

CALIPSO ORBIT OVER 2 DAYS (M. Capderou/Ixion)

April Cloud Cover

90 Ο 60 30 0 -180 -150 -120 -90 -60 -30 0 VIS-IR Middle Cloud Amount (%) No data Û. 15 30 45 60

ISCCP-D2 198307-200506 Mean April

ISCCP-D2 198307-200606 Mean April

ISCCP-D2 198307-200506 Mean April

ISCCP-D2 198307-200506 Mean April

ARCTAS-SUMMER

Weather on the Ground--July

	Avg Max	Avg Min	Avg Precip
	(deg F)	(deg F)	(inches)
Cold Lake	73.2	51.6	3.31
Thule	46.0	38.0	0.70
Fairbanks	73.0	51.9	1.73
Barrow	46.5	34.3	0.87

July Sea Level Pressure

July Mean 300 mb Winds

Jul: 1970 to 2000

Preferred Path to Arctic--Summer

- Preferred paths over oceans
- •Weakening of Aleutian and Icelandic lows
- Monsoonal low over Asia

Stohl, JGR, 2006

July Cloud Cover

90 60 30 0 -180 -150 -120 -90 -60 -30 0 VIS-IR Middle Cloud Amount (%) Û. 15 30 45 60

ISCCP-D2 198307-200506 Mean July

ISCCP-D2 198307-200506 Mean July

ISCCP-D2 198307-200506 Mean July

ISCCP-D2 198307-200506 Mean July

Boreal Forest Fires

Annual Areas Burned

Canadian Fires by Month (1980-2004)

Alaskan Fires 1950-2006

Fires in Eastern Europe April / May 2006

Around the World in 17 Days—Forest Fire Smoke from Russia

Actual time 20030515. 0

Day 8--21 May--Alaska

FLEXPART Tracer

Day 11-12---23-24 May----Canada

Actual time 20030524.180000

Day 14--27 May---Scandinavia

SeaWiFS Image

FI FXPART Tracer

Actual time 20030527.150000

Transport of Biomass Burning Emissions to the European Arctic

Backward Simulation from Barrow

Pyro-Cumulonimbus

Mike Fromm

The Chisholm (Alberta) PyroCb 28 May 2001

Mike Fromm

ARCTAS Will Be An Exciting Experiment !!

Our Hero !

The End

Questions ?

July Mean 500 mb Heights

Jul: 1970 to 2000

Boreal Forest Fires Pollute the Stratosphere

Jost, Drdla, Stohl et al., <u>*GRL*</u> **31**, L11101, 2004.