HOxCIMS (NCAR)

FREQUEN

CY

AN

3 x 10⁵

cm⁻³

1 pptv

MEASUREMENTS:

- Chemical Ionization Mass Spectrometric_based
- Chemical conversion to H₂SO₄ followed by ionizati

TOOLS:

- wed by ionizati $HO_2 \& HO_2 + R = 1 \text{ min}^{-1}$
- Radical Calibrator
 - OH, HO₂ and RO₂ concentrations: 1 pptv and higher
 - Flows up to 50 l/min; RH 1_99%
- Steady State Box Model
 - Estimates of short-and interm. lived species (radicals, reservoirs, etc.)

A NALYSIS:

- Measurement_model comparisons
- Multiple instrument comparisons
- Radical and ozone budgets

ARCTAS workshop, Slide # 1

A CCURAC

45% (2σ)

35% (2σ)

HOxCIMS

- Operational Requirements
 - Advanced warning of cloud penetrations
 - Inlet performance untested at DC_8 speeds
 - Range of speeds during test flights
 - Range of altitudes (15 minute legs) during test flights (e.g. every 5 kft over operational range)
 - Fresh N_2 cylinder every flight, O_2 cylinder every 5 flights, can go 36 hours without attention
 - Temperature must stay above 5 °C on A/C $(SO_2/N_2 mix condensation)$ or put in heated laboratory
 - Need real_time Dew Point to adjust water addition
- Other Operational Information
 - Gas venting box (propane, NO/N_2 mix)
 - Exhaust contains SO_2 , NO, propane, HNO₃
- Perceived Gaps & Issues
 - Cylinders, radioactive sources