NCAR NO_{xv}O₃

Andrew J. Weinheimer (wein@ucar.edu)
Frank M. Flocke (ffl@ucar.edu)
David J. Knapp (david@ucar.edu)
Denise D. Montzka (montzka@ucar.edu)
Wengang Zheng (wengang@ucar.edu)
All at:

National Center for Atmospheric Research (NCAR) 1850 Table Mesa Drive Boulder, CO 80305

The NCAR $NO_{xy}O_3$ instrument is a 4-channel chemiluminescence instrument for the measurement of NO, NO_2 , NO_y , and O_3 . NO_x (NO and NO_2) is critical to fast chemical processes controlling radical chemistry and O_3 production. Total reactive nitrogen ($NO_y = NO + NO_2 + HNO_3 + PAN_5 + other organic nitrates + <math>HO_2NO_2 + HONO + NO_3 + 2*N_2O_5 + particulate <math>NO_3^- + ...$) is a useful tracer for characterizing air masses since it has a tendency to be conserved during airmass aging, as NO_x is oxidized to other NO_y species.

ARCTAS Objectives:

- NO_v & O₃ serve as tracers of long-range transport of polluted air into the Arctic.
- NO_x, NO_y, O₃ are expected to be strongly influenced by boreal fires.
- Influence of NO_x on chemical processes involving radicals and O₃ production.

 NO_x (NO and NO_2), NO_y (total reactive nitrogen), and O_3 are measured using the NCAR 4-channel chemiluminescence instrument, previously flown on the NASA WB-57F and the NCAR C130. NO is measured via addition of reagent O_3 to the sample flow to generate the chemiluminescent reaction producing excited NO_2 , which is detected by photon counting with a dry-ice cooled photomultiplier tube. NO_2 is measured as NO_2 following photolytic conversion of NO_2 , with a time response of about 3 sec due to the residence time in the photolysis cell. NO_2 is measured with an identical time response due to use of a matching volume. NO_y is measured via Au-catalyzed conversion of reactive nitrogen species to NO_2 , in the presence of CO_2 , with a time response of slightly better than 1 sec. O_3 is measured using the same chemiluminescent reaction but with the addition of reagent NO_2 to the sample flow. Time response for the ozone measurement is slightly better than 1 s. All 4 measurements are reported at 1 s in the standard archival.

Instrument Specifications (1-sec values):

Species	Time Response	Precision (1σ, low	Overall Uncertainty (well
		mixing ratio, 41 kft)	above detection limit)
NO	~3 s	≤20 pptv	~10%
NO ₂	~3 s	≤40 pptv	~10-20%
NO _y	≤1 s	≤20 pptv	~10%
O_3	≤1 s	≤0.1 ppbv	~5%