
GIGA+: Scalable Directories for Shared File Systems
(or, How to build directories with trillions of files)

Problem: Scalable Directories
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Need high performance metadata services
• Most file systems store a directory on a single MDS
• New trends need large metadata services

• Apps generating millions of small files in a directory, like 
a simple database

• Large apps run in parallel on clusters of 100,000s of CPUs

Build scalable directories for shared file-systems
• POSIX-compliant, maintain UNIX file system semantics
• Store trillions of files and handle >100K operations/second

Goal: More Scalability Through More Parallelism
Minimize serialization
• Avoid ordered splitting of partitions, like LH* [Litwin96] 

Eliminate system-wide synchronization
• Avoid using cache consistency and distributed locking, 

like GPFS [Schmuck02]

GIGA+ distributed indexing divides divides a directory into 
partitions, spread across multiple servers

• Enables highly incremental, unsynchronized, and 
load-balanced growth

GIGA+ Technique
Allows servers to grow their partitions independently
• Only maintain local state about their partitions
• Keep “split history” of their partitions

Tolerates out-of-date partition-to-server maps at the client
• Due to unsynchronized growth, map becomes state & 

inconsistent
• Copies updated lazily, on addressing an incorrect server

Reconfiguration and Recovering in GIGA+

Unique, self-describing bitmap to map partitions on a server
• Tracks presence or absence of a partition and its split 

history
• Deterministic search of best server to send the request
• Efficiently send many bitmap updates to erroneous clients
• Compact: billion file directory, in 16 KB

Handling server addition
• Change the partition-to-server mapping from round-robin on the original 

server set to se sequential on the newly added servers
• Minimizes the amount of data migration during reconfiguration

Handling failures
• Servers use "uniform de-clustered replication" that deterministically 

replicates each server's state spread across all remaining servers
• Enables load-balanced failover and fast, parallel recovery
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