
GIGA+: Scalable Directories for Shared File Systems
(or, How to build directories with trillions of files)

Problem: Scalable Directories

Swapnil V. Patil and Garth A. Gibson

Need high performance metadata services
• Most file systems store a directory on a single MDS
• New trends need large metadata services

• Apps generating millions of small files in a directory, like
a simple database

• Large apps run in parallel on clusters of 100,000s of CPUs

Build scalable directories for shared file-systems
• POSIX-compliant, maintain UNIX file system semantics
• Store trillions of files and handle >100K operations/second

Goal: More Scalability Through More Parallelism
Minimize serialization
• Avoid ordered splitting of partitions, like LH* [Litwin96]

Eliminate system-wide synchronization
• Avoid using cache consistency and distributed locking,

like GPFS [Schmuck02]

GIGA+ distributed indexing divides divides a directory into
partitions, spread across multiple servers

• Enables highly incremental, unsynchronized, and
load-balanced growth

GIGA+ Technique
Allows servers to grow their partitions independently
• Only maintain local state about their partitions
• Keep “split history” of their partitions

Tolerates out-of-date partition-to-server maps at the client
• Due to unsynchronized growth, map becomes state &

inconsistent
• Copies updated lazily, on addressing an incorrect server

Reconfiguration and Recovering in GIGA+

Unique, self-describing bitmap to map partitions on a server
• Tracks presence or absence of a partition and its split

history
• Deterministic search of best server to send the request
• Efficiently send many bitmap updates to erroneous clients
• Compact: billion file directory, in 16 KB

Handling server addition
• Change the partition-to-server mapping from round-robin on the original

server set to se sequential on the newly added servers
• Minimizes the amount of data migration during reconfiguration

Handling failures
• Servers use "uniform de-clustered replication" that deterministically

replicates each server's state spread across all remaining servers
• Enables load-balanced failover and fast, parallel recovery

P0
(o,1]

P1
(o.5,1]P0

(o,0.5]

P1
(o.5,0.75] P3

(o.75,1]

P1
* P5

+

T0

T1

T2

T3

0 0.25 0.5 0.75 1
Total hash range (0,1] is split over different partitions Pi

P0
(o,0.25] P2

(o.25,0.5]

time

Logical view of
the entire index

Physical view (mapping & partitions)
on each server

server S0 server S1 server S2

P0P0 S0

P0
P0 S0

S1

P0

P3

P0 S0
P1 S1

S0

P0

P3

P0 S0
P1 S1
P3 S0

S2

P0 S0

P1
P0 S0

S1

P1

P1
P0 S0
P1 S1
P3 S0

S2

P0 S0

P0 S0

P0 S0

P2

P5

P0 S0
S2

mapping mapping mapping

P0 S0
P1 S1

S0

P1P1

P3 P3

S2
P2 P5

P2
P5

Original Server Con�guration

Round-robin Mapping

New Servers

Sequential
Mapping

S0 S5S4S3S2S1 S6

P0

P10

P5

P1

P11

P6

P2

P12

P7

P3

P13

P8

P4

P14

P9

P15

P17

P16

P18

P20

P19

