
• Number of behaviors grows exponentially with number of
concurrent events

• Non-determinism arises due to interactions with environment
• Conflicting requirements, such as performance versus

consistency, imply high complexity
• (Formal) Specifications of distributed systems inaccurate,

outdated, or non-existent

dBug: Systematic Evaluation of Distributed Systems

Problem Setup

Jiri Simsa, Garth Gibson, Randy Bryant

• HPC computing speed grows 2X per year
• Disk bandwidth grows only 20% per year
• Random access rate grows only 7% per year
• As a result, parallel FSs grow in:
 • disks, parallelism, prefetching, delaying
• Implementing and stabilizing more complex code at HPC

scales is harder each year

dBug Approach: Design & Implementation

Distributed System Verification Challenges

Background: Bug Finding
• Concrete / Symbolic execution tools in use:

• MoDist, KLEE, eXplode, DART, VeriSoft, ...
• Execute real code in a test harness
• Typical limitations:

• Under-constraining environment
• Limited ability to setup test cases

Case Studies: PVFS and FAWN
• Our Goal: systematic evaluation of distributed systems
• Initial cases: PVFS and FAWN-based distributed key-value store
• Integration of both systems with dBug ~ 100 LOC
• Additional annotations used for:

• Accelerating exploration of dBug
• Reducing the number of behaviors needed to explore

• Verified 10 workloads; found known & unknown bugs
• E.g., a FAWN bug was violating strong consistency guarantee

App
Performance

Computing Speed

Parallel
I/O

Network Speed

Memory

Archival
Storage

FLOP/s

Gigabytes/sec

GigaBytes/sec

Gigabits/sec

1 10 10
1011

1012

1013

0.05

0.5

5
TeraBytes 50

0.01

0.1

101

0.1
1

10100

8

800
80

0.8

‘96
‘97

‘00

2003
Year

102

Disk
TeraBytes 2.525

2502500

Metadata
Inserts/sec

50
100

1000

103 5
1011

1012

1013

1014

0.05

0.5

5

50

0.01

0.1

10

10.1
1

10

8

800

80

0.8

‘96
‘97

‘00

102
2.525

250

50
100

500

1

Background: Proving Correctness
• Model checking tools in use:

• MaceMC, SLAM, HAVOC, Terminator, SPIN, Slayer, ...
• No one-fits-all tool
• Typical limitations:

• Limited range of properties / language constructs
• Manual effort to annotate / specify / verify required
• Proves correctness under assumptions

Application

OS + Libraries

Application

OS + Libraries

dBug interposition

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug explorer

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

dBug

Original Distributed System

dBug arbiter

Thread 1

dBug client

Thread n

dBug client

. . .

dBug server

PDLR10

Avoid annotation of source code by
interposing on popular library interfaces

Use centralized arbiter to control
execution order of concurrent events

Through arbiter scheduling, systematically
explore different execution orders

