
• Number of behaviors grows exponentially with number of 
concurrent events

• Non-determinism arises due to interactions with environment
• Conflicting requirements, such as performance versus 

consistency, imply high complexity
• (Formal) Specifications of distributed systems inaccurate, 

outdated, or non-existent

dBug: Systematic Evaluation of Distributed Systems

Problem Setup

Jiri Simsa, Garth Gibson, Randy Bryant

• HPC computing speed grows 2X per year 
• Disk bandwidth grows only 20% per year 
• Random access rate grows only 7% per year
• As a result, parallel FSs grow in:
 • disks, parallelism, prefetching, delaying
• Implementing and stabilizing more complex code at HPC 

scales is harder each year

dBug Approach: Design & Implementation

Distributed System Verification Challenges

Background: Bug Finding
• Concrete / Symbolic execution tools in use:

• MoDist, KLEE, eXplode, DART, VeriSoft, ...
• Execute real code in a test harness
• Typical limitations:

• Under-constraining environment
• Limited ability to setup test cases

Case Studies: PVFS and FAWN
• Our Goal: systematic evaluation of distributed systems
• Initial cases: PVFS and FAWN-based distributed key-value store
• Integration of both systems with dBug ~ 100 LOC
• Additional annotations used for:

• Accelerating exploration of dBug
• Reducing the number of behaviors needed to explore

• Verified 10 workloads; found known & unknown bugs
• E.g., a FAWN bug was violating strong consistency guarantee 
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Background: Proving Correctness
• Model checking tools in use:

• MaceMC, SLAM, HAVOC, Terminator, SPIN, Slayer, ...
• No one-fits-all tool
• Typical limitations:

• Limited range of properties / language constructs
• Manual effort to annotate / specify / verify required
• Proves correctness under assumptions
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Avoid annotation of source code by 
interposing on popular library interfaces

Use centralized arbiter to control 
execution order of concurrent events

Through arbiter scheduling, systematically 
explore different execution orders


