
...And eat it too: High read performance in
write-optimized HPC I/O middleware file formats

Milo Polte∗, Jay Lofstead†, John Bent‡, Garth Gibson∗, Scott A. Klasky§, Qing Liu§ Manish Parashar¶,
Karsten Schwan†, Matthew Wolf†,

∗Carnegie Mellon University †Georgia Institute of Technology ‡Los Alamos National Lab
§Oak Ridge National Lab ¶Rutgers University

I. INTRODUCTION

As HPC applications work on increasingly larger datasets,
both the frequency of checkpoints needed for fault toler-
ance [1] and the resolution and size of Data Analysis Dumps
are expected to increase proportionally. For example, a com-
mon practice amongst codes such as GTC[2] running at scale
on Jaguar, the petascale computer at ORNL, is to write restart
files once per hour. This ensures that the most time lost in
a simulation running on p-processors is p hours. Application
scientists are always forced to balance how much time is spent
writing all of the output data with the total runtime cost of
the simulation run, and very often try to write the minimum
amount of data due to inefficient output mechanisms.

As applications run at larger scales, in order to maintain an
acceptable ratio of time spent performing useful computation
work to time spent performing I/O, write bandwidth to the
underlying storage system must increase proportionally to
the increase in the computation size. Unfortunately, popular
scientific self-describing file formats such as netCDF [3] and
HDF5 [4] are designed with a focus on portability and flex-
ibility. Extra care and careful crafting of the output structure
and API calls is required to optimize for write performance
using these APIs. Without this extra effort, this often results
in poor performance from the underlying storage system [5].

To provide sufficient write bandwidth to continue to support
the demands of scientific applications, the HPC community
has developed a number of I/O middleware layers. A few
examples include the Adaptable IO System (ADIOS) [6],
[7], a library developed at Oak Ridge National Laboratory
providing a high-level IO API that can be used in place of
pnetcdf or HDF5 to do much more aggressive write-behind
and efficient reordering of data locations within the file; and
the Parallel Log-structured Filesystem (PLFS) [8], a stackable
FUSE [9] filesystem developed at Los Alamos National Lab-
oratory that decouples concurrent writes to improve the speed
of checkpoints. Since ADIOS is an I/O componentization that
affords selection of different I/O methods at or during runtime,
through a single API, users can have access to MPI-IO, Posix-
IO, parallel HDF5, parallel netCDF, and staging methods [10].
The ADIOS BP file format [11] is a new log-file format that
has a superset of the features of both HDF5 and netCDF, but is
designed to be portable and flexible while being optimized for
writing. PLFS takes a different approach and is mounted as a

stackable filesystem on top of an existing parallel filesystem.
Reads or writes to the PLFS filesystem are transparently
translated into operations on per-process log files stored in
the underlying parallel filesystem. Since PLFS performs this
translation without application modification, users can write
in HDF5, netCDF, or app-specific file formats and PLFS will
store the writes in a set of efficiently written log-formatted
files, while presenting the user with a logical ‘flat’ file on
reads. Despite their different approaches, the commonality
behind both of these middleware systems is that they both
write to a log file format. As shown in [12] and [8], writes are
fully optimized in both systems, sometimes resulting in 100x
improvements over writing data in popular file formats.

While these techniques dramatically improve write perfor-
mance, the obvious concern with any write optimized file
format would be a corresponding penalty on reads. In the
log-structured filesystem [13], for example, a file generated
by random writes could be written efficiently, but reading
the file back sequentially later would result in very poor
performance. Simulation results require efficient read-back for
visualization and analytics and while most checkpoint files are
never used, the efficiency of restart is still important in the face
of inevitable failures. The utility of write speed improving
middleware would be greatly diminished without acceptable
read performance.

In this paper we examine the read performance on large
parallel machines and compare these to reading data either
natively or to other popular file formats. We compare the
reading performance in two different scenarios: 1) Reading
back restarts from the same number of processors which wrote
the data and 2) Reading back restart data from a different
number of processors which wrote the data.

We observe that not only can write-optimized I/O middle-
ware be built to not greatly penalize read speeds, but for impor-
tant workloads techniques that improve write performance can,
perhaps counterintuitively, improve read speeds over reading
a contiguously organized file format. In the remainder of this
paper, we investigate this further through case studies of PLFS
and ADIOS on simulation checkpoint restart.

II. PLFS

As described above, the Parallel Log-Structured Filesystem
(PLFS) is a FUSE-based stackable filesystem that accelerates
the write performance of N-1 checkpoints by decoupling the

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

Log 1

Log 2

Log 3

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

1 2

Log 1

Log 2

Log 3

Client
Memory

1 4 8 10 13

2 5 6 12 14

3 7 9 11 15

1 2 3 4 5

Log 1

Log 2

Log 3

Client
Memory

Client
Memory

Fig. 1. Progress of sequential reading of a checkpoint log file

concurrent access of multiple processes writing to a single,
shared file into parallel writes appending to per-process log
files.

Filesystems perform well on sequential access to single-
writer files compared to strided, concurrent writes to a shared
file. This is true even of parallel filesystems; although they
spread I/O across multiple servers and spindles, parallel
filesystems still must deal with contention within in a single
file object or stripe. So it is unsurprising that PLFS’s log-
structured writing has achieved checkpoint high write per-
formance improvements on real applications and checkpoint
benchmarks [8]. However, for pathological combinations of
write and read patterns (for example, a random write pattern
read back sequentially), a log file format is expected to exhibit
poor read performance due to the additional seeks.

To understand why PLFS performs so well on its read path,
it helps to understand that while in reading sequentially from
a log file format consisting of random writes can be slow, the
checkpointing and scientific applications that write to PLFS do
so in a structured manner. An analysis of the trace repository
of checkpoints run through PLFS available at [14] shows that
all of the checkpoints’ processes write increasing offsets. The
result is that every data log file is written as a series of entries,
monotonically increasing in the logical offset.

Figure 1 is a graphical representation of three time steps of a
single client reading sequentially from a PLFS checkpoint file
created by three writing processes and stored as log structured
files on an underlying parallel filesystem. Squares represent
segments of client memory or entries in a log file, and the
numbers inside correspond to their logical offset. Grey boxes
represent the parallel filesystem’s read-ahead buffers for each
log. Note that the log files are monotonically increasing in
logical offset, and the next request from the client is always
at the front of one of the log files. Due to this property, as
the client continues reading from the checkpoint file, rather
than the log format resulting in expensive seeks, the read
ahead buffers will slide forward through the log files, reading
them sequentially in parallel. ADIOS’s BP format is somewhat
different, but by storing variables together in log formatted
files, it too allows for efficient read back in an analogous
manner.

Below we discuss how this property allows for efficient
read-back of PLFS checkpoint files on uniform and non-
uniform restart, by examining one checkpoint benchmark: The
mpi_io_test benchmark from LANL [15]. This benchmark
is designed to represent a simple checkpoint I/O workload. In
the examples below, it is configured to write a single 20 GB
file in 47KB strided writes from a varying number of processes
on the LANL Roadrunner system. We write both to PLFS and
to the underlying parallel filesystem directly and compare the
results.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800

R
ea

d
Ba

nd
w

id
th

 (M
B/

s)

Number of Writers

With PLFS
Without PLFS

Fig. 2. Uniform Reads for PLFS

A. Uniform Restart in PLFS

Reading back a checkpoint file with the same number of
processes is highly efficient in PLFS. During a checkpoint
restart, each reading process will read back one writing
process’s data from the checkpoint in the same pattern in
which it was written. In the case of PLFS, since the checkpoint
was written in per-process monotonically increasing offsets,
the readers will each process individual log structured files
in sequential order. The scenario is similar to that shown in
Figure 1, except with multiple clients each reading individual
log files allowing the underlying parallel filesystem to make
efficient use of read ahead buffers and disks. Results are shown

in show in Figure 2. Performance quickly ramps up and then
gradually falls off as the overhead of many readers begins to
dominate the transfer time of 20 GBs.

By contrast, all processes reading directly from a single
file stored on the parallel filesystem elicits poor performance
as multiple readers are at any given time all issuing a series
of small reads to a relatively narrow window that gradually
moves through of the file. The result is possible contention
within the file, more seeks, and poor utilization of spindles and
servers (since a narrow region of the file is generally not spread
as widely across disks and servers as multiple log structured
files). The result is that the read back speed of readers without
PLFS does not scale noticeably with more processes.

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800

R
ea

d
Ba

nd
w

id
th

 (M
B/

s)

Number of Writers

With PLFS
Without PLFS

Fig. 3. Non-Uniform Reads for PLFS

B. Non-Uniform Restart in PLFS

Reading back a checkpoint file with fewer processes is
somewhat less efficient in PLFS, as shown in Figure 3. Here
a file is written by a varying number of processes and read
back by one fewer reader processes. The situation is similar to
the previous section, however, now each log structured file is
processed by two processes instead of one. The result is some
additional read contention within each PLFS log file.

Reading directly from a single, flat file stored on the
underlying parallel filesystem is analogous to the uniform case,
however, and once again we see it exhibit a non-scaling read
performance.

III. ADIOS

The ADIOS architecture is designed for portable, scalable
performance in two key ways. First, the componentization of
the IO implementation affords selecting the highest perfor-
mance output mechanism for a particular platform without
requiring any source code changes. Second, the default BP
file format achieves excellent write performance by allowing
delaying consistency checks [11]. This enables aggressive
buffering and decouples processes during the output process.
The output format is organized around the concept of a
Process Group, a collection of data typically written by a

single process. Each process is assigned a section of the file
to write the local data with sufficient annotations to both
identify the items written and place the portions of global
items properly in the global space. For example, global arrays
are written as a local array in the assigned process group
with annotation of the global array it is part of, the global
dimensions, the local dimensions, and the offsets into the
global space this piece represents. Scalars, other local values,
and data attributes are stored similarly. This format decouples
processes and data reorganization when writing by avoiding
constructing a contiguous global array on disk when writing
and selecting a slice appropriate for the local process on read,
assuming the same number of processes and decomposition
are used when reading. The perceived potential penalty for
the gain in write performance for this decision is the inability
to read the data back in efficiently. For restarts of a p process
output read back in on p processes, this is an optimal format.
Each process reads the data from exactly one process group
independently and requires no data reorganization. For other
process configurations, the performance story was unknown.
This evaluation resolves the restart performance question.

A. Evaluation

Four different experiments are performed on one of the most
difficult data decompositions, a 3-D domain decomposition.
For this application, the simulation domain is a 3-D space
divided into boxes along the X, Y, and Z dimensions with
each process responsible for one rectangular area. For netCDF
and HDF5 formatted data, this output is reorganized into a
contiguous format for the entire 3-D domain with selective
reading on restarts. The BP format stores each rectangular
area as a single block in a process group with each area in
a non-contiguous space in the file. In order to read the entire
3-D domain from a single process, in order, the system would
need to skip around the file or read in chunks reorganizing
in memory. An IO kernel for the Pixie3D MHD code [16] is
tested.

Pixie3D has three modes of operation tested for this study.
The Small configuration consists of 256 KB of data per
process, Medium has 16 MB per process, and 128 MB per
process for Large. The data is divided up evenly among 8
variables and also contains many small scalars values. To test
the restart read performance, various process counts from 128
to 2048 are employed to write the data with the same or one-
half the number of process used to write to read the data back
in. NetCDF-5 formatted data is compared.

For all tests, the best results for a series of four runs for each
data point is selected for the BP and netCDF performance. The
horizontal axis represents the number of writers employed to
generate the restart data no matter the number of processes
used to read the data back in.

The experiments are performed on Jaguar, the Cray XT4 at
ORNL, striping across all 144 Lustre storage targets and using
a stripe size of 1 MB.

B. Pixie3D Uniform Restarts

To establish a baseline, a uniform restart is tested. This is
using the same number of processes to read the restart as
wrote it originally. Figure 4 shows the performance results. For
large data, the performance approaches the IOR benchmark
performance [17] for the machine.

Fig. 4. Uniform Reads for the Pixie3D data

C. Pixie3D Small

For the small data, good read performance just cannot be
attained no matter the number of processes used to read or
write the data. The overall data size is too small to overcome
the inherent overhead of the parallel file system. Figure 5
shows the performance for reading the restart output on
half as many processes as wrote the restart. The horizontal
axis represents the number of processes that wrote the data
originally.

Fig. 5. Small Model, Half Process Count

The BP formatted data was able to be read faster than the
netCDF formatted data. The trendlines for the performance
clearly show the performance gap should continue to widen
as the process count increases.

D. Pixie3D Medium

Restarts using the medium data model can achieve much
better performance, but still cannot achieve more than a frac-
tion of the theoretical maximum performance for the system.
Figure 6 shows the performance for restarting using half as
many processes.

Fig. 6. Medium Model, Half Process Count

For the ‘half’ case, the BP performance consistently outper-
forms netCDF with the performance gap narrowing slightly as
the process count increases.

E. Pixie3D Large

The large data cases finally reach the maximum general
performance seen for applications in production use. Figure 7
shows the performace for using half as many processes to
restart.

Fig. 7. Large Model, Half Process Count

F. Discussion

Overall, the performance for all configurations of BP data
is either absolutely better or about the same as a contiguous
format like netCDF. Comparing the half-processes restarts
with the uniform restarts, the performance for large and
medium data is about 80% of the uniform read rate. Small
data is about the same performance.

IV. CONCLUSION AND FUTURE WORK

Previously, both ADIOS’s BP format and PLFS’s log-based
format have shown excellent performance for writing data
due to the lack of reorganization of the data when writing.
This generated two main open questions. First, what is the
performance for reading all of the data, such as for a restart.
Second, for reading a subset of the data, such as for a typical
analysis task, how much does the log-based format penalize
the user. To answer the restarts question, the ‘worst case’
scenario, reputed to be a 3-D domain decomposition, was
tested. As has been shown, both of these log-based formats
do not suffer from the expected penalties for storing the data
in the log-based formats when reading restarts. This holds not
just for reading on the same number of processes as wrote the
data, but also when fewer read the data back in.

When reading on the same number of processes as generated
the data, no reorganization effort is required for any process
to read the desired data and the data is stored in larger, single
chunks on the various storage targets. Each process can read
large, contiguous blocks of data from the file reducing the
likelihood of interfering with other processes reading other
data. This result was expected. The more difficult question
of the performance when restarting on a different number of
processes requires a deeper analysis.

The belief that a canonical storage format is most efficient
for reading is based on the notion that most often, contiguous
chunks of data will be read. The closer that data is stored
together, the better the overall performance. While this may
have been true on a single spindle with a single reader, with
parallel processes and file systems, a different consideration
must be made. Parallel file systems rely on large, contiguous
reads or writes to each storage target for optimal performance.
Read caching on the disks and other hardware layer compo-
nents yield optimal sizes generally no less than 1 MB per
operation. Reading a smaller chunk will cause the entire 1
MB chunk to be read expecting that the rest of the block
may be requested shortly. For large, global arrays, the 1
MB increment is too small when the data is spread across
many storage targets. Instead of reading small bits from each
storage target to assemble the proper data pieces, reading large,
contiguous chunks is much more efficient. When the data is
stored in a canonical format, the data is spread too thin to
gain the performance advantages of large, contiguous reads,
whereas the log-based formats yield better performance due
to the locality. Internal to the I/O library, the system can
read a few large chunks of data and reorganize in memory.
Canonical format data must be read from a larger number of
physical storage targets in smaller chunks and reorganized in
memory. This yields contention on the storage targets (e.g.
jitter) and in the machine network due to the large number
of smaller reads. Although neither BP nor the PLFS format
is necessarily directly knowledgeable about the underlying
storage organization, the formats are designed understanding
that the file system employed will use the strategy of striping
the data across many storage targets and performing fewer,

larger operations to attain high performance on these systems.
The typical canonical formats do not take this current file
system design into account largely due to required backwards
compatibility and desire to maintain compatibility with the
large number of useful analysis tools. This compatibility is
commendable, but it does not mean that these formats are
necessarily good choices for storing restarts on modern parallel
file systems.

The second question of the performance for data analysis
tasks is still open. These results demonstrate that a log-based
format has viable performance for restarts of various data
sizes and process counts but not necessarily superior for read
workloads overall. Particularly missing is evidence that the
log-based format works well for analysis patterns. Work is
ongoing to evaluate how the restart performance relates to the
analysis task performance.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” Journal of Physics: Conference Series, vol. 78, p.
012022 (11pp), 2007. [Online]. Available: http://stacks.iop.org/1742-
6596/78/012022

[2] S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney,
“Grid -based parallel data streaming implemented for the gyrokinetic
toroidal code,” in SC ’03: Proceedings of the 2003 ACM/IEEE con-
ference on Supercomputing. Washington, DC, USA: IEEE Computer
Society, 2003, p. 24.

[3] H. L. Jenter and R. P. Signell, “NetCDF: A Public-Domain-Software
Solution to Data-Access Problems for Numerical Modelers,” 1992.

[4] “The HDF Group,” http://www.hdfgroup.org/.
[5] National Energy Research Scientific Computing

Center, “I/O Patterns from NERSC Applications,”
https://outreach.scidac.gov/hdf/NERSC User IOcases.pdf.

[6] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin, “Flexi-
ble io and integration for scientific codes through the adaptable io system
(adios),” in CLADE ’08: Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments. New
York, NY, USA: ACM, 2008, pp. 15–24.

[7] O. R. N. Laboratory, “http://adiosapi.org/.”
[8] J. Bent, G. Gibson, G. Grider, B. McClelland, P. Nowoczynski, J. Nunez,

M. Polte, and M. Wingate, “Plfs: A checkpoint filesystem for parallel
applications,” SC Conference, vol. 0, 2009.

[9] “FUSE: Filesystem in Userspace,” http://fuse.sourceforge.net/.
[10] H. Abbasi, J. Lofstead, F. Zheng, S. Klasky, K. Schwan, and M. Wolf,

“Extending i/o through high performance data services,” in Cluster
Computing. Austin, TX: IEEE International, September 2007.

[11] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Input/output apis and
data organization for high performance scientific computing,” in In Pro-
ceedings of Petascale Data Storage Workshop 2008 at Supercomputing
2008, 2008.

[12] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan, “Adaptable, metadata
rich io methods for portable high performance io,” in In Proceedings of
IPDPS’09, May 25-29, Rome, Italy, 2009.

[13] M. Rosenblum and J. K. Ousterhout, “The design and implementation of
a log-structured file system,” ACM Transactions on Computer Systems,
vol. 10, pp. 1–15, 1991.

[14] “PLFS I/O Map Repository,” http://institute.lanl.gov/plfs/maps/.
[15] Gary Grider and James Nunez and John Bent, “LANL MPI-IO Test,”

http://institutes.lanl.gov/data/software/, jul 2008.
[16] L. Chacón, “A non-staggered, conservative, ∇ṡB →= 0, finite-volume

scheme for 3D implicit extended magnetohydrodynamics in curvilinear
geometries,” Computer Physics Communications, vol. 163, pp. 143–171,
Nov. 2004.

[17] H. Shan and J. Shalf, “Using ior to analyze the i/o performance for hpc
platforms.” Cray User’s Group, 2007.

[18] J. Li, W. keng Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netcdf: A
high-performance scientific i/o interface,” SC Conference, vol. 0, p. 39,
2003.

