Learning in Location Space A New Framework for Object Detection

Damian Eads^{1,3}, David Helmbold¹, and Edward Rosten²

¹Department of Computer Science University of California, Santa Cruz

²Department of Engineering University of Cambridge

³Space and Remote Sensing Sciences Los Alamos National Laboratory

> ISSDM Day October 18, 2010

Find (x, y) locations of objects.

Figure: Predictions marked in red.

Eads, Helmbold, Rosten (UCSC, LANL, Cam)

Learning in Location Space

ISSDM Day, October 18, 2010

Find (x, y) locations of objects.

Figure: Predictions marked in red.

Eads, Helmbold, Rosten (UCSC, LANL, Cam)

Learning in Location Space

ISSDM Day, October 18, 2010

Sliding Window Detector

- Train window detector
- Slide window over image
 - all positions
 - all orientations
 - all scales
- Arbitrate overlapping detections

Good for few large objects (face in a portrait) How to find many smaller objects?

How do we find objects?

Pixel-based find pixels of many objects

Beamer (2007-2009)

Location-based make guesses of locations

HoS Boosting (late 2009-2010)

How do we find objects?

Pixel-based

find pixels of many objects

Beamer (2007-2009)

Location-based make guesses of locations

HoS Boosting (late 2009-2010)

How do we find objects?

Pixel-based

find pixels of many objects

Beamer (2007-2009)

Location-based make guesses of locations

HoS Boosting (late 2009-2010)

Is finding 50% of the pixels in all objects the same as finding 100% of the pixels in 50% of the objects?

Radically different approach

- learns and predicts in (x, y) location space
- combines ensemble of **weak** (*x*, *y*) location predictors into **strong** predictor.

Contributions

- new kind of model: each weak hypothesis is a meta-object detector.
- new loss function: spatially motivated
- adaBoost variant: provably minimize loss function every iteration

Radically different approach

- learns and predicts in (x, y) location space
- combines ensemble of **weak** (*x*, *y*) location predictors into **strong** predictor.

Contributions

- new kind of model: each weak hypothesis is a meta-object detector.
- new loss function: spatially motivated
- adaBoost variant: provably minimize loss function every iteration

Hit-or-Shift (HoS) Boosting

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

A weak hypothesis predicts locations on an image $h = \{((x_1, y_1), c_1), ((x_2, y_2), c_2), \dots, ((x_n, y_n), c_n)\}.$

We filter away predictions with confidence lower than θ , $h(\theta) = \{((x, y), c) \in h \text{ and } c \ge \theta\}.$

Figure: Illustrates how $h(\theta)$ changes as θ is lowered.

Correlation

Definition

The correlation function is given by

$$C(\mathbf{u},\mathbf{v}) = \int g\left(\frac{\|\mathbf{u}-\mathbf{w}\|_2}{r}\right) g\left(\frac{\|\mathbf{v}-\mathbf{w}\|_2}{r}\right) d\mathbf{w}.$$
 (1)

We require $0 \leq C(\mathbf{u}, \mathbf{v}) \leq 1$ and $C(\mathbf{u}, \mathbf{v}) = C(\mathbf{v}, \mathbf{u})$.

Figure: Plots of (a) two overlapping quadratic bumps with centers **u** and **v**, (b) the truncated quadratic kernel g as a function of distance $d = ||\mathbf{u} - \mathbf{v}||_2/r$, and (c) the correlation C.

Definition

The **objectness** of a location **u** for *h*'s predictions with confidence at least θ is ____

$$f(\mathbf{u};\theta) = \sum_{\mathbf{v}\in h(\theta)} C(\mathbf{u},\mathbf{v})$$
(2)

where $C(\mathbf{u}, \mathbf{v})$ quantifies the relatedness \mathbf{u} and \mathbf{v} .

Definition

The **objectness** of a location **u** for *h*'s predictions with confidence at least θ is ____

$$f(\mathbf{u};\theta) = \sum_{\mathbf{v}\in h(\theta)} C(\mathbf{u},\mathbf{v})$$
(2)

where $C(\mathbf{u}, \mathbf{v})$ quantifies the relatedness \mathbf{u} and \mathbf{v} .

Ideally

- high objectness on objects
- low objectness elsewhere

Definition

The **objectness** of a location **u** for *h*'s predictions with confidence at least θ is ____

$$f(\mathbf{u};\theta) = \sum_{\mathbf{v}\in h(\theta)} C(\mathbf{u},\mathbf{v})$$
(2)

where $C(\mathbf{u}, \mathbf{v})$ quantifies the relatedness \mathbf{u} and \mathbf{v} .

Objectness at x: 0.5

Ideally

- high objectness on objects
- low objectness elsewhere

Definition

The **objectness** of a location **u** for *h*'s predictions with confidence at least θ is ____

$$f(\mathbf{u};\theta) = \sum_{\mathbf{v}\in h(\theta)} C(\mathbf{u},\mathbf{v})$$
(2)

where $C(\mathbf{u}, \mathbf{v})$ quantifies the relatedness \mathbf{u} and \mathbf{v} .

Objectness at x: 0.8

Ideally

- high objectness on objects
- low objectness elsewhere

Boosting-based learning, each iteration:

- generate many weak hypotheses (grammar)
- pick best and add to master rule
- re-weight training data
- repeat

Issues

- false positives "objectness" never reduced
- lack of detections suggests absence of objects

Issues

- false positives "objectness" never reduced
- lack of detections suggests absence of objects

Solution

- let weak hypotheses predict negative objectness
- same "shift value" s at all uncorrelated locations
- shift parameter s found analytically

Hit-or-Shift (HoS) Framework

Definition

A hit-or-shift (HoS) weak hypothesis predicts positive carness when $f(\mathbf{x}; \theta)$ is positive, otherwise -s.

$$f'(\mathbf{x}) = \begin{cases} \alpha f(\mathbf{x}; \theta) & \text{if } f(\mathbf{x}; \theta) > 0, \\ -s & \text{if } f(\mathbf{x}; \theta) = 0. \end{cases}$$
(3)

Figure: Hit-or-shift Weak Hypothesis

Hit-or-Shift (HoS) Framework

Definition

A hit-or-shift (HoS) weak hypothesis predicts positive carness when $f(\mathbf{x}; \theta)$ is positive, otherwise -s.

$$f'(\mathbf{x}) = \begin{cases} \alpha f(\mathbf{x}; \theta) & \text{if } f(\mathbf{x}; \theta) > 0, \\ -s & \text{if } f(\mathbf{x}; \theta) = 0. \end{cases}$$
(3)

Figure: Hit-or-shift Weak Hypothesis

Hit-or-Shift (HoS) Framework

Definition

A hit-or-shift (HoS) master hypothesis is simply the cumulative objectness given by all weak hypotheses,

$$H_t(\mathbf{x}) = \sum_{i=1}^t f'_i(\mathbf{x}). \tag{4}$$

Figure: Plots of (a) an image and its master hypothesis after (b) 10 iterations and (c) 100 iterations.

Eads, Helmbold, Rosten (UCSC, LANL, Cam)

ISSDM Day, October 18, 2010

Loss: Object and Background

Each boosting iteration minimizes a two-part loss, the loss at **object locations**

$$\mathcal{L}^{\mathsf{obj}} = \sum_{\mathbf{x} \in \mathsf{obj}} \exp(-H_t(\mathbf{x}))$$
(5)

and the loss at the background,

$$\mathcal{L}^{\mathsf{bg}} = b \sum_{\mathbf{x} \in \mathsf{bg}} \max\{0, \exp(H_t(\mathbf{x})) - 1\},\tag{6}$$

where b is a trade-off parameter.

- 12 large images of Phoenix, AZ
- 300 cars labeled
- split into three partitions

Face Labeling

- 1520 images of human faces
- label parts of face
- split into three partitions

Pixel classifications in (a) and (b) have about the **same number** of correct pixels, is one better? (a) and (b) have many more pixels classified correctly than (c), but (c) finds the center of the object. Is one near miss (d) better than 10 near misses (e)? Are 5 correct hits (f) better than 1 near miss (d)?

ISSDM Day, October 18, 2010

Two scoring attributes:

- delineation boundary: (a) object delineation (polygon) or (b) proximity delineation (circle)
- e multiple detections penalty: whether to treat multiple detections as false positives

For our scoring we used a circular delineation boundary and penalized multiple detections.

Eads, Helmbold, Rosten (UCSC, LANL, Cam)

Results: Arizona Test Set

Figure: Columns (a) and (b) show the precision/recall curves and average precisions for quadratic overlap and cylindrical kernels.

Results: Face Labelling

Figure: Shows precision recall curves using Haar features for labeling different parts of human faces.

• location-based approach more natural for object detection

- easier data labeling
- uniform treatment of weak/master hypotheses
- uniform treatment of image (no subsampling)
- quickly learns and sifts through uninteresting background
- loss function directly tied to finding good locations
- HoS weak hypotheses are structured for efficient optimization
- can be used as a part detector
- **new algorithm**: *provably minimizes the loss* at every iteration given a new feature

Future Work

Our latest work involves significant adaptations for large objects

- new HoS detector based on SIFT features and vocabulary trees
- polar offset learning: exploits scale information to quickly learn offsets
- apply technique to PASCAL and CalTech data sets.

Eads, Helmbold, Rosten (UCSC, LANL, Cam)