RAD on Networks (Radon)

Evaluation of Radon

Conclusion

Investigating Efficient Real-time Performance Guarantees on Storage Networks

Andrew Shewmaker shewa@soe.ucsc.edu

Department of Computer Science University of California Santa Cruz

October 20, 2009

Andrew Shewmaker Real-time Performance Guarantees on Storage Networks

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion

Motivation

Goals of datacenters Design of datacenters serve many users

- process petabytes of data
- use rules of thumb
- over-provision

An ad hoc approach creates marginal storage systems that cost more than necessary. A better system would be able to guarantee each user the performance they need from the CPUs, memory, disks, and network.

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion

- 2 RAD on Networks (Radon)
- 3 Evaluation of Radon

- E

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion
••••			
Storage Networks			

A Canonical Storage Network

Fat-tree with full bisection bandwidth trunk capacity matches the sum of the outer branches

This research investigates standard Gigabit Ethernet

向下 イヨト イヨト

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion
0000			
Storage Networks			

Congestion in a simple switch model

Each transmit port on the switch is a collision domain

ntroduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion
000			
0000	0000		

Storage Networks

Congestion in a simple switch model

One of the packets destined for the same switch transmit port is delayed on the queue

ntroduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion
0000			

Storage Networks

Congestion in a simple switch model

Delayed packets from unrelated streams affect each other on the queue

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion
	●000		
Definition of Radon			

Network Resource Measurements

While the clocks requires no synchronization, they should be stable and not reset between timestamps

(4月) イヨト イヨト

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion
	0000		
Definition of Radon			

Real-time Information

- Deadline is absolute
- Laxity is relative
- Budget gives global information

RAD on Networks (Radon) ○○●○ Evaluation of Radon

Conclusion

Definition of Radon

Rate-based Percent Budget scheduling

Flow Control Budget (in packets) $m_i = e_i/pktS$, where pktS(s/packet) is the worst case packet service time Congestion Control Adjust wait time between packets Percent Budget %budget = $(1 - \%laxity) = \frac{e_i}{d-t}$ Packet Wait Time Target $w_{op} = \frac{w_{min}}{\%budget}$ New Wait Time $w_{k+1} = \min(w_{max}, \max(w_{min}, w_k - \frac{w_k - w_{op}}{2}))$

▶ Jump to window-based Radon

RAD on Networks (Radon) ○○○● Evaluation of Radon

Conclusion

= 200

Definition of Radon

Radon Userspace Proof of Concept

Detection of Congestion and its Severity

- Relative Forward Delay
- Five element median filter
- TCP Santa Cruz queue model

Response to Congestion

- Network time reservation
- Inter-packet wait time varied according to %budget

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	RAD on Networks (Radon)	Evaluation of Radon ●0000000	Conclusion
Evaluation of Radon			
Experime	ntal Setup		

- Seven cluster nodes with Gigabit Ethernet
- Gigabit switch capable of Jumbo Frames
- Modified UDPmon network analysis tool
- Compare constant rate and adaptive streams

Single max rate baseline with no congestion

Punctuated primary stream interrupted by five short streams

Fairshare six equal streams

Unfair concurrent unequal streams

RAD on Networks (Radon)

Evaluation of Radon

Conclusion

Evaluation of Radon

Queue model for a single network stream

Andrew Shewmaker Real-time Performance Guarantees on Storage Networks

RAD on Networks (Radon)

Evaluation of Radon

Evaluation of Radon

Queue model for a single adaptive network stream

Andrew Shewmaker Real-time Performance Guarantees on Storage Networks

RAD on Networks (Radon)

Evaluation of Radon

Conclusion

Evaluation of Radon

Queue model for a punctuated stream

Andrew Shewmaker

Introduction RAD on Networks (Radon) Evaluation of Radon Conclusion 00000000 **Evaluation of Radon** Queue model for a punctuated stream Median-filter detects congestion before packet loss, and decreasing queue size afterwards

Andrew Shewmaker

RAD on Networks (Radon)

Evaluation of Radon

Evaluation of Radon

Queue model for a punctuated adaptive stream

Andrew Shewmaker Real-time

RAD on Networks (Radon)

Evaluation of Radon

Conclusion

Evaluation of Radon

Queue model for a punctuated adaptive stream

Adapting to median-filter model decreases loss

RAD on Networks (Radon)

Evaluation of Radon

Conclusion

= 200

Evaluation of Radon

Effectiveness of Radon for a punctuated stream

Greater goodput for primary stream

Stream	target rate	%lost packets		recv rate	e (Mbps)
ID	(Mbps)	constant	adaptive	constant	adaptive
1	749	24.0	2.5	565.5	725.2
2	251	3.8	0.2	245.5	1.5
3	251	4.4	0.2	244.2	1.5
4	251	4.6	0.2	244.2	1.5
5	251	4.4	0.2	240.8	1.5
6	251	3.8	0.2	238.9	1.5

All had period of 1 s, but 2-6 consisted of 500 packets

Jump to queue graphs

(4月) (4日) (4日)

RAD on Networks (Radon)

Evaluation of Radon ○○○○○○●○ Conclusion

= 990

Evaluation of Radon

Effectiveness of Radon for six fairshare streams

Greater aggregate goodput and fairer

Stream	target rate	%lost p	%lost packets		(Mbps)
ID	(Mbps)	constant	adaptive	constant	adaptive
1	166	3.00	0.81	158.40	161.84
2	166	0.39	0.35	162.57	162.71
3	166	0.10	0.04	163.08	163.02
4	166	0.06	0.08	163.16	163.06
5	166	0.08	0.06	163.06	163.14
6	166	0.04	0.06	163.13	163.02

All had period of 1 s

Jump to graphs

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction

RAD on Networks (Radon)

Evaluation of Radon

Conclusion

Evaluation of Radon

Effectiveness of Radon for six unfair streams

Greater goodput, but unable to deliver > 80%

Stream	target rate	%lost packets		recv rate (Mbps)	
ID	(Mbps)	constant	adaptive	constant	adaptive
1	500.00	38.0	35.0	305.62	318.66
2	250.00	2.3	2.0	239.65	240.28
3	125.00	0.1	0.0	122.68	122.82
4	62.50	0.1	0.0	61.36	61.40
5	31.25	0.0	0.0	30.73	30.73
6	31.25	0.2	0.0	30.64	30.71

All had period of 1 s

Jump to graphs

・ 同 ト ・ 日 ト ・ 日 ト ・ 日 |

= nar

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion ●○
The End			
Conclusion			

The userspace prototype of Radon:

- Detects congestion using Relative Forward Delay
- Responds to congestion using RAD real-time theory
- Prevents packet loss to some degree
- Improves goodput
- And does not require global knowledge or synchronization

Introduction	RAD on Networks (Radon)	Evaluation of Radon	Conclusion ○●
The End			
Future W	/ork		

- Implement kernel qdisc of window-based Radon
- Compare to global scheduler
- Evaluate using 10 Gigabit Ethernet and Infiniband
- Analyze interaction with TCP
- Combine with other RAD-based resource schedulers

向下 イヨト イヨト

= ~ Q Q

- Experiment 3 Graphs
- Experiment 4 Graphs
- Window-based Radon
- Related Work

Queue model for six fairshare streams

Queue model for six fairshare adaptive streams

Queue model for six unfair streams

The X axis shows the streams send a different number of packets over the same two second interval

Queue model for six unfair adaptive streams

Window-based Percent Budget scheduling

Flow Control Budget (in packets) $m_i = e_i / pktS$, where pktS(s/packet) is the worst case packet service time Congestion Control Adjust window size and offset Percent Budget %budget = $(1 - \% laxity) = \frac{e_i}{d-t}$ Window Target $w_{op} = (1 - \% laxity) \cdot w_{max}$ Size Change $w_{\Delta} = \frac{-|w_k - w_{op}|}{2}$ Dispatch Offset $w_{offset} = \frac{N_{obs}}{nktS} \cdot rand$ Where w_k is the current window size and N_{obs} is the depth of the bottleneck switch's queue modeled using observations of relative forward delay.

Less Laxity More scheduling

Flow Control Budget (in packets) $m_i = e_i / pktS$, where pktS(s/packet) is the worst case packet service time Congestion Control Windows adjusted in size and dispatch time Percent Budget %budget = $(1 - \% laxity) = \frac{e_i}{d_i + 1}$ Less Laxity More Window Target $w_{op} = \min\left(m_i, \max\left(\frac{w_{max}}{l_i + 1}\right), 2\right)$ Size Change $w_{\Lambda} = \frac{-|w_k - w_{op}|}{2}$ Dispatch Offset $w_{offset} = \frac{N_{obs}}{nktS} \cdot rand$ Where w_k is the current window size and N_{obs} is the depth of the bottleneck switch's queue modeled using observations of relative forward delay.

- Traffic shaping
- FAST TCP
- Probe Control Protocol

◆ロト ◆昼下 ◆臣下 ◆臣下 三国王 のへで

- VRE-NET
- Netnice