
LA-UR-08-07314, LA-UR 09-02117, LA-CC-08-104

  Lots of tightly coupled parallel simulations
  Weapons design and verification

  Bioscience

  Astrophysics

  Require large computers w/ low latency interconnects
  Currently at a petaflop

  Simulations always want MORE resolution

  Already designing exaflop machines

  LANL’s petaflop supercomputer
  First to petaflop! (sort of)

  3060 compute nodes
  Quad-core opterons with cell accelerators

  Low latency infiniband for IPC

  High bandwidth ethernet for data storage

  5 miles and multiple tons of networking cables

  Large distributed systems are not free
  Some component is always about to fail

  Periodic checkpoint writes
  Also visualization writes

  Writes are synchronized

  Tens of thousands of synchronized writes can be
difficult for the file system

  Two most common write patterns
  N-1 where N procs write to 1 shared file

  N-N where N procs write to N non-shared files

  N-N
  Writes and reads easy for file system

  Opens can be hard

  Hard for application and user
  Archiving, non uniform restart, viz, etc.

  N-1 Segmented
  Writes and reads slightly harder for FS

  Opens easier

  A little easier for the application and user

  Rare in practice

  N-1 Strided
  Writes and reads very hard

  Easy for application and user

  Common pattern at LANL and elsewhere

Cross graph comparisons not meaningful

LANL
GPFS

PSC
Lustre

LANL
PanFS

45X

100 MB/s 10 MB/s

20 MB/s

4.5 GB/s 3.3 GB/s

330X

1.8 GB/s

90X

N-N
N-1

Parallel file

11 12 13 14

Process 1

21 22 23 24

Process 2

31 32 33 34

Process 3

41 42 43 44

Process 4

RAID Group 1 RAID Group 2 RAID Group 3

Potential PanFS storage
implications of N-1 strided

  Several old LANL codes use N-1 (over 50% of cycles)

  Newly written codes still choosing N-1
  2 of 8 open science applications on Roadrunner

  NetCDF and HDF5 formatting libraries

  N-1 also prominent elsewhere
  At least 10 of 23 on the PIO benchmarks page are N-1

  BTIO, FLASH IO, Chombo IO, QCD, etc. (GTC?)

  But many applications won’t do it

  Archiving, mgmt, visualization, non-uniform restart

  Developers are aware of the N-1 problems
  But are loathe to change to N-N

  One app wrote 10K lines of code, bulkio, to try to improve N-1

  If the apps won’t do it, interposition can

  Desirable characteristics
  Low overhead (performance and resource)

  User transparency (i.e. NO CODE REWRITING)

  Portable and maintainable

  Our contribution: PLFS

  Introduction

  PLFS Design and Implementation

  Evaluation

  Trade-offs

  Related Work

  Future Work and Conclusions

  Other outstanding problems in HPC

  Virtual interposition file system using FUSE

  Transparently rearranges N-1 checkpoints into N files
  Very similar to Lustre Split Writing

  Two main optimizations
  Decouples concurrent access

  Append-only writing

PLFS Virtual Layer

/foo

host1 host2 host3

/foo/

host1/ host2/ host3/

131 132 279 281 132 148

data.131

indx

data.132 data.279 data.281

indx
data.132 data.148

indx
Physical Underlying Parallel File System

Physical Underlying Parallel File System “PLFS Container”

131 132 279 281

PLFS (FUSE) PLFS (FUSE)

1)  All processes open file, foo
1)  Each PLFS mkdir’s foo
2)  Each PLFS mkdir’s

foo/hostN
2)  Processes start writing to file

1)  PLFS opens a data file per
process and appends write
data to them

2)  PLFS opens an index file
per node and appends
metadata to them

/foo/

/host1/ /host2/

/data.131 /data.132 /index /data.279 /data.281 /index

Data ID Phys Off Len TS Begin TS End ???

  Sort records by physical offsets

  Lookup map

  Sort records by timestamps

  IO Trace

  Writes are much better but
  Overall only improved if other ops not much much worse

  Reads
  Construct a global index by aggregating all the index files

  Map logical offsets to a physical offset within a data file

  Overlapping writes are undefined

  Chmods, Chowns, Chgrps, Utimes, etc.
  Use a container/access file

  Stats

  Pull permissions, ownership from access file

  Construct a global index to get file capacity and file size

!!!! Constructing a global index can be SLOW !!!!

  Reads
  When possible (i.e. O_RDONLY), construct global

index on the open, reuse for each read call

  Stats
  On close, create a container/metadata/host.B.L.T

  B = blocks of capacity

  L = last offset (i.e. file size)

  T = timestamp of last write

  Stat can be implemented with a readdir

  Invalidate cache on subsequent re-opens

  File Systems

  GPFS

  Lustre

  Panfs

  Synthetic Checkpoint Benchmarks

  LANL MPI-IO test

  NERSC Pattern-IO

  Applications and IO Kernels

  LANL1, LANL2, LANL3

  Office of Science
  FLASH-IO benchmark with HDF5

  Chombo-IO benchmark with HDF5

  QCD QIO

  NASA BT-IO benchmark

GPFS

PSC
Lustre

LANL
PanFS

25X
100X

8X

3000X
at scale

31 GB/s

With PLFS

Without
PLFS

Stripe aligned

64k block aligned

Unaligned

PLFS makes alignment and blocksize irrelevant!

FLASH IO

150X

23X

7X

150X

12X

5X

28X

83X

PLFS Checkpoint BW Summary

Read
Bandwidths

Uniform restart

Non-uniform restart

Archiving

Metadata rates

  Small file bandwidth due to open overhead

  Single node bandwidth due to FUSE/PLFS overhead
  Small job performance due to single node bandwidth

  Reads in read-write mode

  Possible reduction in read BW for strange read patterns

  Overlapping writes are not ordered

  Shift complexity to N-N challenge

  Directory striping to ameliorate N-N parallel open

  Overhead graph shows
  Problem for small jobs

  Lots of idle CPU for large jobs . . .
  Add compression to index record

  Add checksums to index record

  Add extensible metadata to index record

Data ID Phys Off Len TS Begin TS End ???

Interpostion
Technique

Used

No Extra
Resources

Used During

No Extra
Resources
Used After

Maintains
Logical
Format

Works with
Unmodified
Applications

Data
Immediately

Available

Parallel
Filesystem
Agnostic

ADIOS Library Yes Yes Yes No Yes Yes

stdck FUSE
No

(LD)
No

(LD,N)
Yes Yes Yes Yes

Neighbor FUSE
No
(M)

No
(M,N)

Yes Yes No Yes

Diskless Library
No
(M)

No
(M)

No No Yes Yes

ZEST FUSE
No

(RD)
No

(RD)
No No No No

Lustre
Split Writ

Library Yes Yes No/Yes Yes Yes No

PLFS FUSE Yes Yes Yes Yes Yes Yes

KEY: LD = local disk, M = memory, N = network, RD = remote disk

  3000 lines of (soon to be open-source) C++

  Installed on Roadrunner for Open Science

  Moving onto other production machines next DST

  Improves reads, does not slow down lookups

  Enables easy tracing

  Traces from all studied benchmarks now published

  Every real app tested significantly improved up to 300X

  Full paper available at http://institutes.lanl.gov/plfs

LANL2
FLASH IO

Chombo IO

LANL1

  Parallel open

  Resiliency

  Schedulers

  Scalable IO and MPI initialization

  Silent data corruption

  Programming models

johnbent@lanl.gov

