PLFS: Parallel LFS

John Bent, Garth Gibson, Gary Grider, Ben McClelland, Paul Nowocynzki, Milo Polte, Meghan Wingate

LA-UR-08-07314, LA-UR 09-02117, LA-CC-08-104

LANL Computational Science

CR Lots of tightly coupled parallel simulations

- Reapons design and verification
- Regional Bioscience

Require large computers w/ low latency interconnects

- ∝ Currently at a petaflop
- Simulations always want MORE resolution
- ↔ Already designing exaflop machines

Roadrunner

CR LANL's petaflop supercomputer

First to petaflop! (sort of)

∞ 3060 compute nodes

Quad-core opterons with cell accelerators

- Realized High bandwidth ethernet for data storage

○ 5 miles and multiple tons of networking cables

Parallel Apps do Parallel IO

- A Large distributed systems are not free
 - Some component is always about to fail
- Periodic checkpoint writes
 - Also visualization writes
- **Writes are synchronized**
- Tens of thousands of synchronized writes can be difficult for the file system
- Two most common write patterns
 N-1 where N procs write to 1 shared file
 N-N where N procs write to N non-shared files

Checkpoint Patterns

- CR N-N
 - Writes and reads easy for file system
 - Opens can be hard
 - Real Hard for application and user
 - Archiving, non uniform restart, viz, etc.
- ∞ N-1 Segmented
 - ↔ Writes and reads slightly harder for FS

 - ∝ A little easier for the application and user
 - Rare in practice
- ∞ N-1 Strided
 - ↔ Writes and reads very hard
 - \curvearrowright Easy for application and user
 - ∝ Common pattern at LANL and elsewhere

A Shared File is a Shared Problem

Cross graph comparisons not meaningful

Potential PanFS storage implications of N-1 strided

N-1 is prominent

Several old LANL codes use N-1 (over 50% of cycles)

Newly written codes still choosing N-1
 2 of 8 open science applications on Roadrunner

N-1 also prominent elsewhere
 At least 10 of 23 on the PIO benchmarks page are N-1
 BTIO, FLASH IO, Chombo IO, QCD, etc. (GTC?)

Obvious solution: Convert N-N into N-1

Real But many applications won't do it

- Archiving, mgmt, visualization, non-uniform restart
- □ Developers are aware of the N-1 problems
 - But are loathe to change to N-N
 - One app wrote 10K lines of code, bulkio, to try to improve N-1
- If the apps won't do it, interposition can
 - Desirable characteristics
 - Low overhead (performance and resource)
 - User transparency (i.e. NO CODE REWRITING)
 - Portable and maintainable
 - R Our contribution: PLFS

Outline

- R Introduction
- Real PLFS Design and Implementation
- R Evaluation
- R Trade-offs
- Related Work
- Reference work and Conclusions
- Other outstanding problems in HPC

PLFS:

Parallel Log-structured FS

○ Virtual interposition file system using FUSE

Transparently rearranges N-1 checkpoints into N files
 Very similar to Lustre Split Writing

Two main optimizations
 Decouples concurrent access
 Append-only writing

Decouples Logical from Physical

PLFS Index Record

Data ID Phys Off

Len T

TS Begin

TS End

???

Sort records by physical offsets

🗠 Lookup map

R Sort records by timestamps

IO Trace

Other operations in PLFS

- ∞ Writes are much better but
 - Overall only improved if other ops not much much worse
- Reads
 - Construct a global index by aggregating all the index files
 - Map logical offsets to a physical offset within a data file
 - Overlapping writes are undefined
- Chmods, Chowns, Chgrps, Utimes, etc.
 - ∞ Use a container/access file
 - Stats
 - Real Pull permissions, ownership from access file
 - Construct a global index to get file capacity and file size

!!!! Constructing a global index can be SLOW !!!!

PLFS Optimizations

Reads

When possible (i.e. O_RDONLY), construct global index on the open, reuse for each read call

R Stats

- On close, create a container/metadata/host.B.L.T
 - \bigcirc B = blocks of capacity
 - \propto L = last offset (i.e. file size)
 - \bigcirc T = timestamp of last write
- ∞ Stat can be implemented with a readdir
- ∞ Invalidate cache on subsequent re-opens

Thoroughly Evaluated

- 🖙 File Systems
 - GPFS
 - 🗠 Lustre
 - R Panfs
- Synthetic Checkpoint Benchmarks
 - CR LANL MPI-IO test
 - NERSC Pattern-IO
- Applications and IO Kernels
 - ∝ LANL1, LANL2, LANL3
 - - FLASH-IO benchmark with HDF5
 - Chombo-IO benchmark with HDF5
 - QCD QIO

LBNL PatternIO benchmark

FLASH IO

Read Bandwidths

PLFS/FUSE Overhead

Trade-offs

- Small file bandwidth due to open overhead
- Single node bandwidth due to FUSE/PLFS overhead
 Small job performance due to single node bandwidth
- Reads in read-write mode
- Representation of the second s
- Overlapping writes are not ordered
- Shift complexity to N-N challenge

Current and Future Work

- Directory striping to ameliorate N-N parallel open
- Overhead graph shows

Phys Off

Data ID

- Reproblem for small jobs
- - Add compression to index record
 - Add checksums to index record
 - Add extensible metadata to index record

Len

TS Begin

???

TS End

	Interpostion Technique Used	No Extra Resources Used During	No Extra Resources Used After	Maintains Logical Format	Works with Unmodified Applications	Data Immediately Available	Parallel Filesystem Agnostic
ADIOS	Library	Yes	Yes	Yes	No	Yes	Yes
stdck	FUSE	No (LD)	No (LD,N)	Yes	Yes	Yes	Yes
Neighbor	FUSE	No (M)	No (M,N)	Yes	Yes	No	Yes
Diskless	Library	No (M)	No (M)	No	No	Yes	Yes
ZEST	FUSE	No (RD)	No (RD)	No	No	No	No
Lustre Split Writ	Library	Yes	Yes	No/Yes	Yes	Yes	No
PLFS	FUSE	Yes	Yes	Yes	Yes	Yes	Yes
KEY: LD = local disk, M = memory, N = network, RD = remote disk							

PLFS Conclusion

- 3000 lines of (soon to be open-source) C++
 Installed on Roadrunner for Open Science
 Moving onto other production machines next DST
- R Improves reads, does not slow down lookups
- R Enables easy tracing
 - Traces from all studied benchmarks now published
- Every real app tested significantly improved up to 300X
- Full paper available at http://institutes.lanl.gov/plfs

Outstanding HPC Problems

- Reallel open
- Resiliency
- Schedulers
- ∝ Scalable IO and MPI initialization
- R Silent data corruption

johnbent@lanl.gov