
S NS : A S imple Model for
Understanding Optimal
Hard Real-Time
Multiprocessor S cheduling

by Greg Levin

based on work with Caitlin Sadowski, Ian Pye,
 and Scott Brandt

2

Real-time Scheduling Algorithms

 In a real-time environment, multiple
processes with computational deadlines
compete for processor time.

 "Hard real-time" means it is never okay to miss
deadlines

 We consider the problem of scheduling a
collection of periodic processes running
on a multiprocessor system.

3

Example

 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

4

Example

 2 processors; 3 tasks, each with 2 units of
work required every 3 time units

5

Periodic Tasks

 A periodic task is one that requires a
certain amount of work be completed
within each period.

 If a task has period p and workload c, then its
utilization u = c / p is the fraction of each period
that the task must be running.

6

Our Goal (version 1)

 Given a set of N tasks on M processors,
find a feasible scheduling of tasks so that
all deadlines are met (if such a scheduling
exists)

 We say that a scheduling algorithm is "optimal"
if it find some successful scheduling for any task
set for which some correct scheduling exists

7

Assumptions
 All processors are equivalent

 Tasks may migrate between processors

 Tasks are independent, and may not run simultaneously on
two processors

 No overhead for context switches or migrations
 This model is theoretical, not realistic
 In practice, these overheads lead to the use of

suboptimal scheduling algorithms

8

Theorem 1

 Any collection of tasks whose total
(summed) utilization does not exceed
M and whose individual utilizations do not
exceed 1 has a feasible scheduling.

 Proof: Smaller work intervals can
arbitrarily approximate a task's fluid rate
curve

9

Our Goal (version 2)

 Given M processors and a set of N tasks
with total utilization summing to M, find a
feasible scheduling of tasks which
minimizes the number of context switches
and migrations

 This goal is ironic, since we started by
assuming that these operations are free

10

Greedy Scheduling Algorithms

 A Greedy Scheduling Algorithm will, at
various times, choose the M "best" jobs to
run. We need to specify:

 What does "best" mean? Earliest deadline?
Most work remaining?

 How often do all N jobs get compared to find
the M best?

11

Examples of Greedy Algorithms

 Earliest Deadline First (EDF)
 Schedule the M tasks with the earliest deadlines

 Least Laxity First (LLF)
 Laxity is a task's remaining possible idle time

before it must be scheduled in order to finish its
workload by its next deadline

12

Why Greedy Algorithms Fail
On Multiprocessors
 Example:

13

Why Greedy Algorithms Fail
On Multiprocessors

14

Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2

are scheduled first

15

Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2

are scheduled first

 Even at time t = 8, Tasks 1 and 2 are the
obvious greedy choices

16

Why Greedy Algorithms Fail
On Multiprocessors
 By any reasonable criteria, Tasks 1 and 2

are scheduled first

 Even at time t = 8, Tasks 1 and 2 are the
obvious greedy choices

 However, if Task 3 is not turned on at time
t = 8, one processor will sit idle between

 t = 9 and t = 10.

17

Why Greedy Algorithms Fail
On Multiprocessors
 Before t = 40, the two processors can do

80 units of work, and there are
 2 x (9 x 4) + 8 = 80 units of work to do.

If there is any idle time, not all deadlines
can be met.

 Greedy algorithms fail because they can't
see the "big picture."

18

Why Greedy Algorithms Fail
On Multiprocessors

19

Proportioned Algorithms
Succeed On Multiprocessors

20

Proportional Fairness

 Insight: Scheduling tasks is much easier
when they all have the same deadline

 Application: Give all task deadlines to all
jobs, and within each such time window,
assign each job work proportional to its
utilization

21

...isn't new...

 Previous proportional fairness algorithms:
 pfair (1994) - Baruah, Cohen, Plaxton, Varvel
 LLREF (2006) - Cho, Ravindran, Jensen
 EKG (2006) - Andersson, Tovar

 ... but they were all using proportional
fairness without understanding its
simplicity

22

Theorem 2: "3 Rules"
 Given a collection of tasks with total

utilization M, if all tasks are subdivided by
assigning all deadlines to all tasks, then a
scheduling algorithm within a single time
window will succeed if and only if:

 It always runs any job with zero laxity
 It never runs any job which is completed
 M distinct jobs are always running

23

Theorem 2: Proof

24

Theorem 2: Implications

 Once we've subdivided all jobs into "time
windows", with all system deadlines as
boundaries, correct scheduling goes from
being incredibly complicated to nearly
trivial.

 What is the simplest possible algorithm?

25

Stack-and-Slice (SNS)

 All time windows are, up to linear scaling,
equivalent, so normalize time window
length to 1

 All jobs now have work equal to their
utilization, and workloads add up to (no
more than) M

26

Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks

27

Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks

28

Stack-and-Slice (SNS)

 Example: 3 processors, 7 tasks

29

Stack-and-Slice (SNS)

30

SNS Performance

 N−1 context switches and M−1 migrations
per time window

 This is about 1/3 as many as the LLREF
algorithm, but somewhat more than EKG.
However, the computational overhead is
minimal compared to both.

31

Summary
 Multiprocessor scheduling suddenly

becomes very easy when all deadlines are
shared with all jobs.

 This ease is demonstrated by Stack-and-
Slice, the simplest known optimal
scheduling algorithm for this problem.

32

What's Next?
 The minimal restrictions imposed by the

"3 Rules" theorem leave lots of room to
develop more complicated algorithms to
further reduce context switches and
migrations

 How can we extend these ideas to variants
of this problem?

 Can we reduce the number of operations
enough to make a real implementation of
such a scheduler competitive?

33

Thanks for Listening
 Questions?

