
SALT3 data set is the third 

supernovae dataset released using 

the SALT method of light curve 

fitting and contains 397 

observations.  MLCS17 is a data set 

of 372 observations using the 

MLCS light curve fitting method.  

The data has a redshift (z) value for 

each supernova and a value for µ

(observed distance modulus.) The 

first plot is of z vs µ. The plots are 

colored by the telescope that 

cataloged the data.  

We will look specifically at two 

models to fit these data sets.  The 

first will be a parametric model that 

has been studied in depth and the 

other is a Gaussian Process model.  

Both of these models will be 

implemented using Bayesian 

methods and MCMC algorithms.  
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Abstract

The fact that the Universe is expanding has been known since the 1920's.  If the Universe was filled 

with ordinary matter, the expansion should be decelerating.  Beginning in 1998, however, 

observational evidence has been accumulating in favor of an accelerating expansion of the 

Universe.  The unknown driver of the acceleration has been termed dark energy.  The nature of 

dark energy can be investigated by studying its equation of state, that is the relationship of its 

pressure to its density.  The equation of state can be measured via a study of the luminosity 

distance-redshift relation for supernovae.  In this study, we employ supernovae data, including 

measurement errors, to determine whether the equation of state is constant or not.  Our method is 

based on Bayesian analysis of a differential equation and modeling w(z) directly, where w(z) is the 

equation of state parameter.  This work stems from collaboration between UCSC and Los Alamos 

National Laboratory (LANL) in the context of the Institute for Scalable Scientific Data 

Management (ISSDM) project.
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• Use an orthogonal basis of damped Hermite polynomials to approximate w(u)

• Add other probes to this analysis and reduce the uncertainty in the fit of w(u)

• Set up an experimental design to find where more data is need (on the z axis).  In the 

experimental design also test how shrinking uncertainty for µ,       , and H0 would help in  

drawing more conclusive statements about w(z).

• Look into which type of measurement error could be reduced to help make conclusive 

statements about the parameters of interest; especially the standard deviations associated with µ

This non-linear model is advocated by Linder, a cosmologist, as a good alternative to w(u) set 

equal to a constant or just a simple line.  

This leads to a simplified version of our equation, namely we were able to do one of the 

integrations analytically.

To be able to use this likelihood we will need priors: π(a)~U(-25,1), π(b)~U(-25,25), and

π (σ2)~IG(10,9).   We will use this model to compare against our Gaussian process model.
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Conclusions

• We have shown that a typical parametric model, as well as, a non-parametric Gaussian process 

model can be fitted to the equation of state. 

• The benefit of using a GP model is that it allows us to fit the equation of state without specifying 

a parametric form, which at this time is unknown.

• The GP produces smaller probability bands than the parametric model

• H0 and Ωm parameters are estimated in both models

Equations and Parameters of Interest

The main parameter of interest is w(u).  There are also two other known parameters:  H0=72.0 and                                             

.   The main equation of interest is a transformation:

To be able to use this equation we will need to specify a form for w(u).  This also leads to a 

likelihood as follows: 

To be able to use this likelihood we will need priors for σ and whatever parameters we used to 

specify w(u).  As a note the τ’s are the standard deviations for µ and part of the observed data set.
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(64.16, 65.82)(64.16, 66.19)H0

(0.232, 0.332)(0.232, 0.336)Ωm

(0.96, 1.21)

(-1.707, 3.110)

(-1.184, -0.442)

MLCS17

(1.04, 1.32)σ2

(-1.805, 3.699)b

(-1.286, -0.525)a

SALT395% Probability 

interval

The dashed line is at negative one, which is a value of 

interest.  The black line is the mean fit of the MCMC 

simulation and the dark blue is 68% probability interval 

and the light blue are the 95% probability intervals.  

The fits here do not preclude the possibility that w(z) is 

negative one. 

We also estimated the unknown parameters H0 and Ωm

in this model.   It should be noted that in the MCMC, 

the unknown parameters are correlated and drawn 

jointly.  

Table 1 –Parameter Estimates

Gaussian Process Model Theory

We will consider a model where w(u) is a Gaussian process (GP): w(u) ~ GP(-1, κ2 K(u,u’)) where 

K(u,u’)=ρ|u-u’|α.  The correlation function is of great importance in this method because we are 

going to use it to do integration and cannot use a nugget term with our method, this precludes a 

Gaussian or Matern correlation function.  So, we will use α=1.999 as an approximation to a 

Gaussian correlation.  

w(u) is a GP therefore its integral is also a GP:                  .  The integral of a GP can be 

found by integrating the correlation function. 

The mean of y(s) given w(u) can be found through the following relation:

To be able to use this likelihood we will need priors: π(κ2)~ IG(25,9), π(ρ)~Be(6,1) and

π (σ2)~IG(10,9).   
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Gaussian Process Model Results

(0.96, 1.21)

(64.35, 65.77)

(0.226, 0.323)

MLCS17

(1.04, 1.31)σ2

(64.47, 66.16)H0

(0.231 ,0.324)Ωm

SALT395% Probability 

interval 

The dashed line is at negative one, which is a value of 

interest.  The black line is the mean fit of the MCMC 

simulation and the dark blue is 68% probability interval 

and the light blue are the 95% probability intervals.  The 

fits here do not preclude the possibility that w(z) is 

negative one.

The Gaussian process is a  non-parametric model that 

allows for a flexible fit for w(z).  The mixing is slow for 

the GP and it must be run many iterations.  It should be 

noted that in the MCMC that the parameters are correlated 

and drawn jointly.  

Table 1 – Parameter Estimates
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