

Alternative Reliability Models in Ceph

David Bigelow, Scott Brandt, Carlos Maltzahn
{dbigelow, scott, carlosm}@cs.ucsc.edu

RAID systems have traditionally offered increased performance and data security in small storage systems. An opportunity
now exists to extend traditional RAID principles into the area of large-scale object-based storage devices in order to offer
greater data security and space efficiency. In a system where component failures can be expected on a daily basis, the
importance of redundancy mechanisms is obvious, and RAID principles offer an appropriate model. Ceph is an excellent
platform with which to test these RAID principles, and learn how they function in a new environment. However, there are
several details that need examination before a full implementation can be done within the Ceph system.

Abstract
Object 1 Object 13 Object 42 Object 71 Object 144 Object 525

… … … … …

The colored boxes each represent one object in
a parity group. Each object is the same size,
but parity groups may be of arbitrary size.

This is the most general model of a reliability scheme utilizing RAID-based principles.
No assumptions are made on how parity groups are arranged, and nor do they
necessarily have to be parity-based. The sole limitation is that each object must be
the same size within its group. In the example given above, the data might be
arranged as: The red blocks are duplicates of the same object, utilizing three way
mirrors. The blue blocks are arranged in a traditional 3+1 parity scheme commonly
found in RAID. The green blocks are in a 2+1 parity scheme. The purple blocks are
arranged in a 2+2 Reed-Solomon type encoding. This could all be done within the
same storage system with an appropriate hierarchical model.

For a general model, there are
several properties:
Parity groups do not need to be shared over
multiple object sets. In other words, if one parity
group is defined by the set {1,13,42,71,144,525},
there may not exist any other group over that
exact set of devices. Another set might be
{1,42,57,113,181,325}, having only two devices
in common with the first.
One object set has no bearing on any other
object set. Therefore, a mix of encoding
schemes can be done over different object sets,
so long as one is able to determine what scheme
is associated with each group.
Parity groups may contain objects of arbitrary
size, so long as all objects within a group are the
same. One group might be composed of
kilobyte-sized objects, another of four-megabyte
sized objects.

• The Orange Checkered block represents the parity object,
written to the parity disk P.
• The Red block is a data object that the user wishes to write.
It can be broken up into smaller objects; four in this case.

P KJIH

= ⊕⊕⊕

RAID Within Objects
⊕

H PKJI

RAID Across Objects

• The Purple, Green, and Blue blocks represent data unrelated
to the current write.
• The arrows represent the flow of data on any write.

RAID Across Objects is the equivalent of doing only
small writes in a normal system. Each time a user
wishes to write an object to the storage system, they
direct their write to a single device which sends
updated parity information to the parity device for
that group. Reading has normal behavior. This
scheme can be extended to any error-correcting
code that maintains one “normal” copy of the data,
and uses any number of parity/recovery disks. RAID
Across has the following attributes, assuming a
simple xor-based scheme:

•Writes are fast. Data only needs to be written on
two devices (or n devices for a more complicated
scheme).
•Reads are fast. Data is only read from a single
known device, which does not need to consult any
other to return the data.
•The required bandwidth is exactly the size of the
object, plus some amount of overhead (acks, etc.)
•Two full sets of parity calculations are necessary.
The primary disks must first xor the old object with
the new one, and then send it to the parity disk,
which xors this new object with its current parity
block.
•If the parity group is operating in degraded mode (in
other words, device H is unavailable), both reading
and writing are slow and depend on the load of the
other devices. Data flow can be directed at any of
the remaining devices (I, J, K, P), but all must be
consulted to recover data.

RAID Within Objects is the equivalent of doing only
large writes in a standard RAID system. Writes and
reads are both directed at the parity disk, which
does the work of distributing (or gathering) the data
by breaking the original object into several pieces.
This scheme can also be extended to any error-
correcting code which maintains one “normal” copy
of the data and uses any number of parity/recovery
disks. Obviously, all the data in a single group is
related. RAID Within has the following attributes,
assuming a simple xor-based scheme:

•Writes are slow. Data needs to be written on every
device on the group, and the data cannot be
confirmed written until the slowest one returns.
•Reads are slow. Since reading is directed at the
parity disk (which maintains none of the actual data),
all data must be reassembled before it can be
returned to the user. This might be negated if the
client were smart enough to read their data directly
from all the devices in the group simultaneously.
•The required bandwidth is exactly the size of the
object, plus some amount of overhead (more than
RAID Across, since more devices are
communicating).
•Only one set of parity calculations must be
performed at the initial disk.
•If the group is operating in a degraded mode (any of
the disks being unavailable), then writes are
marginally faster and reads are marginally slower.
However, if the parity disk itself has failed, the client
must be smart enough to write appropriate sub-
objects to the other devices in the group.

1x2xRequired Calculations

FewManyRequired changes to
Ceph

GoodPoorPerformance in
degraded mode

Slightly more than
RAID Across

Very littleAmount of time spent
in degraded mode

Slow or Fast
(depending on client)

FastRead Speed

SlowFastWrite Speed

RAID WithinRAID Across

•Currently working on a simulation of several different
RAID-like schemes and error-correcting codes.
•Schemes being considered include RAID-4 and RAID-5
like encoding schemes, special encoding schemes such as
EVENODD, error-correcting codes such as Reed-Solomon
schemes, all being evaluated over the RAID Across and
RAID Within models.
•Goal of determining bandwidth costs, computational costs,
and gathering performance metrics.
•The next step is to complete a Ceph implementation of at
least one of the schemes, depending on what the
simulations reveal.
•RAID Across seems to have many advantages in every
category except degraded performance mode, but it is
much harder to integrate into the existing Ceph framework.
•RAID Within offers lower performance in general (butt
higher performance when a device has failed), and is much
easier to integrate into the existing Ceph framework.

•Implement all components of a working RAID
model into Ceph. This includes basic read/write
functionality, failure mode operation, failure
recovery, and automatic group rebuilding. These
components can be added piecewise, but must be
present for a full implementation.
•Of secondary importance is the inclusion of a
hierarchical mode which allows multiple reliability
modes (as described in the general model above).
This would allow mirroring for data which requires
high-performance, and RAID-like modes for less
urgent data.
•It might also be worthwhile to explore the possibility
of using the client to calculate parity for their own
data. This would only work in certain modes of
operation, but would relieve the burden of
computation from the storage system devices.

•Because object sizes are so variable, the traditional
advantages of RAID parallelization may not apply. Any
client can gain this advantage on its own by simply
breaking its writes into additional objects. If only one
object is ever read at a time, break it into smaller objects
and read them all simultaneously.
•All of these schemes are based around not trusting the
client and having the storage devices do all the work.
However, there may be times when it is appororiate to
trust the client to do its own calculations.

General RAID-Based Reliability Scheme

RAID Across and Within

Points to Consider

Current Status Future Work

