
File System Trace and 
Replay

Noah Watkins / UC Santa Cruz

James Nunez, Meghan Wingate, John Bent / LANL

Advisors: Scott Brandt, Carlos Maltzahn

Tuesday, October 19, 2010



Noah Watkins jayhawk@cs.ucsc.edu

What is tracing?

• Creation of a signature 
describing the execution 
of a system:

• This talk is about file 
system traces

• Ordered sequence of 
events

• Statistical aggregation

2

Simulation
Running on 

Cluster

I/O Statistics

500 Reads
700 Writes
40% Sequential
60% Random
10% MPI-IO

I/O Traces

T1 Read(...)
T2 Write(...)
T3 MPI_X(...)
T4 HDF5_Y(...)
T5 MPI_Barrier()

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

What is replay?

• Trace replay is the 
reproduction of a traced 
workload having only 
knowledge of a trace.

• Replay fidelity is how 
accurately the original 
workload is reproduced.

3

Cluster

I/O Statistics

500 Reads
700 Writes
40% Sequential
60% Random
10% MPI-IO

I/O Traces

T1 Read(...)
T2 Write(...)
T3 MPI_X(...)
T4 HDF5_Y(...)
T5 MPI_Barrier()

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Why trace and replay?
• HPC at LANL pushes 

the limits of storage 
systems

• R&D collaborators

• Classified and controlled 
applications cannot be 
distributed

• Distribute traces, not 
apps

4

Internet / Universities / R&D

Controlled
Computation

Scrub

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Previous work

5

strace
Darshan
//Trace
blktrace
ScalaTrace
Pianola

Complex inter-node dependencies

Similar approach, unsupported

Not general, no app-specific info

Aggressive, custom compression

Heavy weight (ptrace)

Statistical aggregation

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Tracing goals

• No code changes

• Entire software stack

• Low-overhead logging

• Easily integrated with 
existing applications

6

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

The observer effect

• A normal function call 
incurs virtually no 
unnecessary overhead

• In order to record 
function calls, they must 
be observed and saved

• Minimizing this overhead 
is important

7

Time Application Library

read()
read()

return()

Normal Function Call

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

The observer effect

8

• The act of observing an 
application’s execution 
alters the application’s 
behavior

• Record a timestamp

• Encode data

• Buffer/write data

• Resource contention

Time Application Interposition

read()

Library

real_read()

read()

real_read()

return()

Captured Function Call

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Our approach to tracing

• Identify, measure, and 
minimize sources of 
overhead

1. Interposition

2. Timekeeping

3. Logging

4. Resource

9

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Tracing architecture
• Traced application 

execute as normal (1)

• Interposition library 
forwards events, and 
executes original 
function (2)

• Datastreams1 library 
buffers and schedules 
trace events (3)

10

Interposition 
Library

NetCDF

MPI-IO

Datastreams

Clock 
Source

Output

Config

NetCDF HDF5 MPI MPI-IO

Traced Application

POSIX

libc

Unmodified Application and Supporting Libraries

32

1

POSIX

Operating System

1. http://www.ittc.ku.edu/kusp

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu
http://www.ittc.ku.edu/kusp
http://www.ittc.ku.edu/kusp


Evaluation

Tuesday, October 19, 2010



Noah Watkins jayhawk@cs.ucsc.edu

Interposition cost and 
extensibility

• Link-time function 
wrapping provides 
minimal interposition cost.

• read(...) --> __wrap_read(...)

• __wrap_read(...)

• logs event

• calls __real_read(...)

12

• Modular approach to 
interposition libraries:

• MPI

• MPI-IO

• HDF

• netCDF

• POSIX

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Clocks are unpredictable
• Three x86 machine 

classes

• 5 clock sources

• Wildly different 
results

• TSC not shown

• Need pluggable 
clock architecture

13

    M-a     M-b

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Logging cost per core

14

    0

    2

    4

    6

    8

   10

   12

 0  1  2  3  4  5  6  7  8  9

Ev
en

t L
og

 C
os

t (
m

icr
os

ec
on

ds
)

Number of processes per node

Average Overhead Per Traced Event

2us

11us

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Logging throughput per core

15

   50

  100

  150

  200

  250

  300

  350

  400

  450

 0  1  2  3  4  5  6  7  8  9

Ev
en

ts
/s

ec
on

d 
(x

10
00

)

Number of processes per node

Maximum Sustained Logging Rates Per Process

100K e/s
x 8 cores

400K e/s

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Tracing status
• Integrated into real-

world HPC applications

• Tracing infrastructure 
adapted to non-file 
system, parallel 
applications (VTK data 
models)

• Increasing usability and 
documentation

16

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Trace replay goals

• Standardized, portable trace format

• XDR*, Google Buffers, Thrift

• Execution modes

• Distributed POSIX traces v.s. MPI traces

• Fidelity assessment

• E.g. total runtime, per-node measurements

17

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Noah Watkins jayhawk@cs.ucsc.edu

Trace replay

• Work in progress

• More research potential

• Inter-node 
synchronization 
important for fidelity2

18

2. “Trace: Parallel Trace Replay With Approximate Causal Events”, Mesnier, Michael P., et. al.,  FAST 2007

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu


Questions?
jayhawk@cs.ucsc.edu

Tuesday, October 19, 2010

mailto:jayhawk@cs.ucsc.edu
mailto:jayhawk@cs.ucsc.edu

