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What is tracing?

• Creation of a signature 
describing the execution 
of a system:

• This talk is about file 
system traces

• Ordered sequence of 
events

• Statistical aggregation

2

Simulation
Running on 

Cluster

I/O Statistics

500 Reads
700 Writes
40% Sequential
60% Random
10% MPI-IO

I/O Traces

T1 Read(...)
T2 Write(...)
T3 MPI_X(...)
T4 HDF5_Y(...)
T5 MPI_Barrier()
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What is replay?

• Trace replay is the 
reproduction of a traced 
workload having only 
knowledge of a trace.

• Replay fidelity is how 
accurately the original 
workload is reproduced.
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Cluster

I/O Statistics

500 Reads
700 Writes
40% Sequential
60% Random
10% MPI-IO

I/O Traces

T1 Read(...)
T2 Write(...)
T3 MPI_X(...)
T4 HDF5_Y(...)
T5 MPI_Barrier()
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Why trace and replay?
• HPC at LANL pushes 

the limits of storage 
systems

• R&D collaborators

• Classified and controlled 
applications cannot be 
distributed

• Distribute traces, not 
apps
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Internet / Universities / R&D

Controlled
Computation

Scrub
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Previous work
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strace
Darshan
//Trace
blktrace
ScalaTrace
Pianola

Complex inter-node dependencies

Similar approach, unsupported

Not general, no app-specific info

Aggressive, custom compression

Heavy weight (ptrace)

Statistical aggregation
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Tracing goals

• No code changes

• Entire software stack

• Low-overhead logging

• Easily integrated with 
existing applications
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The observer effect

• A normal function call 
incurs virtually no 
unnecessary overhead

• In order to record 
function calls, they must 
be observed and saved

• Minimizing this overhead 
is important
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Time Application Library

read()
read()

return()

Normal Function Call
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The observer effect
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• The act of observing an 
application’s execution 
alters the application’s 
behavior

• Record a timestamp

• Encode data

• Buffer/write data

• Resource contention

Time Application Interposition

read()

Library

real_read()

read()

real_read()

return()

Captured Function Call
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Our approach to tracing

• Identify, measure, and 
minimize sources of 
overhead

1. Interposition

2. Timekeeping

3. Logging

4. Resource
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Tracing architecture
• Traced application 

execute as normal (1)

• Interposition library 
forwards events, and 
executes original 
function (2)

• Datastreams1 library 
buffers and schedules 
trace events (3)
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Interposition 
Library

NetCDF

MPI-IO

Datastreams

Clock 
Source

Output

Config

NetCDF HDF5 MPI MPI-IO

Traced Application

POSIX

libc

Unmodified Application and Supporting Libraries

32

1

POSIX

Operating System

1. http://www.ittc.ku.edu/kusp
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Interposition cost and 
extensibility

• Link-time function 
wrapping provides 
minimal interposition cost.

• read(...) --> __wrap_read(...)

• __wrap_read(...)

• logs event

• calls __real_read(...)
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• Modular approach to 
interposition libraries:

• MPI

• MPI-IO

• HDF

• netCDF

• POSIX
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Clocks are unpredictable
• Three x86 machine 

classes

• 5 clock sources

• Wildly different 
results

• TSC not shown

• Need pluggable 
clock architecture
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Logging cost per core
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Logging throughput per core
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Tracing status
• Integrated into real-

world HPC applications

• Tracing infrastructure 
adapted to non-file 
system, parallel 
applications (VTK data 
models)

• Increasing usability and 
documentation
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Trace replay goals

• Standardized, portable trace format

• XDR*, Google Buffers, Thrift

• Execution modes

• Distributed POSIX traces v.s. MPI traces

• Fidelity assessment

• E.g. total runtime, per-node measurements
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Trace replay

• Work in progress

• More research potential

• Inter-node 
synchronization 
important for fidelity2
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2. “Trace: Parallel Trace Replay With Approximate Causal Events”, Mesnier, Michael P., et. al.,  FAST 2007
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Questions?
jayhawk@cs.ucsc.edu
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