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ABSTRACT
Hadoop has become the de facto platform for large-scale
data analysis in commercial applications, and increasingly
so in scientific applications. However, Hadoop’s byte stream
data model causes ine�ciencies when used to process sci-
entific data that is commonly stored in highly-structured,
array-based binary file formats resulting in limited scalabil-
ity of Hadoop applications in science. We introduce Sci-
Hadoop, a Hadoop plugin allowing scientists to specify log-
ical queries over array-based data models. SciHadoop exe-
cutes queries as map/reduce programs defined over the log-
ical data model. We describe the implementation of a Sci-
Hadoop prototype for NetCDF data sets and quantify the
performance of five separate optimizations that address the
following goals for several representative aggregate queries:
reduce total data transfers, reduce remote reads, and reduce
unnecessary reads. Two optimizations allow holistic aggre-
gate queries to be evaluated opportunistically during the
map phase; two additional optimizations intelligently parti-
tion input data to increase read locality, and one optimiza-
tion avoids block scans by examining the data dependencies
of an executing query to prune input partitions. Experi-
ments involving a holistic function show run-time improve-
ments of up to 8x, with drastic reductions of IO, both locally
and over the network.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed Systems; H.2.4
[Systems]: Query Processing; H.2.8 [Database Applica-
tions]: Scientific Databases

Keywords
Data intensive, scientific file-formats, map reduce, query op-
timization
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1. INTRODUCTION
The volume of data generated by the scientific community

has been increasing rapidly in recent years. Indeed, science
today is all about big data, and making sense of all that
data requires analysis tools that scale to meet the demands
of scientists, and utilize resources e�ciently.

One popular approach for tackling data-intensive large-
scale analysis is to use the MapReduce framework. This
framework is freely accessible, simple to program, provides
built-in fault-tolerance, and is specifically designed to ana-
lyze large data sets with good scalability. MapReduce excels
at tackling problems that are easily sub-divided, and many
operations on scientific, array-based data have the property
of being conveniently parallel. Thus, it would be beneficial
if scientists could utilize MapReduce as a scalable, e�cient
data analysis tool for massive, raw scientific data sets. In
this paper we present SciHadoop: a system for enhancing
the performance of common analysis tasks (e.g. aggregate
queries) over unmodified, array-based scientific data files us-
ing MapReduce as the execution substrate.

Many methods of scientific data analysis exist. One pop-
ular set of tools, the NetCDF Operators (NCO) [12], are
designed to execute common queries over data stored in the
NetCDF file format. Unfortunately the scalability of NCO
is limited by its design which takes a centralized approach to
processing data. With NCO, all computation is performed
on a single node, and data is read serially from the file
system. The SWAMP project [18] has been successful in
parallelizing the execution of NCO queries by shipping sub-
queries to nodes within the storage system to reduce data
transfers, but requires computations to be expressed using
procedural scripts. Some steps have been taken to enable
processing of NetCDF data with MapReduce, but this solu-
tion requires that data first be transformed into a text-based
format [20]. While this may seem reasonable, the overhead
of format transformation and additional data management
costs are too great given the quantity and size of common sci-
entific data sets. In order to provide the most value to prac-
titioners, any approach using MapReduce should be capable
of analyzing raw scientific data without any pre-processing.

Unfortunately a straightforward approach is di�cult. Typ-
ically, the input to a MapReduce computation is a file stored
as blocks (contiguous byte extents) in a distributed file sys-
tem, and MapReduce processes each block of the input file in
parallel. This approach works well because typical MapRe-
duce computations are able to independently process arbi-
trary byte extents by sequentially reading (scanning) each
input block from the file system. However, requests for data



expressed at the abstraction level of the logical, scientific
data model do not always correspond to contiguous, low-
level byte extents at the physical level. Thus, the di�culty
of processing scientific data with MapReduce is manifested
as a scalability limitation, and arises, as we will explore later
in detail, from a disconnect between the logical view of data,
and the physical layout of that data within a byte stream.

For example, consider a file format that serializes matrices
onto a linear byte stream using row-major ordering (i.e. each
row is physically stored one after the other). As the row size
of a matrix becomes larger, cells that are near one another
in the logical matrix but in separate rows (e.g. elements
in a column) will become separated by a greater distance
within the byte stream. Thus, a logical partitioning of an
input file that ignores the corresponding physical layout may
incur many remote reads when processed because the data
values referenced by a partition may be located in more than
one physical blocks. As the volume and frequency of remote
reads increase, contention for network resources can be a
limiting factor, and this limitation is a direct result of the
unfortunate partitioning of a computation’s input.

In general, the logical data view exposes no information
about the physical layout and distribution of data. This
disconnect is a road block for many types of optimizations
that rely on resources defined at the physical level, such
as caching and reducing duplicate reads, in addition to the
remote read problem described in the previous paragraph.
Our system, SciHadoop, addresses these issues by taking
into account the physical location and layout of data during
the logical partitioning of a computation’s input, allowing
for a variety of optimizations for common types of data
analysis operations.

Our work makes the following technical contributions.

1. We identify performance limitations of a straightfor-
ward application of MapReduce to analyzing array-
based scientific data. Our analysis employs an alge-
braic query language that allows us to reason about
the deficiencies of such an straightforward approach in
a principled fashion (Section 3).

2. To address the shortcomings of the straightforward
approach we extend scientific file-format libraries to
expose physical locality information which enables a
more e�cient solution to processing array-based scien-
tific data with MapReduce (Section 4.2).

3. We propose three optimization techniques that take
advantage of the semantics of scientific data queries
in order to further reduce the cost of analysis: two
optimizations for holistic aggregate functions, and one
general optimization that eliminates traditional block
scans in MapReduce.

4. We conduct and present a thorough experimental study
of our solution using representative data and queries
(Section 5 and Section 6).

2. MAPREDUCE AND SCIENTIFIC DATA

2.1 MapReduce
Since its introduction in 2004, MapReduce [4] has emerged

as a go-to programming model for large-scale, data-intensive
processing. The framework is popular because it allows

computations to be easily expressed, o↵ers built-in fault-
tolerance, and is scalable to thousands of nodes [14].

Computations in MapReduce are expressed by defining
two functions: map and reduce. Conceptually, a set of con-
currently executing map tasks read, filter and group a set
of partitioned input data. Next, the output of each map
task is re-partitioned, and each new partition is routed to a
single reduce task for final processing. Optionally, a ”com-
biner function” can be utilized as a type of pre-reduce step,
greatly reducing the data output at each map task location
before it is transferred to the reducer. A full explanation of
MapReduce is beyond the scope of this paper and we refer
the reader to [4] for additional details. Next we present
the data model assumed by MapReduce and details of the
representative system environment that we target.

2.1.1 MapReduce Data Model and Storage

A data model specifies the structure of data and the set
of operations available to access that data. MapReduce as-
sumes a byte stream data model (i.e. the same format which
most common file systems support today) and a set of oper-
ations similar to standard POSIX file operations. Generally,
MapReduce is deployed on top of a distributed file system,
and map and reduce tasks run on the same nodes that also
host the file system. Files are composed of fixed-size blocks
(byte extents) that are replicated and distributed among
the nodes. Formally, a file is composed of a set of m blocks,
B = {b0, b1, . . . , bm�1}, where each block bi is associated
with a set of hosts, Hi, which store a copy of bi locally.
The data contained in a block bi are accessible indirectly
through the file system interface, either remotely via a net-
work connection, or locally on a host h 2 Hi. Additionally,
the MapReduce framework assumes that the underlying file
system is capable of exposing the set of hosts, Hi, for any
block bi.
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Figure 1: MapReduce processes logical partitions in map
tasks and matches each map task with physical locations to
form an execution plan. The line labeled L is a contribu-
tion of SciHadoop which utilizes physical layout knowledge
during partitioning (see Section 4).

2.1.2 Partitioning and Placement

MapReduce scales in part because of its ability to intel-
ligently coordinate the execution of map and reduce tasks.
At a high-level this coordination consists of two phases, each
illustrated in Figure 1. The first phase is concerned with the
decomposition of the input into units of parallelization and
defines a partitioning strategy that dictates how a compu-
tation’s logical input is decomposed to be read by a set of
map tasks. In the second phase a placement policy controls
where each logical input partition will be processed within



the cluster by scheduling a map task to process a parti-
tion on a specific node (ideally where the majority of data
represented by the logical split is physically present). The
resulting execution plan is a specification used by MapRe-
duce to run a computation and may be based on multiple
optimization goals (e.g. minimize run-time and data trans-
fers). These optimizations in turn depend on infrastructure
characteristics, including policies related to the interaction
with co-existing applications (e.g. load balancing).

2.1.3 An Example

A common optimization goal of MapReduce is to minimize
the amount of network transfers which result from map tasks
remotely reading blocks out of the distributed file system.
Using knowledge of physical block distribution, MapReduce
attempts to construct schedules in which a map task pro-
cesses a block on a host that stores that block locally.

Filter / Map / 
Combine

Filter / Map / 
Combine

Filter / Map / 
Combine

Reduce

2 6 9

9

partition-1 partition-2 partition-3

{3, 4, 5, 6}{0, 1, 2} {7, 8, 9}
NODE 1 NODE 2 NODE 3

Figure 2: The execution of the max aggregate function in
MapReduce. The map phase locates the local maximum in
each partition and the reduce phase combines the results to
produce a global maximum value.

Consider the scenario illustrated in Figure 2 showing the
execution flow of a computation searching for the maximum
value contained in a data set. The data set in this example is
a standard byte stream containing the values 0 . . . 9, and is
stored as three physical blocks, labeled NODE1, NODE2,
and NODE3 according to the physical node the blocks are
located on. The logical partitioning induced by the physical
layout is given by the set notation used in each partition.
The placement of each map task within the cluster is deter-
mined by the block location. The default placement policy
attempts to schedule a map task on a node that stores lo-
cally the partition to be processed by the map task. Thus,
partition-1 is processed on the node with block on NODE1,
and so on.

Algorithm 1 gives a simplified representation of the map
function used to process a partition. The input to the map
function is a filter, and a partition to process. First the map
function extracts relevant array data based on the filter using
ExtractInput(). A Group is assigned to the data representing
a single function input. The repartitioned data (ArrayData)
is then sent to the combine function using Emit().

Algorithm 1: Map()

Input: Filter, Partition
(Group, ArrayData)  ExtractInput(Filter, Partition)
Emit(Group, ArrayData)

The combine function is utilized to calculate per-group
partial results from the output of each map function on
each node before being sent to the reduce function. This
can significantly reduce the size of the map function out-
put sent across the network to reduce functions. The com-
bine function, given by Algorithm 2, first calculates the lo-
cal maximum and then emits this partial result to the re-
duce phase using the same Group. Finally, the output of
all map/combine tasks is repartitioned by Group, and each
group is sent to the same reduce function which calculates
the final, global maximum value. In this particular exam-
ple the reduce function is identical to the combine function
given in Algorithm 2.

Algorithm 2: Combine() / Reduce()

Input: Group, ArrayData
Max  Maximum(ArrayData)
Emit(Group, Max)

2.2 Scientific Data
Unlike the byte stream data model assumed by MapRe-

duce, scientific data is commonly represented by a multi-
dimensional, array-based data model [16]. In this section we
present a simple version of such a data model and develop a
query language used to express common data analysis tasks.
Note that the language is not intended to be a contribution
of this paper, but rather serves to expose the semantics of
queries necessary to perform certain types of optimizations.

Storage devices today are built for the byte streams data
model, thus high-level data models such as arrays must be
translated onto low-level byte streams. This translation is
performed by scientific file format libraries (e.g. NetCDF
and HDF5) which implement high-level logical models on
top of byte streams (illustrated in Figure 3b). These libraries
serve two primary purposes: first, they present a high-level
data model and interface (API) that is semantically aligned
with a particular problem domain (e.g. n-dimensional simu-
lation data), and second, they hide the nitty-gritty details of
supporting cross-platform portable file formats. In Section 3
we will show how these features work against an e�cient use
of MapReduce for scientific data analysis.

2.2.1 The Array Data Model

The array-based model used by SciHadoop is defined by
two properties. First, the shape of an array is given by the
length along each of its dimensions. For example, the array
illustrated in Figure 3a has the shape 3⇥12, and the shaded
sub-array has shape 1 ⇥ 10. Second, the corner point of
an array defines that array’s position within a larger space.
In Figure 3a, the shaded sub-array has corner point (1, 1).
Arrays also have an associated data type that defines the
format of information represented by the array, but in order
to simplify presentation we assume a single integer value per
cell in an array.1.

In this paper we use the following notation to describe the
shape and corner point of an n-dimensional array, say A:

1We have omitted values for the non-shaded region in order
to simplify the discussion. The non-shaded regions can be
interpreted as null values



SA = (s0, s1, . . . , sn�1), si > 0
cA = (c0, c1, . . . , cn�1), ci � 0

where SA and cA are the shape and corner point of A, re-
spectively. Thus, the shaded sub-array in Figure 3a is de-
scribed as the tuple (SA, cA) where the SA = (1, 10), and
cA = (1, 1). Note that throughout this paper we use the
terms array, sub-array, and slab interchangeably.
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Figure 3: (a) A 2-dimensional data set. (b) Software stack
used with scientific access libraries.

When scientific data is stored in arrays, labels are assigned
to each dimension to give the data semantic meaning. For
example, the array shown in Figure 3a depicts temperature
readings associated with 2-dimensional coordinates specified
by latitude and longitude values. Thus, the shaded sub-
array may represent a specific geographic sub-region within
the larger region represented by the entire data set A.

One common task when working with this type of data,
especially when the content is initially unknown, is to eval-
uate ad-hoc aggregation queries against the data set. For
example, consider the following query Q1: “What is the
maximum observed temperature in the shaded sub-array in
Figure 3a?”. We next present a simple query language used
to express this type of query.

2.2.2 The Array Query Language

At a high-level, our array-based query language consists
of functions that operate on arrays. Specifically, a function
in our language takes a set of arrays as input and produces
a new set of arrays as output (thus the language is closed
under the logical data model). For example, the max func-
tion used in query Q1 takes as input the shaded sub-array
shown in Figure 3a, and produces as output a 1 ⇥ 1 array
where the resulting single cell contains the value 9.

Formally, the language is defined as a 3-tuple (CS, SE, F ).
First, CS denotes a contiguous sub-array called the con-
straining space that limits the scope of the query. Second,
the slab extraction function SE generates a set of sub-arrays,
IS, referred to as the input set, where each sub-array s 2 IS
is also contained in CS. Finally, a query function f 2 F is
applied to the set IS yielding a result set R composed of
output arrays r 2 R. Thus, a function f 2 F takes the
following form:

f : {s1, s2, . . . }! {r1, r2, . . . }

Figure 4 illustrates the semantics of the language. The
slab extraction function is applied to the constraining space
producing the input set IS, and then the query function f
is applied to IS, producing the result set, RS.

The process of slab extraction, including a more detailed
look at how constraining spaces are used can be found in [3].

Constraining Space (CS)

A

Input Set (IS)

Slab-Extraction(CS)

Result Set (RS)

...f (IS)

Figure 4: Illustration of the query language semantics. First,
a subset of an array A, referred to as the constraining space
is used to limit the scope of a query. The process of slab
extraction forms the input set. Finally, the function f is
applied to the input set to produce the result set.

2.3 Processing Scientific Data
To process scientific data in the MapReduce framework,

mappers are forced to access data via scientific access li-
braries. This implies that mappers interact with data using
the scientific data model and that partitioning occurs on
the logical level of the scientific data model as opposed to
the physical level of byte streams. Additionally, access li-
braries do not expose their data placement algorithms, and
thus it is di�cult to accurately predict the physical loca-
tion of data addressed at the logical level. This poses a
problem for achieving good locality during the placement
phase of MapReduce computation scheduling as the logical-
to-physical mapping is completely hidden. Next we present
a straw man solution and show how it can perform poorly
under common conditions.

3. PARTITIONING REVISITED
We now develop a representative solution to processing

scientific data with MapReduce which will serve as a base-
line to which SciHadoop optimizations can be compared.
We refer to this solution as the Baseline partitioning strat-
egy and it represents a reasonable approach to the problem
that does not rely on low-level file format details and file
system specifics. Unfortunately, as we will show, the Base-
line approach can easily result in ine�cient IO, resulting in
long execution times.

Scientific access libraries use a black-box design in which
file layout knowledge is obscured, thereby frustrating au-
tomatic optimizations that rely on such knowledge. Thus,
users are left to manual construction of input partitions,
making the quality of such partitions dependent on how
much file layout information is known by the user. In essence,
we model our Baseline partitioning strategy on what we be-
lieve to be reasonable assumptions about a scientist’s aware-
ness of the physical layout of a data format. Specifically, we
assume that the block size of the underlying file system is
available, and that high-level information regarding the se-
rialization of the logical space onto the byte stream (e.g.
column-major ordering) is known.

The Baseline partitioning strategy is to subdivide the log-
ical input into a set of partitions (i.e. sub-arrays), one for
each physical block of the input file. Consider Figure 5a
which shows a 3 ⇥ 12 array stored within a file occupying



three physical blocks, located on nodes NODE1, NODE2,
and NODE3. Using knowledge that the file format stores
data in column-major order, a reasonable partitioning strat-
egy is to form three equally sized partitions with each con-
taining four columns. These partitions are shown in the fig-
ure using dashed frames, and are labeled as partition-1,2,3.

We assume a simple placement heuristic with round-robin
matching of logical partitions to physical locations. The
result of a round-robin placement is shown in Figure 5a using
the notation partition-x @ NODEy. For example, partition-2
is processed on node NODE2. To illustrate the di↵erence in
logical and physical partitions consider the example shown in
Figure 5a. In the example, partition-1 references 4 columns
all contained in the block on NODE1, while partition-3
references 2 columns from the block on NODE2, and 2
columns from the block on NODE3. In general, blocks are
not stored at the same physical location within a cluster,
thus a map task that processes partition-3 must read at least
half its data remotely.
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Figure 5: (a) Baseline partition strategy applied to a file
containing a single array. (b) Baseline partition strategy
applied to the same array in a di↵erent file containing ad-
ditional arrays. The partitions become smaller because the
same logical space is being mapped over a logical physical
space.

For infrastructures with network bottlenecks, and when
IO is dominated by map task reads, this misalignment of
logical partitioning with physical layout can have a signifi-
cant impact on performance. However, simple data sets with
well-defined physical layouts (e.g. column-major ordering)
that are stored with typical file block sizes will usually be
slightly misaligned. As a result, the Baseline partitioning
strategy will generally perform well. Unfortunately, achiev-
ing a good partitioning in the general case can be di�cult
as, in practice, few files contain a single variable.

Consider now the task of partitioning the same logical
array shown in Figure 5a, but imagine a context in which
the array is stored in a file containing additional data. This
additional data could be header information such as data
attributes or even other large data sets stored within the
same file. A depiction of this new file is shown in Figure 5b.
There are two things to notice. First, since there are now
four blocks storing the larger file, but the logical space of
the array is unchanged, the size of the partitions become
smaller with the Baseline partitioning strategy. The second
and most important di↵erence, is that a typical round-robin
placement of partitions to blocks can result in very poor
data placement because of the shifting factor introduced by
the additional file data. For instance, the data referenced
by partition-1 will be read entirely over the network when it
is processed at node N0.

The choice of a baseline is somewhat arbitrary because—
as just illustrated—the performance of such a baseline de-

pends on the sophistication of the user and the complexity
of the data set.

To illustrate the trade-o↵ between data set complexity
and user sophistication we perform two experiments, both of
which evaluate a query over an identical logical array using
the Baseline partitioning strategy. The array used in the first
experiment is stored in a file by itself, and in the second
experiment the array is stored in a larger file along-side
other arrays. We measure the percentage of reads that are
satisfied by disks local to map tasks, thereby evaluating the
quality of the partitioning and placement strategies. We find
that when a single array is stored in a file that the Baseline
partitioning and placement achieves 71% read locality, but
when multiple arrays are stored in a single file the read
locality drops to 5%. This degradation in locality is due
to the additional variable(s) that are present in the file, but
not in the query, causing misalignment during the placement
phase. In contrast, a SciHadoop optimization referred to as
chunking and grouping (Section 4.2) can achieve 99% read
locality for the multi-array data set. To provide a reasonably
high bar for the performance of SciHadoop optimizations we
chose to use the Baseline partitioning with the simple data
set as Baseline for the rest of the paper.

In summary, this section has described why scientific data
cannot be e�ciently processed using standard scan-based
approaches due to access library limitations, and how per-
turbations in input partitioning at the logical level can lead
to poor performance. Thus, any e�cient solution needs to
overcome at least one of the two restrictions imposed by
scientific access libraries. In the next section we describe a
set of optimizations that use varying degrees of file-format
knowledge to reduce the a↵ects caused by a simple treatment
of partitioning and placement.

4. THE DESIGN OF SCIHADOOP
In this section we present the design details of the Sci-

Hadoop system. SciHadoop is designed to accept queries
expressed in the language described in Section 2.2, and lever-
ages the semantics exposed by the language to implement a
variety of query optimizations.

At a high-level SciHadoop modifies the standard task sched-
uler to function at the level of scientific data models, rather
than low-level byte streams. In addition, map and reduce
functions that implement query processing in SciHadoop are
expressed entirely at the level of scientific data models. The
ability of SciHadoop’s task manager to act on data at the
logical level enables a number of optimization techniques
that we will now introduce according to SciHadoop’s opti-
mization goals:

Reducing data transfers. AsMapReduce executes data
is transferred to and from local disks, and HDFS and other
tasks over the network. As we show in Section 6 these data
transfers introduce overhead, including network contention
and memory bu↵er swaps to disk. A common MapReduce
optimization is to utilize a combiner function that performs
local data reduction during the map phase. This optimiza-
tion is easily utilized when using the Baseline partition strat-
egy: for example, local maxima can be computed during the
map phase and combined during the reduce phase to find a
global maximum value. However, generating partial results
using combiners is only possible when calculating algebraic
aggregate functions, and holistic functions such as median
must be evaluated over the entire input [11] by sending the



input to a reduce task.
In Section 4.1 we introduce two optimization techniques

relevant to holistic function evaluation called Holistic Com-
biner and Holistic-aware Partitioning. The first optimiza-
tion opportunistically evaluates holistic aggregate functions
in combiners when it can be determined that an entire input
is available in a single map task input, and the second op-
timization is used to make adjustments to logical partitions
at scheduling time that increase the probability of holistic
function inputs falling into single partitions.

Reducing remote reads. As described in Section 2.1
remote reads can be reduced by scheduling map tasks to
process data blocks on nodes that store those blocks locally.
However, Section 3 demonstrates that it is di�cult to make
scheduling decisions at the logical level of a scientific data
model because they physical data layout is hidden. Sci-
Hadoop implements two techniques for reducing the volume
of remote reads where simple round-robin scheduling heuris-
tics would perform poorly.

The first optimization, physical-to-logical translation, gen-
erates logical partitions that reference exactly the data con-
tained within a single block. While this optimization mini-
mizes remote reads, the technique may not always be feasible
to implement, and thus a more general method is needed.
The second optimization, chunking and grouping, decom-
poses a logical space into a set of small chunks and groups
the chunks according tho their primary position within the
byte stream achieving increased locality of reference over
simpler round-robin assignment.

Reducing unnecessary reads. Typical MapReduce
computations that process unstructured data, such as log-
processing, must scan blocks on disk and filter out unneces-
sary data in memory. However, the highly structured nature
of scientific data enables SciHadoop to avoid block scans by
constructing requests at the logical level that contain exactly
the data necessary to complete a query. The technique, re-
ferred to simply as NoScan, prunes input partitions to elimi-
nate unnecessary segments of the logical space, reducing the
total amount of data read during query execution.

4.1 Reducing Data Transfers
A holistic aggregate function has the property that it can-

not be computed by combining multiple, partial results. For
example, consider the task of calculating the median value
from the range 0 . . . 4 using MapReduce. Figure 6a shows the
execution flow of this query. Since neither of the two parti-
tions shown contain the entire range of 0 . . . 4, each partition
must be sent to the reduce function for evaluation. Here we
introduce two techniques to help reduce remote data transfer
for holistic function evaluation that use semantics exposed
by the logical data model and query language.

Holistic Combiner. In SciHadoop partial aggregate val-
ues for non-holistic functions are computed, when possible,
during the map phase using a combiner. However, holistic
functions must be processed entirely by a reducer because
the input to a holistic function may be present in multiple
partitions. SciHadoop opportunistically evaluates holistic
functions during the combine phase when the entire input
to the holistic function is present in one or more partitions
being evaluated on a single node. In this way the Holistic
Combiner optimization extends the data reduction benefits
of using a combiner to holistic functions when possible.

Holistic-aware Partitioning. While the holistic com-
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Figure 6: Sub-figure (a) shows two entire partitions being
sent to a reduce task to evaluate a holistic function over an
input that spans partitions. Sub-figure (b) shows a reparti-
tioning that allows the holistic function to be applied during
the map/combine phase.

biner can evaluate a holistic function when the entire input is
contained in the partitions on a single node, the initial par-
titioning of the logical input space is entirely unaware of the
query being processed, and thus the ability for the combiner
to provide a benefit is probabilistic. To account for small
misalignments that prevent the combiner from being used
for holistic function queries, SciHadoop makes small adjust-
ments to partitions to increase the likelihood that holistic
functions can be evaluated using the holistic combiner opti-
mization. Figure 6b shows how the first partition is adjusted
to include the entire holistic function input.

4.2 Reducing Remote Reads
In this section we introduce two low-level techniques for

producing partitions that reduce remote reads. One tech-
nique, physical-to-logical translation, produces optimal par-
titions that reference exactly the data contained in a physical
block, but may not always be feasible to implement. The
second approach, referred to as chunking and grouping, is
a more general technique that trades-o↵ partition optimal-
ity for ease-of-use. Both techniques are query-independent,
and focus solely on logical partition creation that exhibits
increased physical locality.

Physical-to-Logical Translation. This technique di-
rectly translates the extent represented by a physical block
into its equivalent logical representation. Figure 7a illus-
trates how optimal, from a data locality standpoint, parti-
tions are created. At the top of the figure a process is shown
that uses file metadata to generate a logical representation
of the data contained in a physical block. Since each block
is directly converted into its logical representation partitions
are precisely aligned with physical block boundaries. There-
fore placement is trivial: a partition is matched with the
block from which it was generated.

Despite the precision of this technique, it can be di�cult
to implement for complex file formats. Therefore we in-
troduce a more general purpose technique for constructing
partitions.

Chunking and Grouping. The second technique Sci-
Hadoop can use to reduce remote reads is referred to as
chunking and grouping. This technique decomposes the in-
put into many fixed-size units called chunks from which a
random sampling of byte stream locations is taken using
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Figure 7: (a) Direct physical-to-logical translation (Section 4.2). (b) Chunking and grouping (Section 4.2). (c) The NoScan
optimization (Section 4.3.)

extensions to scientific access libraries. The sampling tech-
nique allows SciHadoop to then group chunks into flexibly
defined partitions with increased locality of reference.

Figure 7b illustrates how chunking and grouping are used
to create partitions. At the top of the figure fixed-size chunks
are grouped together into partitions such that each partition
references primarily data within the same physical block.
This optimization requires extensions to file format libraries
to allow chunks to be associated with regions of the byte
stream, providing the ability to group based on data locality.
Next we describe chunking and grouping in more detail.

Chunking. The first step is the decomposition of in-
put at the logical level into a set of chunks (i.e. fixed-size,
contiguous, non-overlapping sub-arrays). The set of chunks
that cover the entire input space is given by K, where each
chunk k 2 K is determined by a chunking strategy.

There are trade-o↵s in choosing a chunking strategy. For
example, a small chunk size provides a finer granularity at
which partitions can be created, but results in more overhead
in managing many small chunks. A detailed discussion of
chunking strategy is beyond the scope of this paper, but we
provide the parameters for our experiments in Section 6.

Grouping. Grouping is the process by which chunks in
the set K are combined to form input partitions. The goal
of grouping is to form partitions that reference data located
in the fewest number of physical blocks. Thus, the prob-
lem of creating input partitions is equivalent to grouping
chunks k 2 K by block, such that each group maximizes
the amount of data referenced in the block that the group
is associated with. The resulting partitions are what we re-
fer to as the logical-to-physical mapping, defined by the set
LTP = {(b0, P0), (b1, P1), . . . , (bm, Pm)} , which associates
with a physical block bi, a logical partition Pi composed of
one or more chunks.

Sampling. The construction of LTP is based on the
examination of a randomly sampled set of cells taken from
a chunk. First, a set of n cells is selected from the logical
space represented by a chunk k using a uniform random
distribution. Next, each cell in the sample is translated into
its associated physical location on the byte stream using a
special function, getO↵set(cell), introduced as a SciHadoop
extension to scientific libraries. The return value of getO↵set
is the byte stream o↵set of the cell’s logical coordinate.

Finally, a histogram is constructed that gives the fre-
quency of sampled points for a chunk that fall into a given

block. The block bi with the highest frequency is chosen
and the chunk being considered is added to the partition Pi

associated with that block.
Sampling is the dominate cost of chunking and grouping.

For example, in our evaluation section we use a sampling ra-
tio of 0.0001 on a file containing 35 billion logical coordinates
resulting in the sampling operation being performed approx-
imately 3.5 million times. Microbenchmarks show that our
implementation of sampling for NetCDF-3 files can achieve
600,000 samples per second.

Next we present a concrete example of the functioning of
this technique using the query Q1 from Section 2.2.

4.2.1 Example

First we consider the set of chunks K, consisting of the 6,
3⇥ 2 sub-arrays, shown at the top of Figure 7b. We refer to
these chunks by their position in the figure (i.e. 1 . . . 6).

Next, for each chunk k 2 K we perform a random sam-
pling. For chunks 1, 2, 4, 5, and 6, it is clear that any
random sampling will definitively associate the chunk with
a given block because each chunk references data contained
within exactly one block. However, a sampling of chunk
3 may result in sample points that fall in either block on
NODE1 or block on NODE2. Thus no matter the location
at which chunk 3 is processed, remote data access will be
required. Uniform random sampling is an e↵ective way to
minimize the amount of remote reads for 3 by choosing a
block with a majority of the data. The result of chunking
and sampling is shown as the partitions illustrated at the
bottom of Figure 7b. The final LTP mapping is given as:

LTP (block1)! {chunk1, chunk2, chunk3}
LTP (block2)! {chunk4, chunk5}
LTP (block3)! {chunk6}

The resulting LTP mapping can now be utilized by MapRe-
duce to schedule the processing of partitions on the nodes
associated with each block in order to reduce the amount of
remote reads resulting from query execution.

4.3 Reducing Unnecessary Reads
We now present an optimization referred to as NoScan

that reduces the amount of unnecessary reads to a given
partition. The key motivation is that the construction of
LTP does not consider a given query’s data requirements.
That is, LTP represents a partitioning of an entire file, even



when a query may require only a subset of the total input. A
placement using LTP alone will thus read entire partitions
from the file system, only afterwards considering the data
requirements of the query. SciHadoop optimizes the LTP
mapping by pruning each partition in LTP to include only
the data required by a query. We refer to this new mapping
as LTP 0. In order to form this new mapping, an optimiza-
tion process must consider a query’s data requirements.

We form LTP 0 using the input set of a query, IS, which
represents a query’s data requirements, and informally de-
fine the intersection Pi \ IS to be the subset of a partition
Pi required by the query. Thus, for any given block in LTP ,
the associated logical partition Pi can be pruned to reference
only data required by the query:

LTP 0 = {(bi, P 0
i ) | P 0

i = Pi \ IS, 8(bi, Pi) 2 LTP}

Example (continued from Section 4.2). Using knowl-
edge of the data requirements of query Q1, the LTP that
was constructed previously in Section 4.2.1 can be trimmed
such that it contains exactly the components of the logical
model that are required to complete the query. Figure 7c
illustrates this trimming process, in which each of the parti-
tions are reduced to only the sub-arrays needed by the query
Q1.

5. IMPLEMENTATION
SciHadoop is implemented as a plugin to the Hadoop

MapReduce framework v0.21. It supports the NetCDF-3
file format using the NetCDF-Java library and is currently
limited to read-only workloads. The read-only limitation is
a consequence of HDFS’s append-only file system interface.
While writes could be bu↵ered and then appended, a more
complete, scalable solution to supporting read/write work-
loads is left for future work.
Hadoop plugin. SciHadoop array query processing is

implemented as a standard MapReduce computation. The
initialization phase of SciHadoop is handled by the Hadoop
FileInputFormat class that partitions the logical input and
assigns each partition to a physical host. A partition in Sci-
Hadoop is represented by the Hadoop InputSplit class that
in SciHadoop represents a set of sub-arrays. Each Input-
Split (i.e. partition) is scheduled transparently by Hadoop
using high-level policies such as load balancing. An Input-
Split is processed at a node by the RecordReader class which
loads the associated logical partition from the underlying file
system using the NetCDF-Java library. Finally, the logical
partition is sent from the RecordReader to the map func-
tion at which time the processing resembles the MapReduce
computation flow described in Section 2.1.
Integration with NetCDF. In order to support logical-

to-physical translation, as described in Section 4.2, we have
extended the NetCDF-Java library to expose mapping infor-
mation. The translation mechanism is exposed via a func-
tion that takes as input a set of logical coordinates, and
produces a set of physical byte stream o↵sets corresponding
to each coordinate. Internally this is implemented as a sim-
ulation of the actual request that NetCDF would perform,
but does not complete the read to the underlying file system,
and instead responds with the o↵set of the request.
Additional software layers also had to be created to al-

low NetCDF-Java to interoperate with Hadoop’s underlying
distributed file system, HDFS. NetCDF-Java is tightly inte-
grated with the standard POSIX interface to reading files.

Unfortunately, HDFS (the distributed file system built for
Hadoop), does not expose its interface via standard POSIX
system calls. To accommodate this API mismatch we built
an HDFS connector which translates POSIX calls issued by
NetCDF-Java into calls to the HDFS library.

6. EVALUATION
Experimental Setup. Experiments are performed on a

cluster of 31 nodes each with 2x 1.8 GHz Opterons, 8GB
RAM, 4x 250 GB Seagate SATA drives, and Gigabit Eth-
ernet running Ubuntu 10.10. Nodes are networked using an
Extreme Networks’ Summit 400 48-t switch. Hadoop version
0.21 is deployed on 1 master and 30 worker nodes (HDFS
and MapReduce). HDFS is configured to use 3 SATA drives
for data while the fourth SATA drive was used for the OS
and temporary storage. Default HDFS configurations, in-
cluding 64 MB blocks and 3x replication, are used.

In each experiment a map task is created for each block of
the input file, thus the number of map tasks is determined
by a the size of the input file. The number of reduce tasks is
influenced by common MapReduce balancing heuristics and
rules-of-thumb.

6.1 Methodology
NetCDF Dataset. We use a data set modeled after a

schema from UCAR2 in our experiments. The data set con-
tains a single variable measuring air pressure, as 32-bit val-
ues, defined as a time series over the dimensions time(expressed
in days), latitude and longitude (expressed in half and full
degree increments, respectively), and elevation with lengths
5475, 360, 360, 50, respectively. The total size of this data
set is 132 GB.

Metrics. We evaluate our system using 4 metrics: total
run-time, CPU utilization, local HDFS reads, and temporary
data. Next we discuss the latter two metrics in more detail.

The metric local HDFS reads measures the fraction of data
read from HDFS which was locally available on the node
reading the data (e.g. map task). The metric temporary
data is a measurement of the volume of data written to
temporary storage by the MapReduce framework, expressed
in bytes. Temporary storage is used during IO spills by map
and combine tasks as bu↵er space becomes scarce, and for
an external merge-sort of reduce task input.

Query 1. “Apply the median function to the specified
time-range, over sets of data contained in two adjacent days,
in a given area (defined by a lat x lon box) within an elevation
range” can be written declaratively, as seen in Figure 8a.

apply(median, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (2, 36, 36, 10),
)

regrid(average, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (7, 2, 1, 1),
)

(a)

apply(median, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (2, 36, 36, 10),
)

regrid(average, pressure,
    CS = (
        corner = (547, 0, 0 ,0)
        shape = (4380, 360, 360, 50),
    ),
    SE = (7, 2, 1, 1),
)

(b)

Figure 8: Function declaration for (a) Query 1 and (b)
Query 2

2http://www.ucar.edu



Test Name Local Temp CPU Run Time
Read Data Util Time �
(%) (GB) (%) (Min) (%)

First 4 use no Holistic Combiner
Baseline 9.3 2,586 34.7 129 7
Baseline +NoScan 9.2 2,588 34.3 118 3
ChkGroup 80 2,608 24.3 145 5
PhysToLog 88 2,588 29.9 138 5

Next 4 use Holistic Combiner with Baseline
Baseline 9.5 107 79.1 31 2
NoScan 9.5 107 80.7 27 1
+NoScan +HaPart 8.8 107 81.3 27 7
+HaPart 8.6 107 79.3 31 0.8
Next 3 use Holistic Combiner with Local-Read Optimizations
ChkGroup +HaPart 70.7 116 84.7 25 0.4
+NoScan
ChkGroup +NoScan 79.3 188 83.1 26 1
PhysToLog +NoScan 88.1 196 82.8 27 6

Table 1: Overview of Query 1 Runtimes of tests with-
out the Holistic Combiner optimization are dominated by
writes to temporary storage. All other runs are bound by
CPU (with iowait times < 1%). Runtimes are averages
from 10 executions. Abbreviations: ChkGroup: Chunk-
ing & Grouping, PhysToLog : Physical-to-Logical, HaPart :
Holistic-aware Partitioning.

This query can be read as apply the median function to
the pressure variable using constraining space CS and using
the slab extraction function with the shape SE. Since the con-
straining shape only filters on the time dimension, the e↵ect
is that data from dates outside the query are omitted. The
slab extraction function operates on all four dimensions: it is
grouping data from adjacent time values, within that group-
ing it is processing data in groups of 36 x 36 (referring to the
lat and lon dimensions) and within that slab, it is processing
at a range of 10 elements in the elevation dimension.

Query 2. The regrid operation is a common operation
in scientific data that is used to alter the coordinate system
of a data set. For example, the units of a data set may be
changed so that it is directly comparable to another data set
(e.g. polar to Cartesian). We use the following regrid oper-
ation, “Regrid the pressure variable along time and latitude
dimensions using units weeks and full degrees, respectively.
Interpolate using average”, Figure 8b.

6.2 Results

An overview of results from running Query 1 is given in
Table 1. We discuss these in terms of our optimization goals.
Reducing Data Volume. The Holistic Combiner and

Holistic-aware Partitioning have a significant impact on run-
time; roughly an order of magnitude. As Table 1 shows,
tests using the Holistic Combiner optimization are largely
CPU-bound while others are not, implying that those tests
are waiting on IO. We were admittedly surprised by the ex-
tent of the performance impact until we realized that data
traversing the system is transferred over the network but,
more importantly, potentially written to disk repeatedly.
A large volume of data causes a significant increase in

temporary storage writes due to bu↵er spills and external
sorting, which can occur at each step of a MapReduce com-
putation. In our setup a single disk is used to store tem-
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Figure 9: Bytes shu✏ed in tests with Holistic Combiner
(note the y-axis log scale).

porary data (HDFS stripes data over 3 SATA drives). This
can lead to an IO bottleneck for temporary data. In the
case of Query 1, successfully applying the combiner at the
map node rather than at the reducer results in a reduc-
tion of 25,920 data values, and their associated metadata,
to a single value. This dramatic reduction in data results
in a commensurate reduction in intermediate data written,
shown in the right-most column of Table 1, and translates
into significant reductions in query execution time.

Figure 9 shows the number of bytes transferred between
map and reduce tasks. Generally, the tests that use Holistic-
aware Partitioning reduce data transfer by almost three or-
ders of magnitude compared to Holistic Combiner tests with-
out Holistic-aware partitioning. The exceptions to this are
Baseline and Baseline with NoScan tests which show a sim-
ilar amount of data transferred to the Baseline tests with
Holistic-aware partitioning. Log data taken during our ex-
periments reveals that this is the result of an incidental
alignment between the shape of the data, the query shape,
and the Hadoop configuration used on our cluster.

Reducing Remote Reads. A potential conflict exists
between partitioning strategies that reduce remote reads and
partitioning strategies that reduce data transfers: the for-
mer partitions along physical data location while the lat-
ter partitions according to complete input ranges of holistic
queries. Consider the last two Chunking & Grouping tests of
which one of them uses Holistic-aware partitioning (see Ta-
ble 1). Given that our experimental setup is never limited
by HDFS reads and these two tests are CPU-bound dur-
ing most of their runtime, sacrificing local reads (8.5% lower
local read fraction) in favor of increasing combiner e�cacy
(62% less temporary storage writes) results in one minute
shorter runtime (4% speedup).

As can be seen in Table 1, the Chunking & Grouping
partitioning strategy dramatically improves the read local-
ity for map processes, with experiments going from 9% to
80% local reads. The Physical-to-Logical method achieves
even better data locality, achieving close to 90% local reads.
Recall that all our tests use the default Hadoop scheduler,
which will give tasks to non-local nodes rather than let them
sit idle, so 100% local reads is infeasible.

Reducing Unnecessary Reads. The NoScan optimiza-
tion reduces the total amount of data read, based on the
query being executed (see Section 4.3). In our tests, we
had 80% selectivity and the results show that 80% of the
data was being read (105 GB vs 132 GB) when NoScan was



Test Name Local Temp Reduce Run
Read Data Output Time
% (GB) (MB) (min)

Baseline +NoScan +Comb
Holistic 9.5 107 0.1 27
Regrid 3 569 7,735 63

ChkGroup +NoScan +Comb
Holistic 79 188 0.1 26
Regrid 84 498 7,735 55

PhysToLog +NoScan +Comb
Holistic 88 196 0.1 27
Regrid 93 498 7,735 56

Serial Program
Regrid 100 NA 7,735 3,130

Table 2: Impact of Data Volumes on Runtime For
comparable queries, runtime is dictated by the volume of
data generated. The serial regrid program ran on a single
node and accessed the data from local storage.

Test Name Local Initial Temp Run Time
Read Read Data Time �
% (GB) (GB) (min) %

All tests use a Combiner
Baseline 3 132 569 66 2
Baseline +NoScan 3 106 569 63 2
ChkGroup +NoScan 84 106 498 55 3
PhysToLog +NoScan 93 106 498 56 3

Table 3: Runtimes for Query 2All experiments produced
7.7 GB of reducer output. Values are averages over ten runs.

turned on. The impact on run time can be seen in Table
1: Baseline + NoScan ran 17 minutes faster than Baseline
without the combiner and a minute faster with it.

Non-Holistic Queries. Query 2 was executed with all
the combinations from Table 1 that include a combiner.
The results can be seen in Table 3. (HaPart query results
were omitted as that optimization makes little sense for non-
holistic functions).

Comparing the results from both queries, the interplay
between the di↵erent salient metrics and their e↵ects on
runtime become evident. Table 2 shows select experiments
from both queries as well as an execution of a single-threaded
program that completes Query 2 serially by reading data
locally. As the amount of intermediate data written (Temp
Data) and reduce output increases, so does the observed
runtime. This is expected, as increases in both translate
into more IO and more data that must be processed in the
combine and reduce functions.

7. RELATED WORK
Integrating MapReduce systems with scientific data is not

a novel idea [19, 20, 5, 9]. In [19] the Kepler+Hadoop
project integrates MapReduce processing with the Kepler
scientific workflow platform, but the issue of accessing data
in scientific formats still remains. In [20] the authors enable
NetCDF processing via Hadoop but first require the data be
converted into text. This is undesirable as it requires (po-
tentially) significant IO and adds data management issues
while also sacrificing the portability of scientific file formats.

There has been work towards extending the NetCDF Op-

erator library to support parallel processing of NetCDF files
to reduce data movement [18]. This work analyzes existing
NCO scripts and performs automatic parallelization. How-
ever, users must still use a scripted, procedural approach
to expressing their queries. This approach is format-specific
and it doesn’t deal with fault-tolerance.

There is existing work in general purpose, array-based
query languages [10, 8, 15, 17], but all require data be
stored in their respective internal formats. In fact, in [8]
the language is prototyped on top of the NetCDF data access
library. However, their implementation does not attempt to
execute queries in parallel.

HadoopDB [1], SciDB [2] HadoopToSql [7] and HBase [6]
are similar to SciHadoop in that they enable the execution
of high-level queries on top of distributed storage and parti-
tion the query according to where data is locally accessible.
However, they all require that the data be ingested into their
underlying stores and do not operate over data in-situ, which
is one of our primary goals. They also require (potential)
data conversions and egressing data is non-trivial.

The Apache Hama Project [13] can be used for e�cient
matrix operations. SciHadoop is a more general system, but
it may benefit from specific optimizations present in Hama.

8. CONCLUSION AND FUTURE WORK
A system for in-situ query execution over scientific data

using Hadoop MapReduce has been designed, implemented
and evaluated. Holistic functions that are not typically
amenable to e�cient MapReduce style processing were con-
sidered in the context of this system, and a combiner that
allowed for opportunistic application of said functions im-
plemented. Among our findings is the discovery that it is
possible, and beneficial, to trade map process read locality
for enabling more e�cient application of the holistic com-
biner. In future work, we plan on improving IO e�ciency
of data-intensive processing for scientific data. Specifically,
creating a common caching layer shared between map pro-
cesses to reduce duplicate reads and memory pressure cur-
rently caused by isolated library-based caches. We also in-
tend to expand support to other file formats such as HDF5.
This may be challenging because the metadata needed for
logical/physical conversion can be spread throughout the file
in contrast to the NetCDF header that contains all neces-
sary metadata. Also, several performance improvements are
planned to reduce storage and computational costs of rout-
ing data through the system, thereby reducing runtimes.
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