
National Aeronautics and Space Administration

www.nasa.gov

Introduction to  
Parallel Computing"

Piyush Mehrotra!
NAS Division!

NASA Ames Research Center!
piyush.mehrotra@nasa.gov!

!
2012 Summer Short Course for !

Earth System Modeling and Supercomputing !
1

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Agenda"

• Parallel Computing!
• Parallel Hardware !
• Parallel Programming!
• Performance Measures!

2

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Why Parallel Computing?"

• Reduce overall runtime!
•  Increase fidelity!
• Handle larger data!
• Support fault tolerance!
• Because it is there!
-  in nature!
-  in systems!

3

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Parallelism: Basic Concepts"

A = Σ a(i), i = 1..n

4

a(1) + a(2) + a(3)!

a(1) a(2) a(3) … a(n)!

a(1) + a(2)!

A!

a(1) a(2) a(3) … a(n)!

A!

Serial:
•  Single processing unit
•  (n -1) steps

Parallel:
•  (n/2) processing units
•  log2n steps

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Von Neumann Model"

Modifications to Von Neumann Model!

5

Arithmetic Logical Unit (ALU)

Registers

Control Unit

Registers

Central Processing Unit (CPU)

Bus

Main Memory

Instruction Cache
L1 Cache

L2 Cache

L3 Cache

F1 F2 Fn

Low level issues generally handled by the compiler though programmers can
structure codes to aid the compiler and the runtime system!
!

•  Multiple functional units – Instruction Level Parallelism!
-  Pipelining – sub-operations performed simultaneously on a data stream!
-  Multiple Issue – multiple operations executed simultaneously!

•  Cache (data and instruction) !
-  Small amounts of low latency memory (at multiple levels)!
-  Reduces memory bottleneck !

!

I/O controller

•  Basis for modern
computer architecture!

•  Introduced the
concept of stored
program!

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Agenda"

•  Parallel Computing!

• Parallel Hardware !
- Taxonomy!
- SIMD!
- MIMD!

•  Shared memory!
•  Distributed memory!

-  Interconnect!
- Hybrid!
- NASAʼs systems!

•  Parallel Programming!
•  Performance Measures!

6

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Flynnʼs Parallel Architecture Taxonomy  
(1966)"

• SISD: single instruction single data – traditional
serial processing!

• MISD: rare – multiple instructions on a single data
item- e.g., for fault tolerance!

• SIMD: single instruction on multiple data!
- Some old architectures with a resurgence in accelerators!
- Vector processors - pipelining!

• MIMD: multiple instructions multiple data - almost all
parallel computers !

7

S
M DI S

M

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

SIMD"

•  Several machines built in the early 90ʼs – Connection Machine
from Thinking Machines!

•  Programming approach, also called data parallelism: apply
the same instruction to many elements, e.g., array processing!

•  Difficult to use for complex algorithms (think conditionals) !

8

Many small processing cores executing instructions in
lock step over multiple data streams!

8

Program Control Unit

Instruction

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Vector Processors"

• Specialized form of SIMD !
• Akin to factory assembly line –

functional units in a vector
processor performing different
functions on a data stream!

• Once the pipeline is full – a
result every time unit!

• Difficult to use with irregular
structures and conditionals!

9

Compare
Exponents

Shift One
Operand

Add

Normalize

for i = 1, n!
 a(i)=b(i)+c(i)

b(4), c(4)

b(3), c(3)

a(2) = b(2)+c(2)

a(1) = b(1)+c(1)

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

MIMD"

•  The most general form of parallel architecture: 
!Multiple Instructions Multiple Data!

• Multiple processing units executing independent
instruction streams on independent data streams!

• MIMD Architecture types!
- Shared memory!
- Distributed memory!
- Hybrid!

10

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Shared Memory Systems"

• Multiple processing units accessing global shared
memory using a single address space!

11

•  Shared memory systems are easier to program !
-  User responsible for synchronization of processors for correct data

access and modification!
•  Scaling to large number of processors can be an issue!

Processors

Network

Shared Memory

P P P P

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Shared Memory Access"

Two types of shared memory systems based on access type:!

12

UMA: Uniform Memory Access – all
memory is “equidistant” from all processors!
•  Memory access can become a bottleneck!

Network

Shared Memory

P P P P

Shared Memory Network

P P P P

M M M M

NUMA: Non-Uniform Memory Access –
local memory versus distant memory !
•  Requires more complex interconnect hardware to

support global shared memory!
•  Also called Distributed shared memory systems!

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Distributed Memory Systems"

• Multiple processing units with independent local
memory and address spaces!

13

•  Systems are easier to scale !
•  No implicit sharing of data – user is responsible for explicit

communication of data amongst processors!

Processors + Memory

Network

P P P P

M M M M

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Interconnect networks"

•  Topologies:!

14

14

•  Network characteristics:!
-  Latency (l): time it takes for a link to transmit a unit of data (sec)!
-  Bandwidth (b): rate at which data is transmitted (bytes/sec)!
-  Message transmission time for n bytes = l + n/b!
-  Bisection (band)width: a measure of network quality – number of links connecting two

halves of a network!

Bus Ring
Mesh Toroidal Mesh

Hypercube
1d 2d 3d 4d

Fully Connected

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

C

L2

C

L2

C

L2

L3

Memory
Controller

Network
Interface

Socket
Interconnect

Local
Memory

C

L2

C

L2

C

L2

L3

Memory
Controller

Network
Interface

Local
Memory

Typical supercomputer: hybrid"

15

Multiple vector- processing
cores in a socket

UMA shared memory for
cores within a socket

Network

NUMA shared
memory across the
sockets in a node Multiple sockets in a node

Distributed memory cluster of
multi-socket nodes

Socket
Interconnect

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Accelerators"

•  Co-processor hardware to accelerate
computation!
-  NVIDIA GPGPUs (General Purpose

Graphical Processing Units)!
-  Intel MIC (Many-Integrated Cores)!

•  Generally comprised of many smaller
cores with local memory executing in
SIMD or MIMD mode!

16

•  Advantage: Capable of providing significant computational capability at a
lower power draw!

•  Disadvantage: Programmability!
-  Partition the code between the CPU and the accelerator!
-  Optimize the code for execution on the accelerator!
-  Manage the data movement between the CPU and accelerator memories!

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Network

C

L2

C

L2

C

L2

L3

Memory
Controller

Network
Interface

Socket
Interconnect

Local
Memory

C

L2

C

L2

C

L2

L3

Memory
Controller

Network
Interface

Socket
Interconnect

Typical supercomputer: with accelerators"

17

Local
Memory

Nodes augmented
with accelerator chips

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Pleiades"
•  NASAʼs premier supercomputer!
-  Peak performance: 1.75 PetaFlops!
-  #11 in the TOP500 list!

•  SGI Altix ICE: distributed memory cluster!
-  Four generations of Intel Xeon processor 

 dual-socket nodes:!
  Harpertown (4 cores/socket): 4096 nodes!
  Nehalem (4 cores/socket): 1280 nodes!
  Westmere (6 cores/socket): 4608 nodes!
  Sandy Bridge (8 cores/socket): 1728 nodes!
•  Total cores: 126,720!
•  Total memory: 233 TB!

-  64 Westmere-based nodes enhanced with NVIDIA M2090 GPUs!

•  InfiniBand-based 12d hypercube interconnect!
•  Storage: 10 PB disk; 50 PB archival tape!

!http://www.nas.nasa.gov/hecc/resources/environment.html!
18

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Columbia"

•  Cluster of SGI Altix shared memory “nodes”!
•  SGI ALTIX 4700:!
-  Intel Itanium dual-core processors!
-  SGI NUMAlink technology for shared memory!
-  Four nodes:!

•  1 x 2048 core – 4TB shared memory!
•  2 x 1024 core – 2TB shared memory!
•  1 x 512 core – 1TB shared memory!

-  InfiniBand node interconnect!

19

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Agenda"

•  Parallel Computing!
•  Parallel Hardware!

• Parallel Programming!
- Forms of parallelism!
- Shared Memory Programming: OpenMP!
- Distributed Memory Programming!
- Other approaches!

•  Performance Measures!

20

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Parallel Programming"

• Parallel programming requires specifying:!
- Units of work to be done in parallel!
- Data to be shared and/or communicated!
- Synchronization between the tasks!

•  Two kinds of parallelism!
- Task / Functional Parallelism!
- Data Parallelism!

21

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Task Parallelism"

•  Independent computations performed in parallel!

•  Low level: functional units in a CPU!
• High level: !
- Multiple programs!

•  Coarse pipelines !
- Parameter space sweeps!

22

f(a) g(b)

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Data parallelism"

• Same or similar computations performed on
independent parts of the data!

• SIMD or vector systems:!
- Mostly handled automatically by compilers via loop

parallelization!
!for (i = 1: n) x(i) = y(i) + z(i)!

• MIMD systems: the most popular approach is called
SPMD (Single Program Multiple Data)!
- Single program executed by independent processes on

multiple data sets synchronizing only when necessary!

23

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Approaches to Parallel Programming"

• Shared memory programming: assumes a global
address space – global data visible to all processes!
-  Issue: synchronizing updates of shared data!
- OpenMP !

• Distributed memory programming: assumes
distributed address spaces – each process sees only
its local data !
-  Issue: communication of data to other processes!
- MPI (Message Passing Interface)!

24

sum = sum + a(i) , i = 1, n!

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

OpenMP"

•  OpenMP: a standard API to support shared memory parallel rogramming!
-  Managed by the OpenMP Architecture Review Board, OpenMP v1.0 was

released in 1997, latest v3.1 released July 2011 !

•  A directive-based approach to control: !
-  Parallel threads: Master thread creates parallel worker threads and the

work is divided amongst the workers!
-  Data sharing: assumed a global address space!

•  Major components:!
-  Parallel control structure!
-  Work sharing!
-  Data sharing and control!
-  Synchronization!
-  Other runtime functions!

25

Master
Thread

Worker
Thread 1

Worker
Thread 2

Master
Thread

Worker
Thread 1

Worker
Thread 4

Master
Thread

Worker
Thread 3

Master
Thread

Worker
Thread 1

Worker
Thread 2

Worker
Thread 3

Worker
Thread 2

Parallel Task 1

Parallel Task 2
Parallel Task 3

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

OpenMP (contd.)"

• Parallel control structure: to specify invocation of the
worker threads!
- Number of threads specified external to the program!

• Work sharing!
-  for (or do): used to split up loop iterations among the threads!
- sections: assigning consecutive but independent code

blocks to different threads (can be used to specify task
parallelism)!

- single: specifying a code block executed by only one thread!
- master: code block executed by the master thread only!

26

#pragma omp parallel for
for (i=0; i<n; i++) a[i] = b[i] + c[i];!

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

OpenMP (contd.)"

• Data sharing: by default variables are visible to all
threads. Constructs to control visibility include:!
- shared: variable is shared by all threads simultaneously!
- private: variable is private to each thread – each thread has

a private copy!

!!
• Synchronization!
- critical: code block executed by only one thread at a time

e.g., allows multiple threads to update shared data!
- barrier: wait until all of threads of a team have reached this

point before continuing. Work sharing constructs have
implicit barriers at the end.!

27

#pragma omp parallel for private(W)

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

OpenMP code: sum of squares"

28

...
long sum = 0, loc_sum;
int thread_id;
#pragma omp parallel private(thread_id, loc_sum)
{
loc_sum = 0;
thread_id = omp_get_thread_num();
#pragma omp for
 for(i = 0; i < N; i++) loc_sum = loc_sum + i * i;

printf("\n Thread %i: %li\n", thread_id, loc_sum);

#pragma omp critical
sum = sum + loc_sum;
}
printf("\n Sum of Squares = %li", sum);

Forks off the threads and starts the
work-sharing construct; declares
thread_id and loc_sum private

Each thread
retrieves its own id`

Each thread
computes and prints
its id and local sum

Threads cooperate to update
global variable one by one

Master thread
prints result

Parallel for splits
loop range across
the threads.

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Other Shared Memory Approaches ""

•  Thread libraries!
- Posix Threads !
-  Intel Thread Building Blocks!

• Global Arrays!
• Cilk!
• …!

29

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

MPI"

• MPI (Message Passing Interface): a standard
message passing library specification to support
process communication on a variety of systems!
- MPI v1.0 (June 1994), latest MPI v2.2 (Sept 2009)!

• MPI assumes a distributed address space, i.e., each
process (rank) sees only local variables with explicit
constructs to communicate data to other processes!

30

send

recv

broadcast

recv
send
recv
send

recv

send

recv

recv
 T1 T2 T3

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

MPI Features"

• MPI-1!
- General: Init/finalize, Communication group size/rank!
- Point to Point communication:!

•  send, recv with multiple modes (blocking/non blocking, …)!
- Collective communication:!

•  Barrier for synchronization!
•  Broadcast!
•  Gather/scatter!
•  Reduction operations (built-in and user defined)!

• MPI-2!
- One-sided communication: Put, Get, Accumulate!
- Extensions to collectives!
- Dynamic process management!

31

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

MPI code: sum of squares"

32

…
int num_tasks, my_rank, rc;
int sum, loc_sum, N = …;

MPI_Init();
MPI_Comm_size(MPI_COMM_WORLD, &num_tasks);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

 for(i = 0; i < N; i += numtasks) loc_sum = loc_sum + i * i;
 printf("\n Thread %i: %li\n", my_rank, loc_sum);

 if (my_rank != 0)
 rc = MPI_Send(loc_sum, 1, MPI_INTEGER, 0, my_rank, …);
 else {
 sum = loc_sum
 for (i = 1; i < num_tasks; i++) {
 rc = MPI_Recv(&loc_sum, 1, MPI_INTEGER, i, i, …);
 sum = sum + loc_sum
 }

 printf("\n Sum %i: %li\n", my_rank, loc_sum);
 }

MPI_Finalize();

Each process
retrieves its rank`

Each process computes
and prints its rank and
local sum

Rank 0 receives
data from all other
ranks, computes
and prints result

Each process sends
local sum to rank 0

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

OpenMP vs MPI"
•  OpenMP – directive based !
-  needs compiler (and runtime) support!
-  directives can be ignored for serial compilation!

•  MPI – library based, requires only runtime support!
•  Both can be used to program both task and data parallelism!
•  OpenMP allows incremental parallelization while the whole code needs to

be parallelized when using MPI !
•  OpenMP can only be used on systems with a global address space

(through hardware or software)!
•  MPI can be used on both shared and distributed memory systems!
•  Current supercomputers are hybrid: distributed memory cluster of shared

memory nodes. Approaches to programming such systems:!
-  MPI: processes run on all cores within the node!
-  Hybrid: !

•  MPI at the outer level to specify processes across nodes!
•  OpenMP within each MPI rank to exploit shared memory in a node!

33

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Other approaches"

•  Libraries!
•  Programming Environments, e.g., Matlab!
•  GPU programming: CUDA, OpenCL!
•  OpenACC: directives for accelerators!
•  Domain specific languages and frameworks!
•  PGAS: Partitioned Global Address Space Languages!
•  Automatic parallelization tools!
!

!

Research in parallel programming languages is focused on !
-  High level abstractions so that users can program as close to their

domain as possible, along with!
-  Software (compilers, libraries, runtime systems) to automatically and

effectively exploit a variety of underlying architectures!

34

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Agenda"

•  Parallel Computing!
•  Parallel Hardware!
•  Parallel Programming!

• Performance Measures!
- Speedup & Efficiency!
- Amdahlʼs Law!
- Scalability!

35

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Performance Measures"

• So how well does our parallel program perform?!
• Some sources of inefficiencies!
- Overhead due to introducing parallelism: !

•  setting up processes, synchronizing, communicating,
load imbalance!

- Serial sections 
!

• Speedup (S) is one measure:!
!S = T(serial) / T(parallel)!

• On p processors, perfect speedup is ! 
!S = p  

Generally S < p due to overheads etc. !
36

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Sample Speedup Curves"

37

!"

#"

$!"

$#"

%!"

%#"

&!"

$" #" $!" $#" %!" %#"

'()*+" ,-))(.-"$" ,-))(.-"%" ,-))(.-"&"

Number of processes

S
pe

ed
up

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Efficiency"

• Efficiency: E = S / p = T(serial) / p * T(parallel)!

38

!"

!#$"

!#%"

!#&"

!#'"

!#("

!#)"

!#*"

!#+"

!#,"

$"

$" (" $!" $(" %!" %("

-./01" 2345/647"$" 2345/647"%" 2345/647"&"

Number of processes

E
ffi

ci
en

cy

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Amdahlʼs Law"

• Amdahlʼs Law: speedup obtainable by a parallel
program is limited by the serial portions of the code!

•  Let r be the parallelizable fraction of the program!
•  If we get perfect parallel speedup on p processors:!

! 
!S = T(serial) / (r*T(serial)/p + (1-r)* T(serial))!
! = 1 / (r/p + (1-r))!
! ≤ 1 / (1-r) ! ! !for large values of p!

• So if r = 0.9, S ≤ 10 and so forth!
• Caveat: does not take into account problem size!
-  Increasing the problem size generally increases r!

39

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Scalability"

• How well does a parallel program handle increasing
problem size?!

• A program is considered weakly scalable if as the
problem size increases, we can achieve constant
efficiency by increasing the number of processes at
the same rate!

• Strong scaling: efficiency remains constant as we
increase number of processes with a fixed problem
size!

40

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

Other Issues"

• Parallel I/O!
• Debugging!
•  Fault tolerance/Check pointing!
• Performance analysis and optimization!

41

NASA High End Computing Capability! 2012 Summer Short Course for Earth System Modeling and Supercomputing

References"

• Web – a rich resource!
- Wikipedia!

• Books!
- An Introduction to Parallel Programming, by Peter Pacheco!
-  Introduction to Parallel Computing, by Ananth Grama,

George Karypis, Vipin Kumar and Anshul Gupta!
- Scientific Computing by Michael T. Heath!

42

