

CAPS OpenACC Compiler

HMPP Workbench 3.2

Headquarters – France

Immeuble CAP Nord

4A Allée Marie Berhaut

35000 Rennes

France

Tel.: +33 (0)2 22 51 16 00

Fax: +33 (0)2 23 20 16 43

info@caps-entreprise.com

N° d’agrément formation :

53 35 08397 35

CAPS – USA

4701 Patrick Drive Bldg 12

Santa Clara

CA 95054

Tel.: +1 408 550 2887 x70

usa@caps-entreprise.com

CAPS – CHINA

Suite E2, 30/F

JuneYao International Plaza

789, Zhaojiabang Road,

Shanghai 200032

Tel.: +86 21 3363 0057

Fax: +86 21 3363 0067

apac@caps-entreprise.com

Visit our website: http://www.caps-entreprise.com

IDDN.FR.001.490007.000.S.P.2008.000.10600

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization.

mailto:info@caps-entreprise.com
mailto:usa@caps-entreprise.com
mailto:apac@caps-entreprise.com
http://www.caps-entreprise.com/

 CAPS OpenACC Compiler

3/29

SUMMARY

1. Introduction 5

1.1. Revisions history .. 5

1.2. Introduction .. 6

1.3. What is HMPP Workbench? What is the CAPS OpenACC Compiler? ... 6

1.4. Execution Model .. 8

1.5. Memory Model ... 8

2. OpenACC Directives 9

2.1. kernels ... 9

2.1.1. Avoiding some needless transfers: using copyout and copyin clauses 11

2.2. data .. 11

2.3. parallel ... 12

3. Implementation-defined behaviors 14

3.1. Internal Control Variables .. 14

3.2. Reduction clause ... 14

3.3. num_gangs clause... 14

3.4. num_workers clause .. 14

3.5. vector_length clause .. 14

3.6. collapse clause .. 14

3.7. worker clause ... 14

3.8. vector clause .. 14

3.9. Declare directive .. 14

3.10. acc_set_device_type ... 15

3.11. acc_set_device_num ... 15

3.12. acc_init ... 15

3.13. Environment Variables... 15

3.14. Scalar-integer-expression reference in OpenACC clause ... 15

3.15. OpenACC runtime routines ... 15

4. OpenACC Compiler Installation 16

4.1. CAPS OpenACC compiler Installation ... 16

4.2. CAPS OpenACC Compiler Environment Setup .. 16

4.3. CAPS OpenACC Compiler License ... 17

 CAPS OpenACC Compiler

4/29

5. Compiling HMPP Applications 19

5.1. Overview .. 19

5.2. Common Command Line Parameters ... 20

5.2.1. General Options 21

5.2.2. Host Compiler Options 21

5.2.3. Specification of the target language 21

5.2.4. Report option 22

5.2.5. HMPP Codelet Generation Options 22

5.2.6. HMPP codelet compilation: proprietary compiler options 22

5.2.7. HMPP miscellaneous options 22

5.2.8. __HMPP predefined macro 23

5.3. Environment Variables... 23

5.3.1. HMPP Environment Variables 23

5.3.2. OpenACC Environment Variables 23

5.3.3. Hardware Vendor Environment Variables 23

6. Running HMPP Applications 24

6.1. Launching the Application ... 24

6.2. Environment Variables... 24

6.2.1. Controlling Logging 24

6.2.2. HMPPRT_NO_FALLBACK Environment Variable 25

6.2.3. HMPPRT_PATH Environment variable 25

6.3. Running OpenACC Applications ... 26

7. Supported Platforms and Compilers 27

7.1. Hardware Accelerators .. 27

7.1.1. HMPP CUDA generator 27

7.2. Supported Operating Systems .. 27

7.3. Compilers ... 27

8. Annexes 28

Annex 1. Glossary ... 28

Annex 2. Bibliography ... 29

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 5/29

1. Introduction

1.1. Revisions history

Version Date Writer Modified pages Revision object

V3.1.0 05/22/2012 CAPS entreprise All Initial version

V3.1.1 04/06/2012 CAPS entreprise All Documentation update

V3.2.0 26/06/2012 CAPS entreprise

§4.2

§5.2.3

Environment setup for OpenCL

program execution

Addition of the –openacc target

clause to order the code generation

target

V3.2.1 17/07/2012 CAPS entreprise
 Typography corrections

V3.2.3 26/09/2012 CAPS entreprise
§6.2 Document the environement variable

ACC_DEVICE_TYPE

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 6/29

1.2. Introduction

In an effort to make it easier for programmers to take advantage of hardware computing accelerators,

NVIDIA, Cray Inc., the Portland Group (PGI), and CAPS enterprise have announced during SuperComputing

2011 a new parallel-programming standard, known as OpenACC™.

OpenACC allows parallel programmers to provide simple hints, known as “directives,” to the compiler,

identifying which areas of code to accelerate, without requiring programmers to modify or adapt the

underlying code itself. By exposing parallel nature of the code to the compiler, directives allow to finely drive

how the compiler will map the computation onto the accelerator.

It should be noted that thanks to the HMPP technology, OpenACC annotated applications can either be

generated for NVIDIA or AMD GPU according that the generation language is CUDA (default mode) or

OpenCL (see chapter 5.2.3, Specification of the target language for further details about the

selection of the target language).

This document comes in addition of the OpenACC Application Programming Interface Version

1.0 ([R1]) and it specifies details of the implementation of this standard in HMPP 3.2.x.

The remainder of this document is organized as follow:

 Chapter 2 provides the user with some information regarding the main OpenACC directives,

 Chapter 3 details the implementation defined behavior of the CAPS OpenACC compiler,

 Chapter 4 covers the installation of the CAPS OpenACC Compiler,

 Chapter 5 is dedicated to the compilation flow process,

 Chapter 6 covers HMPP program execution,

 Chapter 7 described the supported platforms and compilers.

A glossary can be found at the end of the document.

1.3. What is HMPP Workbench? What is the CAPS OpenACC
Compiler?

In addition of the OpenACC keyword, you will find in this document many references to HMPP, HMPP

Workbench or OpenHMPP. HMPP Workbench is the flagship product of CAPS Entreprise and has been

available long before CAPS entreprise joined the OpenACC initiative. HMPP Workbench supports the

OpenHMPP as well as the OpenACC directive set.

OpenHMPP is a very useful platform to explore topics not covered by OpenACC for many-core support such

as data-flow extension as well as topics such as tracing interface, auto-tuning APIs or GPU-accelerated

library integration. All these topics are considered by CAPS entreprise as crucial for many-core application

deployment and software development tools.

While HMPP Workbench compiler supports both OpenACC and OpenHMPP directive sets, the CAPS

OpenACC Compiler only supports OpenACC directives.

So HMPP Workbench and the CAPS OpenACC compilers share many properties as: common compilation

commands, license server mechanism, runtime information debugging, etc… and that is why you will find in

this document many references to both. To clarify, in this document, the following conventions are used:

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 7/29

 “OpenACC directives” designates OpenACC directives as defined in [R1];

 “OpenHMPP directives” designates OpenHMPP directives as defined in [R2];

 The “CAPS OpenACC compiler” designates CAPS compiler supporting only OpenACC directives;

 The “HMPP Workbench” designates the CAPS suite of tools supporting both OpenACC and

OpenHMPP directives;

 “HMPP applications” designates applications containing either OpenACC directives, OpenHMPP

directives or both;

 “OpenACC application” designates applications containing only OpenACC directives;

 “OpenHMPP application” designates applications containing only OpenHMPP directives;

 “HMPP applications” designates applications containing OpenACC directives or OpenHMPP

directives;

 “HMPP” may be used as an abbreviation to reference the HMPP Workbench;

 “hmpp” may be used in command line to invoke CAPS compiler. Same keyword is used to compile

either OpenACC applications either OpenHMPP applications.

For readers which would like to know more about HMPP you will be able to consult the following

documentation:

 HMPP Basics ([R1]). This document introduces the main HMPP concepts.

 HMPP Directives, Reference Manual ([R3]). This manual introduces the main HMPP

concepts and describes the HMPP directives. This document is the main document for people who

want to discover HMPP.

 HMPP Linux Manual ([R4]). This manual describes how to compile and run your application on

Linux platforms. It also introduces the compilers and Operating Systems supported;

 HMPP License Installation Guide ([R5]). This manual presents the procedure to set the

HMPP license on your system.

 HMPP Alternative directives Introduction ([R6]). This document describes how to

take advantage of existing GPU-accelerated libraries while minimizing the impact of their integration

into the source code.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 8/29

1.4. Execution Model

For the most part, an OpenACC program is a user application which executes on the host and where

compute-intensive regions are offloaded to the accelerator device under control of the host (see [R1],

chapter Execution Model for further details).

The device executes parallel code, which are code blocks containing work-sharing loops.

In OpenACC regions, the host stays responsible for the accounting required to execute code on the HWA,

that is:

 Memory allocation on the HWA,

 Transferring data between the host and the HWA (and the opposite to get the results of the

computation),

 Launching HWA code,

 De-allocating memory.

The parallel execution within the accelerator is divided into three levels of parallelism:

 Coarse grain called “gang”;

 Fine grain called “workers”, a worker is equivalent to a thread;

 Vectors called “vector”.

The gang and workers organization is illustrated below:

1.5. Memory Model

Contrary to e.g. OpenMP programs, which has a shared memory model, OpenACC has a distributed

programing model. That is, most
1
 HWA’s memory need explicit copies in order to have up-to-date data

because HWA memory is not mapped into the host’s address space.

1
 Some HWAs, such as accelerated processing units (APU) share the same memory as the host. Others

allow direct access to some of the host’s memory (e.g. Unified Virtual Addressing). In those cases, no explicit

copy is required.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 9/29

2. OpenACC Directives

All OpenACC directives are extensively documented in the specification document [R1]. The present

document, “OpenACC support in HMPP” will not go into the same kind of details as the specification, but

rather focus on the most important directives, and their behavior in HMPP if necessary.

OpenACC offers two different ways to offload computation on HWA:

 Kernel-based: allows the generation of work-sharing kernels from the loops enclosed in a kernels

region (work sharing is the default),

 Parallel-based: will lead to execution in parallel, on all of a HWA executor, of a section of code until a

work sharing section is entered. When a work sharing section is entered the work is shared between

all executors (work sharing needs to be made explicit).

2.1. kernels

This directive allows specifying a region of the program that is to be compiled into a sequence of kernels for

execution on HWA.

Syntax

In C, the syntax of the OpenACC kernels directive is

#pragma acc kernels [clause [[,] clause]...] new-line
 structured block

And in Fortran, the syntax is

!$acc kernels [clause [[,] clause]...]
 structured block
!$acc end kernels

Where clause is one of the following (please refer to [R1] for further explanations):

 if(condition)

 async [(scalar-integer-expression)]

 copy(list)

 copyin(list)

 copyout(list)

 create(list)

 present(list)

 present_or_copy(list)

 present_or_copyin(list)

 present_or_copyout(list)

 present_or_create(list)

 deviceptr(list)

An example of the usage of the directive kernels is in Listing 1 – An example of the OpenACC kernel

directive on page 10.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 10/29

#pragma acc kernels, copy(call_result[0:nb_opt], put_result[0:nb_opt], &
#pragma acc & option_strike[0:nb_opt], stock_price[0:nb_opt], option_years[0:nb_opt])
{
 int opt;
 for(opt = 0; opt < nb_opt; opt++) {
 float sqrtT, expRT, K, d1, d2, CNDD1, CNDD2, Riskfree=RISKFREE, Volatility=VOLATILITY;
 sqrtT = sqrtf(option_years[opt]);
 d1 = (logf(stock_price[opt] / option_strike[opt]) + (Riskfree +
 0.5f*Volatility*Volatility)*option_years[opt]) / (Volatility*sqrtT);
 d2 = d1 - Volatility * sqrtT;

 K = 1.0f / (1.0f + 0.2316419f * fabsf(d1));
 CNDD1 = RSQRT2PI * expf(- 0.5f*d1*d1) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));
 K = 1.0f / (1.0f + 0.2316419f * fabsf(d2));
 CNDD2 = RSQRT2PI * expf(- 0.5f*d2*d2) * (K * (A1 + K * (A2 + K * (A3 + K * (A4 + K * A5)))));

 expRT = expf(- Riskfree * option_years[opt]);
 call_result[opt] = stock_price[opt] * CNDD1 - option_strike[opt] * expRT * CNDD2;
 put_result[opt] = option_strike[opt]*expRT*(1.0f - CNDD2) - stock_price[opt]*(1.0f - CNDD1);
 }
}

Listing 1 – An example of the OpenACC kernel directive

As you can see, the kernels directive is not used “plain”, as the copy clause is used as well.

They are required to make the size of all arrays that are used in the kernels section explicit. In addition,

they tell which arrays need to be copied to and/or from the HWA.

When the above code is compiled, the compilation messages would be similar to:

hmpp: [Info] Generated codelet filename is acc_region_cuda.hmf.cu".
hmppcg: [Message DPL3000] acc_region:17: Loop 'opt' was gridified (1D)

The message Loop 'opt' was gridified (1D) is very important: it means that HMPP was able to

analyze the loop with loop counter opt and concluded that the loop count be parallelized on GPU, that is,

gridified.

A counter-example would be compilation message such as:

hmppcg: [...] Loop 'opt' not gridified: Inter-iterations dependencies found

This message either means that HMPP found loop inter-iteration dependences that prevent automatic

parallelization, or could not analyze the loop and marked it as sequential by default.

If you get this message, you should first:

 Check for scalar inter-iteration dependences. See if you could get rid of these dependences by some

variable privatization, as you would do in an OpenMP program. For example, in Listing 1, if sqrtT

was instead defined outside of the acc region, this would lead to write-after-write hazards which

would prevent a safe parallel execution.

 Check for reductions. These can be dealt with the reduction clause of the parallel directive.

 Check for array inter-iteration dependences. Some array subscripts are too difficult to analyze by

HMPP but aren’t by a programmer’s trained eye.

If you have done all what is needed to make the loop parallelizable, you can then use independent clause

of the loop directive to force the gridification of the loop. Example:

#pragma loop independent
for (i=0; i<n; i++) {
 /* loop statements */
}

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 11/29

2.1.1. Avoiding some needless transfers: using copyout and copyin clauses

In Listing 1, we have put all arrays of the acc region in a copy clause. This means that their content is going

to be uploaded and downloaded to/from the HWA before and after the acc region is executed. It should be

noted that end-users need to be aware of the memory size available on the accelerator as well as the

memory bandwidth in order to effectively accelerate a region of code.

The approach showed in Listing 1 is not optimal, because some arrays are only read, some are only written

to. We can do better by using the copyin and copyout clauses, as in Listing 2

#pragma acc kernels, copyout(call_result[0:nb_opt], put_result[0:nb_opt]), &
#pragma acc & copyin(option_strike[0:nb_opt], stock_price[0:nb_opt], option_years[0:nb_opt])
{
/* statements */

Listing 2 – A version of Listing 1 where needless transfers are avoided

2.2. data

While the kernels pragma marks a region of code that should be executed on the HWA, the data pragma

states which and when variables should be allocated and transferred on the HWA (when the data section is

entered), and when they should be de-allocated, and transferred to the HWA (when the section is exited).

Quite logically, kernels pragma should be in a data pragma section, not the other way around.

In C, the syntax of the OpenACC kernels directive is

#pragma acc data [clause [[,] clause]...] new-line
{
 ...
 #pragma acc kernels [clause [[,] clause]...] new-line
 structured block
 ...
}

and in Fortran, the syntax is

!$acc data [clause [[,] clause]...]
 ...
 !$acc kernels [clause [[,] clause]...]
 structured block
 !$acc end kernels
 ...
!$acc end data

where clause is one of the following (see [R1] for further explanations):

 if(condition)

 copy(list)

 copyin(list)

 copyout(list)

 create(list)

 present(list)

 present_or_copy(list)

 present_or_copyin(list)

 present_or_copyout(list)

 present_or_create(list)

 deviceptr(list)

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 12/29

The main purpose of a data section is to avoid multiple re-allocations of GPU memory and transfers between

the host and the GPU, which are slow.

Example:

// Allocation of data on GPU
#pragma acc data, present_or_copyout(call_result[0:nb_opt], put_result[0:nb_opt]), &
#pragma acc & present_or_copyin(option_strike[0:nb_opt], stock_price[0:nb_opt], &
#pragma acc & option_years[0:nb_opt],nb_opt, VOLATILITY,RISKFREE)
for(i=0; i<NB_RUN; i++) {
 double v0, v1;

 // Call of the kernels: the execution is done on the GPU
#pragma acc kernels, present(call_result[0:nb_opt], put_result[0:nb_opt]), &
#pragma acc & present(option_strike[0:nb_opt], stock_price[0:nb_opt], &
#pragma acc & option_years[0:nb_opt],nb_opt, VOLATILITY,RISKFREE)
 {
 int opt;
 float Riskfree=RISKFREE, Volatility=VOLATILITY;
 for(opt = 0; opt < nb_opt; opt++) {
 float sqrtT, expRT, K, d1, d2, CNDD1, CNDD2;

Listing 3 – An example of the OpenACC data directive

In Listing 3, a kernels section is located in a loop, which means that it will be called multiple times. If there

was no data section, all the memory (de)allocations on the HWA, transfers will occur when the section is

entered and exited, which incurs a non-negligible overhead.

Thanks to the data section, and HWA memory is allocated and initialized with the host’s value once before

the loop, and transferred back to the host and freed when the data section ends. Note that in this example,

the kernels section now uses the present clause instead of the copy* clauses, because all allocation

occur where the data section is.

2.3. parallel

This directive is very similar to OpenMP
2
’s parallel directive: that is, when a parallel region is entered, all

“executors” of the program will execute all statements of the program, unless a work-sharing section is

reached (e.g. an omp loop).

In OpenACC terms, this means that when an OpenACC parallel region is entered, gangs of workers are

created
3
 to execute the accelerator parallel region. One worker in each gang begins executing the code of

the parallel section.

When a work-sharing acc loop gang loop is entered, the iterations of that loop will be distributed between

the gangs, and one worker of each gang will be used to perform the computations.

Then, when a work-sharing acc loop worker loop is entered, the iterations of that loop will be distributed

between the workers of each gang, so that all workers will contribute to perform the computations.

2
 The OpenMP Application Program Interface (API) supports multi-platform shared-memory parallel

programming in C/C++ and Fortran on all architectures.

3
 Once gangs and workers are created, their number remains the same throughout the region.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 13/29

In other words, unless there is an acc loop worker loop in an acc parallel region, no acceleration can

be obtained because most of the computing resources of the HWA won’t be utilized.

 !$acc data, copy(C), copyin(A)
 DO k=1, 3
 !! some code executed on CPU

 !! the execution is done on the GPU
 !$acc parallel, private(c11, c12, c13, c21, c22, c23, c31, c32, c33)

 c11 = 2.0
 c21 = 5.0
 c31 = 8.0
 c12 = 3.0
 c22 = 6.0
 c32 = 9.0
 c13 = 4.0
 c23 = 7.0
 c33 = 10.0

 !$acc loop gang
 DO i=2, M-1
 !$acc loop worker
 DO j=2, N-1
 C(j,i) = c11 * A(j-1,i-1) &
 + c12 * A(j-1,i) &
 + c13 * A(j-1,i+1) &
 + c21 * A(j,i-1) &
 + c22 * A(j,i) &
 + c23 * A(j,i+1) &
 + c31 * A(j+1,i-1) &
 + c32 * A(j+1,i) &
 + c33 * A(j+1,i+1)
 END DO
 END DO
 !$acc end parallel

 !! some more code executed on CPU
 END DO ! k
 !$acc end data

Listing 4 – An example of the OpenACC parallel, gang, and worker directives

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 14/29

3. Implementation-defined behaviors

In fair deal of cases, [R1] states that the behavior is implementation defined. This section collects these

cases and mentions also the limitations of the current implementation.

3.1. Internal Control Variables

If the value of acc-device-type-var is not explicitly modified, its value depends on whether or not device

acquisition has occurred. Before acquisition, the device type is none, and will be some kind of HWA once

acquisition has succeeded.

If the value of acc-device-num-var is not explicitly modified, its value depends on whether or not device

acquisition has occurred. Before acquisition, the device number is 1, and will be the logical number of the

device acquired once acquisition has succeeded.

3.2. Reduction clause

In an acc parallel region containing some gang and/or worker acc clauses, if a reduction operation is

present, this one must be specified by using the reduction clause at the acc parallel clause level. This

restriction will be lifter in a future release.

3.3. num_gangs clause

The num_gangs clause takes an immediate constant value in parameter. The default value is 32.

3.4. num_workers clause

The num_workers clause takes an immediate constant value in parameter. The default value is 256.

3.5. vector_length clause

This clause is not taken into account in the current release of HMPP.

3.6. collapse clause

A collapse clause cannot be used on any loop of a loop nest with a gang, worker or vector clause. This

restriction will be lifter in a future release.

3.7. worker clause

A loop with the worker clause that contains a loop containing the gang clause will trigger a loop permutation

to put the gang loop outside of the worker loop.

3.8. vector clause

A loop with the vector clause that contains a loop containing the gang or worker clause will trigger a loop

permutation to put the gang loop outside of the worker loop, and the vector loop in the innermost position.

3.9. Declare directive

Currently, the declare directive cannot be used with global variables (variables defined in FORTRAN

module or in global scope for C language).

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 15/29

3.10. acc_set_device_type

If the device type specified is not available or unsupported, the program will abort.

If the routine is called more than once without an intervening acc_shutdown call, with a different value for the

device type argument, the behavior will depend on whether or not device acquisition has already occurred or

not:

 If device acquisition has not occurred, the device type will be set to the new value,

 If device acquisition has already occurred, the new device type is ignored.

3.11. acc_set_device_num

If the value of devicenum is zero, the runtime will revert to its default behavior, which means that the runtime

will try to acquire any HWA available and capable of executing the HWA code.

If the value of devicenum is greater than the value returned by acc_get_num_devices for that device type,

the value is ignored and a warning is issued.

3.12. acc_init

If the device type specified is not available, the program will abort.

If this routine is called more than once without an intervening acc_shutdown call, with a different value for

the device type argument, the behavior will depend on whether or not device acquisition has already

occurred or not:

 If device acquisition has not occurred, the device type will be set to the new value,

 If device acquisition has already occurred, the new device type is ignored.

3.13. Environment Variables

If the values of the environment variables change after the program has started, even if the program itself

modifies the values, the behavior of the program it not affected.

3.14. Scalar-integer-expression reference in OpenACC clause

HMPP Workbench 3.1 currently supports only constant argument in OpenACC clause directive. References

to variables or expressions are not currently not supported. This restriction will be lifter in a future release.

3.15. OpenACC runtime routines

Current version of HMPP Workbench only supports acc_device_not_host arguments. This restriction will

be lifter in a future release.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 16/29

4. OpenACC Compiler Installation

The OpenACC Compiler is provided as a simple installer file which can be directly executed in the user’s

environment.

The package name is: HMPPOpenACC-<version>_linux64.bin with:

 <version> : current version of the CAPS OpenACC compiler.

4.1. CAPS OpenACC compiler Installation

To install the CAPS OpenACC compiler, launch the following command and follow the wizard instructions:

§ ./HMPPOpenACC-3.1.1
4
_linux64.bin

Figure 1 – CAPS OpenACC Compiler Wizard (example given for version 3.1.1)

A text mode is also available:

§ ./HMPPOpenACC-3.1.1_linux64.bin –-mode text

4.2. CAPS OpenACC Compiler Environment Setup

Assuming that the CAPS OpenACC Compiler is installed in /home/user/HMPPOpenACC-3.1.1, the CAPS

OpenACC environment is set running one of the following shell scripts:

$ source /home/user/HMPPOpenACC-3.1.1/bin/hmpp-env.sh
HMPP Workbench environment set
$

for sh-like shells, or

4
 Example is given for the CAPS OpenACC Compiler 3.1.1. Please, adapt the command line to the current

version to install.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 17/29

$ source /home/user/HMPPOpenACC-3.1.1/bin/hmpp-env.csh
HMPP Workbench environment set
$

for csh-like shells.

It should be noted that for OpenCL applications, two environment variables must be explicitly set:

 OPENCL_INC_PATH

 OPENCL_LIB_PATH

With CUDA SDK, these variables can be set as following

export OPENCL_HOME=${CUDA_HOME}/
export OPENCL_INC_PATH=${OPENCL_HOME}/include
export OPENCL_LIB_PATH=${OPENCL_HOME}/lib64

With AMD ATI Stream Computing:

export OPENCL_HOME=${AMDAPPSDKROOT}
export OPENCL_INC_PATH=${OPENCL_HOME}/include
export OPENCL_LIB_PATH=${OPENCL_HOME}/lib/x86_64

4.3. CAPS OpenACC Compiler License

 Warning: For a complete description of the HMPP license policy, please refer to document [R5], “HMPP

License Installation Guide”.

CAPS OpenACC Compiler and HMPP Workbench share the same license mechanism based upon the use

of the HMPP License Server to deliver floating license.

To use the CAPS OpenACC Compiler, a valid license is needed. CAPS entreprise provides on request

license. According to the type of the license that you ordered, you may have to run the command “hmpp –

licenses”:

 For user-based node-locked: on the system on which the compilation will be done. Please note that

your login will be used for the generation of the license.

 For user-based license: on any system you want to use. Please note that your login will be used for

the generation of the license.

 For floating-license: on the system on which the HMPP License server will be running.

In all cases, complete the requested information and send them to:

licenses@caps-entreprise.com

HMPP command license:

$ hmpp --licenses

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 18/29

If you need the generation of a new license, the following information will be required by CAPS
entreprise.
You can send them to licenses@caps-entreprise.com.

First Name: <TO BE COMPLETED>
Name: <TO BE COMPLETED>
Company: <TO BE COMPLETED>
E-Mail: <TO BE COMPLETED>
Phone number: <TO BE COMPLETED>
Software: HMPP
Version: xxxx <automaticcally completed>
Platform: xxxx <automaticcally completed>
Username: xxxx <automaticcally completed>
Hostname: xxxx <automaticcally completed>
Ethernet:
 - xxxxxxxxxx <automaticcally completed>

Listing 5 - HMPP License Information example (to launch on the License Server host)

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 19/29

5. Compiling HMPP Applications
5

The CAPS OpenACC compiler is available for C and FORTRAN languages and can be used to generate

CUDA (default mode) or OPENCL code. It is used:

 to preprocess OpenACC annotated applications,

 to extract and to generate HWA code,

 and finally to compile and link the OpenACC application.

 Note: All the commands described in this section can be encapsulated in a normal Makefile

mechanism.

5.1. Overview

In terms of use, the CAPS OpenACC compiler workflow is really close to traditional compilers. However, as

illustrated in Figure 2, we can distinguish two main paths:

 The left one (in Figure 2) is dedicated to the compilation of the main application which will be

executed on the host processor (as in traditional compilers). In this case, we will designate the

compiler used under the name host compiler,

 The right one (in Figure 2) is dedicated to the HWA code generation and compilation. The OpenACC

regions are generated under the form of shared libraries in order to be loaded by the HMPP runtime

during the execution of the application. In this case, we will designate the compilers under the name

of “CAPS OpenACC Compiler” for the generation of the piece of code to be executed on the HWA

and the “hardware vendor compilers” for the compilation of this code using the provided hardware

vendor tools.

5
 In the following, “HMPP applications” may designate applications containing either OpenACC directives

either OpenHMPP directives or both.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 20/29

Figure 2 - HMPP Compiler Workflow (global view)
6

Compiling such program is done by using the hmpp command followed by the appropriate compiler

depending on the considered language (C or FORTRAN):

$ hmpp gcc program.c -o program.exe

Or:

$ hmpp ifort program.f90 -o program.exe

Like with usual compilers, the default output file name is a.out.

The hmpp commands successively runs the HMPP preprocessor to process the OpenACC directives by

inserting calls to the HMPP runtime and then invoke the user’s specified native compiler to produce the

application executable.

hmpp extracts the OpenACC marked code from the application sources and generates their hardware

accelerated implementation as shared libraries with the appropriate HMPP codelet generator.

5.2. Common Command Line Parameters

The HMPP compiler runs as follow:

$ hmpp [HMPP_OPTIONS]HOST_COMPILER [HOST_COMPILER_OPTIONS]

Here is the list of the available command line options for HMPP compilers.

6
 Supported platforms and languages may be dependent of the CAPS’s product options subscribed.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 21/29

5.2.1. General Options

Some noteworthy general options are:

 -t, --temp DIRNAME: sets the temporary directory (default is /tmp),

 -k, --keep: does not remove temporary files,

 –d[n]?, --debug [n]?: set HMPP verbosity. A numerical value can be specified to increase the

level of the verbosity of the messages displayed.

 -c colorizes the output

 -g turns on flags for debugging/profiling during codelet generation/compilation

 The command line below illustrates the use of the –d option with a high value of verbosity (level 3).

$ hmpp –d3 icc myHMPPApplication.c

5.2.2. Host Compiler Options

Most of the standard compiler options are supported by HMPP. These options are directly given on the

command line and follow the specification of the compiler.

The “-d” HMPP’s option can be notified on the command line to increases the level of verbosity of HMPP

during the compilation stage. Thus all the commands executed will be displayed allowing the user to check

that the right options are given to the compiler.

$ hmpp –d ifort –O3 myHMPPApplication.f90

Note that “–E” option runs preprocessor only. With this option, only the preprocessing of the file is done,

resulting in source files where the HMPP directives have been translated into calls to the HMPP runtime. The

preprocessed files can then be compiled with the usual general purpose compiler

Compiler options that would change the semantic of the code should not be used. Typical example for

FORTRAN compilers are the following:

 -fall-intrinsics

 -fd-lines-as-code, -fd-lines-as-comments

 -fdefault-double-8, -fdefault-integer-8, -fdefault-real-8

 -fmodule-private

 -fbackslash

 -fcray-pointer

 -fdollar-ok

 …

These options are mainly used to support FORTRAN dialects.

5.2.3. Specification of the target language

In the context of the OpenACC directives, the standard does not currently support the specification of a

target language for code generation and by default HMPP generates CUDA code. So, to be able to handle

different languages for code generation while remaining compliant with the OpenACC standard, HMPP

Workbench command line has been extended in order to be able to specify a target language:

$ hmpp --openacc-target [CUDA|OPENCL]

Where:

 --openacc-target: launch the generation of the specified target code for OpenACC programs

where:

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 22/29

o CUDA: orders CUDA code generation

o OPENCL: orders OPENCL code generation.

Listing 6 show an example of the HMPP compiler command line in the case of an OpenCL code generation

from OpenACC directives.

$ hmpp --openacc-target OPENCL --force icc -std=c89 -I../common -w -O3
 ../common/hmpp_util.o ../common/getopt.o -lm -o BlackScholes_acc.exe
 BlackScholes_acc.c

hmpp: [Info] Generated codelet filename is "__hmpp_acc_region__8i9abfv3_opencl.hmf.cl".
hmppcg: [Message DPL3000] BlackScholes_acc.c:57: Loop 'opt' was gridified (1D)

Listing 6 - Example of OpenCL generation from OpenACC directives

5.2.4. Report option

This option provides users with some results of analysis done by HMPP. Currently, HMPP offers:

 --io-report: option to display the intents detected by HMPP.

5.2.5. HMPP Codelet Generation Options

These options can be used to modify the default behavior of the hmpp command. These options are the

following:

 -f, --force: forces codelet file overwrite,

 --codelet-required: the compilation fails if the codelet(s) cannot be generated

5.2.6. HMPP codelet compilation: proprietary compiler options

In HMPP, the final codelet code is generated with the proprietary hardware accelerator compiler. In some

context, it may be useful to forward some specific options to this compiler.

For NVIDIA architecture, options can be passed to the nvcc compiler (NVIDIA CUDA Compiler driver) by

using the options --nvcc-options.

For example the following command line will forward the options "ptxas=-v,–arch,sm_13" to the nvcc

compiler:

$ hmpp -d --nvcc-options -Xptxas=-v,-arch,sm_13 ifort main.f90 -o main.exe
…
hmpp: [Info] Running command: nvcc --cudafe-options --no_warning saxpy_cuda.cu -shared -Xptxas=-v
-arch sm_13 -o saxpy_cuda.so --compiler-options -fPIC
ptxas info : Compiling entry function '_Z13hmppcg_loop0_ILj32ELj4EEvifPfS0_'
ptxas info : Used 3 registers, 48+48 bytes smem, 2000 bytes cmem[0], 8 bytes cmem[1]
…

Another possible approach is to use an environment variable as for example the NVCCFLAGS.

NVCCFLAGS='-O3 -use_fast_math' hmpp gfortran -O3 sgemm1.f90 -o sgemm1.exe

5.2.7. HMPP miscellaneous options

Various others options can be used with HMPP:

 –-version: displays HMPP version number,

 –-full-version: displays HMPP full version message,

 -h, --help: displays an help message and exit,

 –-licenses: displays information about HMPP licenses found in the system and exit.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 23/29

5.2.8. __HMPP predefined macro

During compilation the __HMPP macro is set by default. Its value is equal to the current HMPP version. For

instance -D__HMPP=20500 for HMPP 2.5.0 or -D__HMPP=30000 for HMPP 3.0.

5.3. Environment Variables

5.3.1. HMPP Environment Variables

The following environment variables are taken into account by the HMPP compilers:

 HMPP_CODELET_COMPILER_CC: specifies which C compiler to use for the compilation of the codelet

only. In some cases, the same compiler may be used for the compilation of the application and the

codelets. However, it is possible to specify another compiler for the compilation of the codelets only. If

this variable is set, then the specified compiler will be used for that.

 HMPP_CODELET_COMPILER_CXX: specifies which C++ compiler to use for compiling and linking

generated codelets.

 HMPP_CODELET_COMPILER_CFLAGS: specifies some flags to be used when compiling a codelet

source file. Useful if a handwritten codelet uses specific libraries.

 HMPP_CODELET_COMPILERS_LDFLAGS: specifies some flags to be used when linking a codelet.

5.3.2. OpenACC Environment Variables

Environment variables used in the context of the OpenACC directives are described in [R1].

The _OPENACC preprocessor macro is defined. The version used here has value 201111 as referenced in

[R1].

The valid values of the environment variable ACC_DEVICE_TYPE are defined in the header

$(HMPP_HOME)/include/openacc/openacc.h, in the enum acc_device_t.

For instance, to enable the execution on an OpenCL HWA, you should set it to acc_device_opencl.

Example:

export ACC_DEVICE_TYPE=acc_device_opencl./lab.exe
INFO : Enter data (queue=none, location=lab.c:170)
INFO : Acquire (target=opencl)

Listing 7 - Example of execution on OpenCL HWA thanks to the ACC_DEVICE_TYPE environment variable

5.3.3. Hardware Vendor Environment Variables

The environment variables defined and used by the hardware vendors (NVIDIA, …) are normally not affected

by HMPP.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 24/29

6. Running HMPP Applications

The execution of the application is based on the HMPP runtime library that manages the correct execution of

the HMPP application according to the user’s environment.

6.1. Launching the Application

Launching a HMPP program is performed as follow on UNIX platforms, with an sh-like shell:

$ export HMPPRT_PATH=my_codelets_library_dir
$./program.exe

The HMPPRT_PATH environment variable sets the directory path where the codelets are

(my_codelets_library_dir in previous example). The HMPP runtime follows a codelet naming convention

to find and load the HWA implementation of codelets.

The command ./program.exe launches the execution of the application.

6.2. Environment Variables

The runtime’s behavior can be altered through the use of the following environment variables:

 HMPPRT_LOG_LEVEL controls the verbosity level of the runtime. Other environment variables can also

be used to control the display of information. These one are described chapter 6.2.1.

 HMPPRT_NO_FALLBACK prevents the execution of the default native codelet (or other target codelets)

when the execution of the first target codelet failed.

 HMPPRT_PATH allows to indicate the path to load HMPP generated dynamic libraries

6.2.1. Controlling Logging

In HMPP 3, some environment variables have been added to help user to analyze the behavior of their

HMPP application. These variables are described below.

 HMPPRT_LOG_LEVEL

HMPPRT_LOG_LEVEL controls the verbosity level of the runtime. The following values are available. Each

level includes the previous one.

 “fatal”: display fatal messages emitted by the runtime.

 “error”: display error messages (includes also fatal ones)

 “warn”: display warnings (as well as previous levels)

 “info”: display information regarding the HMPP operations

 “debug”: display low-level operations, such as calls to the CUDA, OpenCL runtime. Mainly reserved

to CAPS usage

 “all”: display all messages

 “off”: inhibit all messages

HMPPRT_LOG_LEVEL=all|debug|info|warn|error|fatal|off

 HMPPRT_LOG_FILE

This variable allows redirecting the log messages to a file. By default, its value is set to “-“ which

correspond to the standard error

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 25/29

HMPPRT_LOG_FILE=Log_file

 HMPPRT_LOG_FILE_RESET

If the value is not 0 (default value), the HMPPRT_LOG_FILE is reset when the runtime is initialized. This

works only when the HMPPRT_LOG_FILE is not the standard output.

 HMPPRT_LOG_FILE_RESET=integer

 HMPPRT_LOG_FILE_HEADER

Replace the default header (“Starting HMPPRT logging…”) by the new specified value (is not effective

with standard output).

HMPPRT_LOG_FILE_HEADER=string

 HMPPRT_NO_TIMESTAMP

If the value is not 0 (default value) the display of the timestamp is inhibited.

HMPPRT_NO_TIMESTAMP=integer

 HMPPRT_NO_THREAD_ID

If the value is not 0 (default value) the display of the number of threads is inhibited.

HMPPRT_NO_THREAD_ID=integer

 HMPPRT_NO_COLOR

If the value is not 0 (default value) the display of the color of the HMPP message is inhibited.

HMPPRT_NO_COLOR=integer

6.2.2. HMPPRT_NO_FALLBACK Environment Variable

When a codelet execution fails for a target, this variable prevents the execution of all other implementations

of the codelet (when several targets are specified) or the native version.

Note that when this variable is set, if the execution of a codelet fails, the application exists with a returned

value equal to the one set to HMPPRT_NO_FALLBACK variable.

To set this variable:

$ export HMPPRT_NO_FALLBACK=<ValueToBeReturned>

To unset this variable:

$ export HMPPRT_NO_FALLBACK=0
Or
$ unset HMPPRT_NO_FALLBACK

6.2.3. HMPPRT_PATH Environment variable

By default, the HWA code generated by HMPP (.hmc, .hmg, or .hmf files,) are searched in the current

directory. To specify other directories, the environment variable HMPPRT_PATH can be used.

A list of directory can be specified separated by “:”

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 26/29

$ export HMPPRT_PATH=directory1:directory2

From the example above, “directory1” then “directory2” will be searched before taking into account

the current directory to get the HMPP generated dynamic library.

6.3. Running OpenACC Applications

Once compiled, an OpenACC application behaves pretty much like a normal HMPP application. This means

that, like an HMPP application, a codelet file (.hmf, .hmc, or .hmg) is generated, and that the same

environment variables can be used to control execution. For example Listing 8 illustrates the execution of an

OpenACC program compiled with HMPP 3.1.x (verbosity on).

Please refer to [R4] for detailed information.

HMPPRT_LOG_LEVEL=info HMPPRT_NO_TIMESTAMP=1 HMPPRT_NO_THREAD_ID=1 ./black.exe --dim=100000

INFO : Enter data (queue=none, location=black.c:179)
INFO : Acquire (target=CUDA)
INFO : Allocate call_result[0:100000] (element_size=4, host_address=0x7fb9da137010, memory_space=cudaglob,
queue=none, location=black.c:179)
INFO : Allocate put_result[0:100000] (element_size=4, host_address=0x7fb9da073010, memory_space=cudaglob,
queue=none, location=black.c:179)
INFO : Allocate option_strike[0:100000] (element_size=4, host_address=0x7fb9d744d010, memory_space=cudaglob,
queue=none, location=black.c:179)
INFO : Upload option_strike[0:100000] (element_size=4, host_address=0x7fb9d744d010, queue=none,
location=black.c:179)
INFO : Allocate stock_price[0:100000] (element_size=4, host_address=0x7fb9d74af010, memory_space=cudaglob,
queue=none, location=black.c:179)
INFO : Upload stock_price[0:100000] (element_size=4, host_address=0x7fb9d74af010, queue=none,
location=black.c:179)
INFO : Allocate option_years[0:100000] (element_size=4, host_address=0x7fb9d73eb010, memory_space=cudaglob,
queue=none, location=black.c:179)
INFO : Upload option_years[0:100000] (element_size=4, host_address=0x7fb9d73eb010, queue=none,
location=black.c:179)
INFO : Allocate nb_opt[0:1] (element_size=4, host_address=0x7ffff076cf98, memory_space=cudaglob, queue=none,
location=black.c:179)
INFO : Upload nb_opt[0:1] (element_size=4, host_address=0x7ffff076cf98, queue=none, location=black.c:179)
INFO : Allocate VOLATILITY[0:1] (element_size=4, host_address=0x40e598, memory_space=cudaglob, queue=none,
location=black.c:179)
INFO : Upload VOLATILITY[0:1] (element_size=4, host_address=0x40e598, queue=none, location=black.c:179)
INFO : Allocate RISKFREE[0:1] (element_size=4, host_address=0x40e594, memory_space=cudaglob, queue=none,
location=black.c:179)
INFO : Upload RISKFREE[0:1] (element_size=4, host_address=0x40e594, queue=none, location=black.c:179)
INFO : Enter kernels (queue=none, location=black.c:190)
INFO : Call __hmpp_acc_region__qlk0ufbb (queue=none, location=black.c:190)
INFO : Leave kernels (queue=none, location=black.c:190)
INFO : Free RISKFREE[0:1] (element_size=4, host_address=0x40e594, queue=none, location=black.c:179)
INFO : Free VOLATILITY[0:1] (element_size=4, host_address=0x40e598, queue=none, location=black.c:179)
INFO : Free nb_opt[0:1] (element_size=4, host_address=0x7ffff076cf98, queue=none, location=black.c:179)
INFO : Free option_years[0:100000] (element_size=4, host_address=0x7fb9d73eb010, queue=none,
location=black.c:179)
INFO : Free stock_price[0:100000] (element_size=4, host_address=0x7fb9d74af010, queue=none,
location=black.c:179)
INFO : Free option_strike[0:100000] (element_size=4, host_address=0x7fb9d744d010, queue=none,
location=black.c:179)
INFO : Download put_result[0:100000] (element_size=4, host_address=0x7fb9da073010, queue=none,
location=black.c:179)
INFO : Free put_result[0:100000] (element_size=4, host_address=0x7fb9da073010, queue=none,
location=black.c:179)
INFO : Download call_result[0:100000] (element_size=4, host_address=0x7fb9da137010, queue=none,
location=black.c:179)
INFO : Free call_result[0:100000] (element_size=4, host_address=0x7fb9da137010, queue=none,
location=black.c:179)
INFO : Leave data (queue=none, location=black.c:179)

Listing 8 - Execution of the OpenACC application with HMPP (verbosity on)

Device Acquisition

HWA Memory allocation

Upload data to HWA

Launch execution on the HWA

Execution terminated

Download results to the host

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 27/29

7. Supported Platforms and Compilers

7.1. Hardware Accelerators

7.1.1. HMPP CUDA generator

For CUDA generator, HMPP support starts from version CUDA Toolkit 4.0 (May 2011, [R7]).

7.2. Supported Operating Systems

HMPP works with any kernel 2.6 Linux distribution containing the libc library that comes with g++ 4.x and

above,

Below is the list of validated operating systems. It should be noted that by default HMPP inherits the same

portability features than those of the SDK used.

For NVIDIA architecture:

 Debian 5.0 and above;

 RedHat Entreprise Linux 5.3 and above;

 OpenSuse 11.1, 11.2, 11.3;

 Suse Linux Entreprise Server 11.0;

 Fedora 10;11, 12, 13

 Ubuntu 9.10, 10.04

For AMD ATI Stream architecture:

 OpenSuse 11.*

 Ubuntu 10.0*

 Red Hat® Enterprise Linux® 6.*

 Warning: To support dedicated hardware, proprietary hardware drivers should be correctly installed.

7.3. Compilers

The HMPP preprocessor takes ANSI C99, GNU C and FORTRAN source as input.

While most standard compilers should work with HMPP, below is the list of currently validated compilers:

 GNU gcc 4.1+,

 GNU gfortran 4.3+,

 Intel Compiler 9.1+,

 Open64 4.2.2+. It should be noted that Open64 offers a limited support of C99 codes.

 Absoft Pro Fortran Compiler version 11.1.

Please note that compiler versions mentioned in this chapter must be matched with versions of compilers

supported by the underlying HWA constructor SDK.

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 28/29

8. Annexes

Annex 1. Glossary

HMPP A short name for HMPP development workbench

HWA Hardware Accelerator : e.g. a graphic card

OpenACC directives Designates OpenACC directives as defined in [R1]

OpenHMPP directives Designates OpenHMPP directives as defined in [R2];

CAPS OpenACC compiler Designates CAPS compiler supporting only OpenACC directives

HMPP Workbench Designates the CAPS suite of tools supporting both OpenACC and

OpenHMPP directives

HMPP applications” Designates applications containing either OpenACC directives either

OpenHMPP directives either both

OpenACC application Designates applications containing only OpenACC directives

OpenHMPP application” Designates applications containing only OpenHMPP directives

HMPP applications Designates applications containing OpenACC directives or

OpenHMPP directives

hmpp May be used in command line to invoke CAPS compiler. Same

keyword is used to compile either OpenACC applications either

OpenHMPP applications

 CAPS OpenACC Compiler

This information is the property of CAPS entreprise and cannot be used, reproduced or transmitted without authorization 29/29

Annex 2. Bibliography

[R1] The OpenACC™ Application Programming Interface, Version 1.0 November, 2011.

Available online on the website http://www.openacc-standard.org/

[R2] HMPPWorkbench-3.2_Basics.pdf, CAPS entreprise

[R3] HMPPWorkbench-3.2_HMPP_Directives_ReferenceManual.pdf, CAPS entreprise.

[R4] HMPPWorkbench-3.2_Linux_Manual.pdf, CAPS entreprise

[R5] HMPPWorkbench-3.2_LicenseInstallationGuide.pdf, CAPS entreprise

[R6] HMPPWorkbench-3.2_HMPPALT_Directives_Introduction.pdf, CAPS entreprise

[R7] NVIDIA developers site, http://developer.nvidia.com/object/cuda.html

[R8] The AMD APP SDK v2.7 with OpenCL™ 1.2 support

http://developer.amd.com/sdks/amdappsdk/downloads/pages/default.aspx

http://www.openacc-standard.org/
http://developer.nvidia.com/object/cuda.html

