

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 1 / 48

HMPP Wizard V2.0

HMPP Wizard & Performance Analyzer

User Manual
 Version 2.0

November 2011

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 2 / 48

HMPP Wizard V2.0

The information contained in this document is subject to change without notice.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 3 / 48

HMPP Wizard V2.0

REVISION HISTORY

Rev. Date Author Chapters and

pages modified

Changes

V1.0.0 15/12/2010 CAPS entreprise All Creation

V2.0.0 22/11/2011 CAPS enterprise All GUI Update

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 4 / 48

HMPP Wizard V2.0

CONTENTS

1 INTRODUCTION 6

1.1 Approach 6
1.1.1 Integration in the Development Process 6
1.1.2 Focus on Hotspots: GNU Profiling 7
1.1.3 Highlighting Manycore Porting Issues: Advice Generator 7
1.1.4 Analyze the GPU performance 7

1.2 Basic concept 7
1.2.1 Codelets 8
1.2.2 Kernels 8
1.2.3 Grid of Threads 8

2 SUPPORTED PLATFORMS AND COMPILERS 8

2.1 Input Supported Languages 8

2.2 Supported Compilers 9

2.3 Supported Platforms 9

2.4 Supported Web Browser 9

3 HMPP WIZARD INSTALLATION 9

3.1 Installation 9

3.2 HMPP Wizard License 10

3.3 Initialization of the environment 10

4 RUNNING HMPP WIZARD & PERFORMANCE ANALYZER 10

4.1 HMPP Wizard & Performance Analyzer Commands 11
4.1.1 Generic Command Format 11
4.1.2 Wizard options 12
4.1.3 Gprof for Profiling Information 16
4.1.4 Performance Analyzer of the GPU code execution 17
4.1.5 HMPP Wizard Command, Build Option 19

4.2 HMPP Wizard: Visualize the Results 19
4.2.1 Home page 20
4.2.2 General approach 20
4.2.3 Source View 21
4.2.4 Execution profile View 26
4.2.5 Performance Analyzer View 27
4.2.6 Option Dialog 29

5 BIBLIOGRAPHY 31

6 APPENDIX 32

6.1 Programming Diagnoses and Advices 32
6.1.1 Undefined Control Structure (switch case, goto/labels) 32

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 5 / 48

HMPP Wizard V2.0

6.1.2 Induction Variable not found 33
6.1.3 Loop may not be Parallel 34
6.1.4 Conditional Statement Inside a Kernel 35
6.1.5 2D Gridification not performed due to non-nested loop 35

6.2 Optimization Diagnoses and Advices 36
6.2.1 Reduction Inside a Kernel 36
6.2.2 Bad Memory Coalescing 36
6.2.3 Inefficient Memory Coalescing 37
6.2.4 Too Low Computation Density 39
6.2.5 2D Convolution Patterns 39

6.3 HMPP Performance Analyzer Metrics 42
6.3.1 Synthetic Metrics 42
6.3.2 Raw Metrics 43

6.4 Performance Analyzer : CUDA counters 43
6.4.1 1.3 NVIDIA GPU Architecture 44
6.4.2 2.0 NVIDIA GPU Architecture 45

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 6 / 48

HMPP Wizard V2.0

1 Introduction

 Warning:

In this document we assume that the reader knows HMPP concepts introduced in the HMPP
Workbench reference manual ([R1]).

The Hybrid Multicore Parallel Programming workbench (HMPP) provides developers with a set of tools

dedicated to build parallel hybrid applications running on many-core systems. These architectures combine

general-purpose cores with hardware accelerators (HWAs) such as GPUs or SIMD computing units. HMPP

allows the programmer to write hardware independent applications where hardware specific codes are

dissociated from the legacy code as additional software plug-ins (refer to [R1] for more details concerning

HMPP).

Ten years of experience in code porting have enabled CAPS to define a proven GPU focused methodology

based on HMPP programming model and completed by a set of tools. HMPP Wizard & Performance Analyzer

is one of these tools that help developers to incrementally migrate their code onto many-core architectures (cf.

CAPS Methodology Code Porting [R5]). HMPP Wizard & Performance Analyzer answers main GPU kernel

performance issues. It provides developers code transformation advice to make kernels GPU friendly. These

modifications are either direct code transformation or through HMPP code generation directives (see [R2] for

further details).

The objective of the HMPP Wizard & Performance Analyzer is to propose multiple performance issues and

advice inside a single report. Performance factors are analyzed during both the compilation and the execution

of the application and are then associated to the user code. The static and dynamic analyses of the application

exposes different aspects of the application performance the user can investigate. With this approach, HMPP

Wizard & Performance Analyzer improves the productivity of the programmer during all the steps of the many-

core porting methodology [R5].

1.1 Approach

1.1.1 Integration in the Development Process

HMPP Wizard & Performance Analyzer works in two steps: information gathering and performance analysis.

The information gathering step is performed in two manners:

 Statically, on the application source code;

 Dynamically, using profiling information.

HMPP Wizard & Performance Analyzer are invoked as a compiler wrapper like HMPP or a profiler like Valgrind

and can be seamless integrated in a Makefile. HMPP wizard gathers all the information and builds a final HTML

report. The HTML report contains different views of the application performance with for instance one dedicated

to performance issues and another one dedicated to the execution profile.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 7 / 48

HMPP Wizard V2.0

HMPP Wizard & Performance Analyzer proposes different analyses or modules controlled by the command

line. The current version comes in three modules:

 The CPU profiler;

 The advice generator,

 The GPU profiler.

1.1.2 Focus on Hotspots: GNU Profiling

The CPU profiler module of HMPP Wizard integrates the use of the GNU profiler in the compilation process and

analyzes the profiling information generated during the execution. The execution profile result is available under

a specific view focusing on most important functions.

1.1.3 Highlighting Manycore Porting Issues: Advice Generator

The advice generator of HMPP Wizard analyzes the application source code to detect potential porting or

performance issues and to advise the appropriate correction to the user. The suggestion focuses on properties

of the code that are essential to get performances when porting on GPU-based systems.

HMPP Wizard proceeds as follows:

 A function is checked as a potential HMPP codelet.

 All loop nests of the function are analyzed as potential many-core kernels. A grid of threads (called

kernel in the following) is computed and will be the basis of the HMPP Wizard analyses.

 A set of analyses is applied to each kernel and whenever possible, performance improvement

suggestions are emitted along with statistics.

 If a computation matches a pattern supported by HMPP Wizard, specific recommendations are

suggested.

HMPP Wizard can offer generic many-core programming advice or specific NVIDIA architecture tuned

suggestions for the CUDA. The pattern matching technology of HMPP Wizard is based on the memory access

patterns of kernels. Related suggestions mainly deal with CUDA memory coalescing improvements.

1.1.4 Analyze the GPU performance

This last module, called Performance Analyzer, provides information on the GPU behavior of the

CUDA kernel generated by HMPP. Based on the use of the CUDA profiler, the collected information

allows to detect for each codelets the most consuming time kernel. As for the CPU hotspot

detection, this view aims to guide users through the incremental optimization phases.

1.2 Basic concept

We remind in this chapter some concepts handled with HMPP and useful in the context of HMPP Wizard.

Please, refer to [R1] for further details.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 8 / 48

HMPP Wizard V2.0

1.2.1 Codelets

A codelet ([R1]) is a pure function that can be remotely executed on a massively parallel accelerator. It defines

the granularity of the computation sections and contains one or more kernels. A codelet is supposed to be a

heavy computational function representing a significant execution time of the application (also called

“hotspot”).

Due to the remote execution of codelets, data are uploaded on the accelerator. So, in practice, the notion of

codelets should be extended to other functions performing some computations with the same remote data.

1.2.2 Kernels

A kernel represents a loop or a group of nested loops defining both an iteration space and a grid of GPU

threads. Kernels extracted from the codelet are the basis of how a computation is distributed on massively

parallel architectures.

The shape of the kernel defines an iteration space as follows:

 The dimension of the kernel iteration space is the number of nested loops in one loop, including that

outer loop. Two nested loops define a 2D kernel.

 Each loop defines one dimension of the iteration space as given by the loop induction variable. The

induction variable range is computed from the loop construction.

 Each dimension of the iteration space must be static and independent from the other ones. The

dimension range has to be calculable and invariant.

 A variable defining a linear relation with an induction variable is an indirect induction variable and can

be considered as one.

1.2.3 Grid of Threads

A kernel has to define a grid of threads that is a subset of the iteration space of the kernel or, in other words,

one or more perfectly nested and parallel loops. These parallel loops define the distribution of the computation

on the many-core accelerator.

This process, called gridification, is the most important parameter in the performance analysis because it has a

direct impact on how memory is accessed. From this gridification, the kernel memory access footprint is

computed. The sequence of memory reads and writes done in parallel by the computation is called the memory

access pattern.

2 Supported Platforms and Compilers

2.1 Input Supported Languages

HMPP Wizard is valid for C and FORTRAN languages:

 Usual C89 language constructions with main gcc extensions

 Usual Fortran 90 constructions

 Input files with the .c, .f, .f90, .F90 extensions.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 9 / 48

HMPP Wizard V2.0

2.2 Supported Compilers

HMPP Wizard can be used with:

 GNU gcc 4.1 and above

 Intel icc version 11.x

 GNU gfortran 4.3 and above

 HMPP 2.5.x

 NVIDIA SDK 3.2 and 4.0

2.3 Supported Platforms

HMPP Wizard works with any kernel 2.6 Linux distribution containing the libc library that comes with g++ 4.x

and above,

Below is the list of operating systems that have been validated with HMPP Wizard.

 Debian 5.0 and above;

 RedHat Entreprise Linux 5.5 and above;

 OpenSuse 11.2;

 Suse Linux Entreprise Server 11.0;

 Fedora 13

HMPP Wizard is run with the hmppReport script that uses standard unix commands:

 Basic file management: mkdir, mv, touch, basename, dirname, cat, test, wc, tar,

find

 String manipulation: cut, sed, sort, grep

 Extra: date, uudecode, gprof

The uudecode Unix command is often not installed by default but is widely available with the “sharutils”

package.

2.4 Supported Web Browser

HTML reports generated by HMPP Wizard & Performance Analyzer are officially supported with Firefox, version

8.0.

3 HMPP Wizard installation

3.1 Installation

To install the HMPP Wizard package, launch the following command and follow the instructions:

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 10 / 48

HMPP Wizard V2.0

$ HMPPWizard-2.0.x_linux64.bin

Figure 1 - HMPP Wizard installation popup windows

A command line mode is also available:

§ ./HMPPWizard-2.0.x_linux64.bin --mode text

3.2 HMPP Wizard License

A license is required to be able to use the HMPP Wizard tool. This license takes the form of a “xxxxx.lic” file

provided on demand by CAPS entreprise.

A single license server can be used for HMPP Workbench and HMPP Wizard. Please refer to the License

Installation Guide ([R6]) for further details concerning the management of the license and the installation of the

HMPP Workbench license server.

3.3 Initialization of the environment

The HMPP Wizard environment needs to be setup before launching it. This is done by sourcing the provided

script located in the installation’s bin/ directory:

$ source “HMPP_WIZARD_INSTALLATION_PATH”/bin/hmppwizard-env.sh

HMPP Wizard environment set

4 Running HMPP Wizard & Performance Analyzer

The use of the HMPP Wizard & Performance Analyzer comprises three stages:

 First stage: analysis of the application source code and generation of data

 Second stage: generation of an HMTL report

 Third stage: launch of the HTML browser that displays the results.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 11 / 48

HMPP Wizard V2.0

Depending on the demanded analyses, the generation of the report can be done at different levels: either by a

static analysis of application source files or by retrieving information when running the application (profiling

information for example).

Available commands and options are described below.

Remark:

Note that the current implementation does not support a concurrent execution of the analysis stage for

the same output report. For example, the command “make – j” is not supported.

4.1 HMPP Wizard & Performance Analyzer Commands

4.1.1 Generic Command Format

The usual form of the HMPP Wizard commands relies on a typical compilation command line:

$ hmppReport [--help] [-h]

 [--help-options] [-H]

 [--version] [-v]

 [--build] [-b]

 [--force] [-f]

 [--verbosity] [-d]

 [--licenses]

 –tools=[List of supported tools]

 -o [OutputDirectory]

 [--] <Usual command line>
1

With:

- --help: display the list of options and quit

- --help-options: display more advanced options

- --version: display the version number.

- --build: end the analysis process, produce the synthesis of the analysis and generate the HTML

report (see chapter 4.1.4). This command is mandatory to produce the HTML report.

- --force: overwrite existing project and files if any

- --verbosity: increase the amount of information displayed during the execution of internal

operations

- --licenses: get information regarding the license management and display required information

for a license request

- --tools=[List of supported tools]: specify the tools activated to analyze the application.

Several tools can be indicated in the same command separated by a comma (“,”). Currently

HMPP Wizard supports the following tools:

1
 To improve the readability, we present here the “Usual command line” on a separate line in the

command format. However, be aware that the command line must follow the hmppReport command.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 12 / 48

HMPP Wizard V2.0

o wizard: apply source code analysis and give advice (see chapter 4.1.2);

o gprof: launch a profiling analysis based on the GNU profiler (see chapter 4.1.3);

o perfanalyzer: launch a profiling analysis based on the CUDA profiler (see chapter XXX)

- -o [Output directory]: indicate the output directory of the HTML report and of all

intermediate files generated during the analysis. The default directory is “__hmpp_report”. The

report is composed of a file named “index.html”, main entry point, and of two directories:

“data/” containing the information computed during the analysis, and “assets/” containing the

read-only and static part of the report.

- <Usual command line> refers to the command line used to compile or run the application.

When the command line is not a compilation command (and prefixed by supported compilers), the

separator “--” must be inserted before the command.

When using the static analysis, a simplified compilation line is possible. In that case, the following compiler

options might also be needed to correctly preprocess the source files:

o -D<macro>[=value]: defines a macro

o -U<macro>[=value]: un-defines a macro

o -I<path>: add a search path for the include files

and other specific options such as -include, -isystem, -macro, etc.

For the internal static analysis, HMPP Wizard does not recognize options that are not related to the

preprocessing stage. They are silently ignored and are not passed to the preprocessor.

4.1.2 Wizard options

4.1.2.1 Command line

The “wizard” tool provides some analysis applied on the application source files. It is activated by default. The

syntax of the command is
2
:

$ hmppReport [--help]

 [--v] [--V]

 –tools=wizard

 -o [OutputDirectory]

 <Usual compilation line>

The explicit activation is:

o -tools=wizard

This command must be followed by a “--build” command to generate the HTML report.

In this context, an example of HMPP Wizard command line could be:

2
 In bold, mandatory options.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 13 / 48

HMPP Wizard V2.0

Launch of the static analysis

hmppReport -o ./report --tools=wizard gcc -O3 -lm -std=c99 Sourcecode_File_x.c

Implicit call of the static analysis

hmppReport -o ./report gcc -O3 -lm -std=c99 Sourcecode_File_y.c

…

Generate the HTML the report

$ hmppReport --build -o ./report

Visualization of the results

$ firefox report/index.html

The “build” command is called at the end of the compilation process. When the application is made of a single

file, the two commands can be combined into one: “--build --tools=wizard”.

To force the generation of the report at all stages of the compilation, both the options “--build” and “--

force” must be used at the same time. This method will overwrite previous report generations. In that case,

the resulting report will be a combination of all analysis performed using the output directory.

4.1.2.2 Diagnoses and Advice

This section describes diagnoses and advice provided by the HMPP Wizard. They are provided in two separate

sections:

 One dedicated to the diagnoses preventing a generation of efficient GPU code by HMPP.

 One dedicated to the performance improvement of HMPP generated code

For further details on these diagnoses please refer to Appendix 6.1.

4.1.2.2.1 PROGRAMMING DIAGNOSES AND ADVICE

Undefined Control Structure (switch case, goto/labels)

Diagnosis Unstructured flow operations disrupt the compiler analysis and make the code

generation difficult or impossible.

Advice Use structured flow operations ('if' statements, ...) instead.

Large memory access stride

Diagnosis The computation of a value uses large array access strides from the innermost loop

induction variable. Large access strides may degrade the performance

Advice Try to reduce the stride of memory accesses.

Induction Variable not found

Diagnosis Induction variable not found

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 14 / 48

HMPP Wizard V2.0

Advice Re-write the loop: the current form hides the induction variable

Advice Replace the loop operation by a proper 'for' loop

Loop may not be parallel

Diagnosis The loop is not detected nor specified parallel

Advice Check the parallelism of the loop

Conditional Operation in a loop

Diagnosis Multiple if conditional found. Complex conditional expressions may impact the

performance

Advice Use masks instead of guards in computations

Advice Split the kernel in several loop nests with the same execution flow (taking the same

path)

2D Gridification not performed due to non-nested loop

Diagnosis Computations between loops prevent the gridification

Advice Move the computation inside the inner loop with a conditional

Advice Move the computation before or after the loop nest in a new loop nest

4.1.2.2.2 OPTIMIZATION DIAGNOSES AND ADVICE

Reduction Inside a Kernel

Diagnosis The symbol <symbol name> should be reduced inside the loop nest

Advice Use the hmppcg parallel reduce directive

Bad Coalescing

This advice relies on the gridification and on the CUDA memory coalescing access patterns.

Diagnosis The computation using <symbol name> is globally not well coalesced

Advice Insert a loop interchange HMPP directive in the loop nest

Statistic Number of subscript accesses over X

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 15 / 48

HMPP Wizard V2.0

Statistic Number of subscript accesses over Y

Statistic Number of constant subscript accesses over the grid of threads

Transformation <Code output with the appropriate hmppcg permute directive>

Inefficient Memory Coalescing

Diagnosis A stride greater than one in the X dimension of the gridification prevents a good

memory coalescing

Advice Reduce the stride of the loop over the induction variable

Potential parallel kernel with a grid

Diagnosis A kernel has been detected parallel and a 2D grid can be generated

Advice Consider porting the execution of the function on a many-core architecture.

Call to a standard library function

Diagnosis A function call belonging to a standard library has been detected and may require a

specific action.

Two types of library function are detected:

 Standard functions of the language (libc);

 Call to a GPU-accelerated library function

Advice According to the type of the function detected the advice recommend to use GPU-

accelerated library function

IO function call(s) from <stdio.h>

Diagnosis Detection of functions requiring the Operating System into the source code. These

functions cannot be used into an offloaded GPU code.

Advice This part of the code must be removed from the function.

Parallel 2D/3D kernel unroll & jam Optimization

Diagnosis The nest is made of more than 2 loops and will generate a parallel 2D grid. In this

grid, there is no array access having more than 2 dimension(s). The computation

may reuse data between iterations in the innermost loop.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 16 / 48

HMPP Wizard V2.0

Advice You should consider an “unroll and jam” transformation that can increase the

memory locality of the computation inside the body.

Too Low Compute Density

This advice is emitted when the computation density is too low compared to the memory accesses.

Diagnosis The computation density is low

Advice Input data should already be on the accelerator to get performance

Statistic Number of array accesses

Statistic Number of operations

Statistic Number of intrinsic operations

The advice given in this context indicates that if the data are not already available on the HWA (means that they

will need to be transferred), the cost of their transfer will likely cost more than the gain in performance.

2D Convolution Patterns

Diagnosis A 2D convolution pattern was found writing <symbol name> over <induction variable Y>

and <induction variable X>

Advice You should consider using an optimized kernel for this access, more information in the

HMPP Cookbook

Statistic Minimum stencil offset over each induction variable

Statistic Maximum stencil offset over each induction variable

4.1.3 Gprof for Profiling Information

The CPU profiling information provided by HMPP Wizard is based on the use of the GNU profiler. We assume

in the following that readers are already familiar with gprof. For further information please refer to [R8]..

Profiling gives application execution time per function and the functions call graph. This information enable to

identify where most of the execution time is spent if some functions are slower than expected, they might need

to be rewritten.

When using gprof, we distinguish three stages:

 Compilation and link of the application with profiling enabled.

 Execution of the application that generates a profile data file.

 Running gprof to analyze the profile data.

These stages are still valid in the context of the HMPP Wizard except that:

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 17 / 48

HMPP Wizard V2.0

 Compilation as well as the execution are directly done by the HMPP Wizard.

 The result information is synthesized in the generated HTML report.

4.1.3.1 Command line

Syntax of the command is
3
:

Instrumentation of the application

$ hmppReport [--help]

 [--v] [--V]

 --tools=gprof

 -o [OutputDirectory]

 <Usual compilation line>

Generation of the profiling data

$ hmppReport –tools=gprof –- <execution command>

Mandatory parameters are:

- -tools=gprof

This command must be followed by a “--build” command.

In this context, an example of HMPP Wizard command line could be:

Compilation stage

hmppReport --tools=gprof -o ./report gcc -O3 -lm -std=c99 Sourcecode_File_x.c

hmppReport --tools=gprof -o ./report gcc -O3 -lm -std=c99 Sourcecode_File_y.c

…

hmppReport --tools=gprof -o ./report gcc -O3 -lm -std=c99 -o myBinaryFile

Generation of the profiling data

hmppReport --tools=gprof -o ./report -- myBinaryFile arguments

Build the report

$ hmppReport --build -o ./report

The “--build” command must be called only once at the end of the execution process.

This tool can be combined with any other tool.

4.1.4 Performance Analyzer of the GPU code execution

The Performance Analyzer module is provided to let end-user an easily way to analyze the behavior of CUDA

kernel on a GPU. This tool is based on the CUDA profiling system. Due to hardware limitations, several

execution of the application can be required to get all the necessary profiling information. Depending on the

amount of details requested on the hardware type, from one to seven executions are possible.

3
 In bold, mandatory options.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 18 / 48

HMPP Wizard V2.0

4.1.4.1 Command line

Syntax of the command is
4
:

Instrumentation of the application

$ hmppReport [--help]

 [--v] [--V]

 --tools=perfanalyser

 [--perfanalyzer_runs=<integer>]

 [--perfanalyzer_cuda_arch=<integer>]

 -o [OutputDirectory]

 <Usual compilation line>

Generation of the profiling data

$ hmppReport –tools=perfanalyser –- <execution command>

Where:

- --perfanalyzer_runs: specify the number of profiling run. Each run activates different

counters. Default value is 3. Each run required by the analysis is automatically launched by the
Performance Analyzer Module.

- --perfanalyzer_cuda_arch: specify the CUDA architecture. Value can be 13 or 20 regarding

the type of GPU used. Default value is 20.

Appendix 6.3 details the different counters validated for each run.

Mandatory parameters are:

- -tools=perfanalyser

This command must be followed by a “--build” command.

4
 In bold, mandatory options.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 19 / 48

HMPP Wizard V2.0

##Compilation of the application

hmppReport --tools=perfanalyzer -o reportMatrixFilter hmpp -p gfortran -O3 -g

filter_matrix-3.o time.o -o filter_matrix-3.exe

…

Execution of the application managed by the Performance Analyzer

hmppReport --tools=perfanalyzer -o reportMatrixFilter -- ./filter_matrix-3.exe

 Matrix sizes = 203

 GPU Performance = 3.5286738094233772 GFlop/s - 23.707000000000001 ms

 Matrix sizes = 203

 GPU Performance = 3.7762050286642888 GFlop/s - 22.152999999999999 ms

 Matrix sizes = 203

 GPU Performance = 6.8715516674880899 GFlop/s - 12.173999999999999 ms

 Matrix sizes = 203

 GPU Performance = 7.2971275296580593 GFlop/s - 11.464000000000000 ms

 Matrix sizes = 203

 GPU Performance = 6.6355413659078302 GFlop/s - 12.606999999999999 ms

 Matrix sizes = 203

 GPU Performance = 6.7392467574317241 GFlop/s - 12.413000000000000 ms

 Matrix sizes = 203

 GPU Performance = 6.9538046550290931 GFlop/s - 12.029999999999999 ms

Launch of the report generation

hmppReport --tools=perfanalyzer -o reportMatrixFilter --build

4.1.5 HMPP Wizard Command, Build Option

The last “--build” command allows to:

 Aggregate in a single interface all the analysis performed (advice, profiling);

 Build the HTML report.

Syntax of the command is:

$ hmppReport --build -o [OutputDirectory]

Then to visualize the report enter the command below:

$ firefox [OutputDirectory]/index.html

4.2 HMPP Wizard: Visualize the Results

All the work performed by HMPP Wizard is gathered in a single HTML report. The interface is organized in the

form of plugins dedicated to some themes. A system of filters allows the user to select relevant information.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 20 / 48

HMPP Wizard V2.0

4.2.1 Home page

The Home page summarizes the number of files, functions, etc. that have been analyzed.

Figure 2- HMPP Wizard & Performance Analyzer - Welcome page

4.2.2 General approach

The HMPP Wizard HTML interface objective is to provide, from different point of views, a feedback of the

application performance on a many-core accelerator. Each point of view is called a “view” and can be

accessed directly from the list at the top of the web page. They all work on the same principles.

To operate, the view works on one particular type of element in the application: can be a file, a function, or a

profiling run. Focused on that element, the view opens a page with at least two tabs: the filter tab and the result

tab. The filter tab is used to select the subset of element in the application displayed in the result tab. Further

tabs can be opened depending on the view.

The current version supports the following views:

 The execution profile: filter on CPU profiling runs; displays hotspots of the application.

 The source view: filter on directories; provides a global overview of the application.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 21 / 48

HMPP Wizard V2.0

 The advice view: filter on advice categories; provides an overview of performance issues.

 The performance analyzer view: filter on directories; provides details on the performance achieved on

the accelerator.

4.2.3 Source View

The source view provides an overview of all files analyzed in the application.

In the Filter Tab of the Source Files menu, select the files for which you want to see the possible advices.

Figure 3 - Source Files tab

Then for each file, you get:

 The list of functions defined in the file

 For each function the number of loop nests present

 For each function the number of advices proposed.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 22 / 48

HMPP Wizard V2.0

Figure 4 - File-by-File advice view

4.2.3.1 Filter Advice by Type of Diagnosis

In the Filter tab, select all types of diagnoses you want to display the results.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 23 / 48

HMPP Wizard V2.0

Figure 5 - Advice filter view

4.2.3.2 Overview of Performance Issues per Type of Diagnosis

Clicking in the Result tab displays all file locations where the selected analyses detect potential issues. A click

on an advice opens a new tab with a detail description of the problem.

A color legend is used to present the results:

 In red, advices emitted when the code can not be runned on GPU;

 In orange, advices dedicated to potential GPU execution issue;

 In green, advices dedicated to optimization improvement.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 24 / 48

HMPP Wizard V2.0

Figure 6 - Advice view

4.2.3.3 Detailed View of an Advice

As shown in the snapshot below (Figure 7), the result of the analysis displays the source code and details about

the potential issue..

Furthermore, in some situations, additional information can be provided by clicking on the link “Connect to

MyDevDeck”. MyDevDeck is a website maintained by CAPS entreprise’s team whose the purpose is to provide

additional information about a situation or a concept (see Figure 8).

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 25 / 48

HMPP Wizard V2.0

Figure 7 - Advice detail

Figure 8 - Online Ressources - MyDevDeck website

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 26 / 48

HMPP Wizard V2.0

4.2.4 Execution profile View

4.2.4.1 Profiling Selection

The Execution Profile main tab allows you to select the execution time of the 5 hotspots, the 5

other ones or all functions. In the following display, different runs have been executed (“run1,

run2”) and gathered in a same report.

Figure 9 - Execution Profile - Filter view

4.2.4.2 Execution Profile of the Selection

The Result tab of the Execution Profile contains a graph that displays the accumulated execution time of

functions selected in the left part of the tab.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 27 / 48

HMPP Wizard V2.0

Figure 10 - Execution Profile - Result view

4.2.5 Performance Analyzer View

It offers to the user a visualization of the execution of the kernels on the GPU. The filter tab enables the

selection of the directory containing profiled files. Only the files and directories having profiling information on

the accelerator are displayed.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 28 / 48

HMPP Wizard V2.0

Figure 11 - Performance Analyzer - Filter view

Then for each file, you can display the GPU execution time spent by each codelet.

 Figure 12 - Performance Analyzer - GPU execution time

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 29 / 48

HMPP Wizard V2.0

By clicking on one file displayed, user has access to all the detailed information.

Figure 13 - PErformance Analyzer - GPU Kernel detailed view

4.2.6 Option Dialog

By clicking on the Options item, a dialog window appears letting you select the language and number of

categories to display per page.

CAPS entreprise This information is the property of CAPS entreprise and cannot
be used, reproduced or transmitted without authorization

Page 30 / 48

HMPP Wizard V2.0

Figure 14 - Options page

5 Bibliography

[R1] HMPPWorkbench-2.5_HMPP_Directives_ReferenceManual.pdf, CAPS entreprise, 2011.

[R2] HMPPWorkbench-2.5_HMPPCG_Directives_ReferenceManual.pdf, CAPS entreprise, 2011

[R3] HMPPWorkbench-2.5_Windows_Manual.pdf, CAPS entreprise, 2011

[R4] HMPPWorkbench-2.5_Linux_Manual.pdf, CAPS entreprise, 2011

[R5] CAPS Methodology Code Porting, CAPS entreprise, 2011.

[R6] HMPPWorkbench-2.5_License_InstallationGuide.pdf, CAPS entreprise 2011

[R7] Compute_Visual_Profiler_User_Guide.pdf, User Guide, NVIDIA, May 2011

[R8] http://sourceware.org/binutils/docs-2.18/gprof/index.html, gprof official website

http://sourceware.org/binutils/docs-2.18/gprof/index.html

6 Appendix

6.1 Programming Diagnoses and Advices

Next sections describe diagnoses and advices provided by HMPP Wizard. These one are provided into two

separate sections:

 One dedicated to the diagnoses that prevent HMPP to generate efficient GPU code

 One dedicated to performance improvement of HMPP generated code

6.1.1 Undefined Control Structure (switch case, goto/labels)

Diagnosis Unstructured flow operations disrupt the compiler analysis and make the code

generation difficult or impossible.

Advice Use structured flow operations ('if' statements, ...) instead.

Diagnosis reason

Scope Criteria

Codelet A fully qualified HMPP codelet

Kernel A qualified kernel with a number of dimensions n greater than 1

Loop or Grid None

Access None

Other The loop body contains non regular flow operations that inhibit standard dependency

analysis and sometimes code generation.

6.1.2 Induction Variable not found

Diagnosis Induction variable not found

Advice Re-write the loop: the current form hides the induction variable

Advice Replace the loop operation by a proper 'for' loop

Diagnosis reason

Scope Criteria

Codelet A qualified HMPP codelet

Kernel Kernel with a number of dimensions n greater than 1

Loop or Grid A loop failing the validation phase with one of the following reasons:

 Loop format not supported or not recognized (do while loops)

 Start expression not recognized

 Increment constant not recognized

 Stop expression not recognized

 Symbols in start, stop and increment expressions are not the same.

Access None

Other None

6.1.3 Loop may not be Parallel

Diagnosis The loop is not detected nor specified parallel

Advice Check the parallelism of the loop

Diagnosis reason

Scope Criteria

Codelet A qualified HMPP codelet

Kernel Kernel with a number of dimensions n greater than 1

Loop or Grid A loop not detected parallel

 And not indicated parallel with hmppcg directives

Access None

Other None

6.1.4 Conditional Statement Inside a Kernel

Diagnosis Multiple if statement found. Conditional expressions may impact the performance.

Advice Use masks instead of guards in computations

Advice Split the kernel in several loop nests having the same execution flow (taking the same

path)

Diagnosis reason

Scope Criteria

Codelet A fully qualified HMPP codelet

Kernel A qualified kernel with a number of dimensions n greater than 1

Loop or Grid None

Access None

Other The loop body contains at least two encapsulated if statement in the kernel body.

6.1.5 2D Gridification not performed due to non-nested loop

Diagnosis Computations between loops prevent the gridification

Advice Move the computation inside the inner loop with a conditional

Advice Move the computation before or after the loop nest in a new loop nest

Diagnosis reason

Scope Criteria

Codelet A qualified HMPP codelet

Kernel Kernel with a number of dimensions n greater than 1

 And with at least 2 qualified induction variables

Loop or Grid None

Access None

Other Computations found between loops

6.2 Optimization Diagnoses and Advices

This section describes advices related to the performance improvement of HMPP generated code.

6.2.1 Reduction Inside a Kernel

Diagnosis The symbol <symbol name> should be reduced inside the loop nest

Advice Use the hmppcg parallel reduce directive

Diagnosis reason

Scope Criteria

Codelet A qualified HMPP codelet

Kernel A qualified kernel with a number of dimensions n greater than 1

 And with at least 2 qualified induction variables

Loop or Grid A loop not detected parallel

 And not specified parallel with hmppcg directives

Access Access to a n-1 dimension array

 And each dimension is a linear expression using one qualified induction

variable

 And the memory access is a write access using an accumulation operation

(+=, -=, …).

Other None

6.2.2 Bad Memory Coalescing

This advice relies on the gridification and the CUDA memory coalescing access patterns.

Diagnosis The computation using <symbol name> is globally not well coalesced

Advice Insert a loop interchange HMPP directive in the loop nest

Statistic Number of subscript accesses over X

Statistic Number of subscript accesses over Y

Statistic Number of constant subscript accesses over the grid of threads

Transformation <Code output with the appropriate hmppcg permute directive>

Diagnosis reason

Scope Criteria

Codelet A fully qualified HMPP codelet

Kernel A fully qualified kernel with a number of dimensions n equal to 2 or 3

 And with 2 or 3 qualified induction variables

Loop or Grid A qualified grid of dimension 2 or 3

Access A write access to a n dimension array

 And for each dimension a linear expression that uses exactly one qualified

induction variable

 And a set of read accesses to a n dimension array

 And for each dimension of each read access, a linear expression that uses

exactly one qualified induction variable

 And a number of read accesses with the lowest subscript accessed over Y

higher than the number of read accesses with the lowest subscript accessed

over X

Other None

6.2.3 Inefficient Memory Coalescing

Diagnosis A stride greater than one in the X dimension of the gridification prevents a good

memory coalescing

Advice Reduce the stride of the loop over the induction variable

Diagnosis reason

Scope Criteria

Codelet A fully qualified HMPP codelet

Kernel A fully qualified kernel with a number of dimensions n than 1

 And with at least one qualified induction variable

Loop or Grid A qualified grid of dimension 1 or higher

 A step of the iteration space over X higher than 1

Access None

Other None

6.2.4 Too Low Computation Density

This advice is emitted when the computation density is too low compared to the memory accesses. The method

that uses an arbitrary formula that still needs to be tuned.

Diagnosis The computation density is low

Advice Input data should already be on the accelerator to get performance

Statistic Number of array accesses

Statistic Number of operations

Statistic Number of intrinsic operations

Diagnosis reason

Scope Criteria

Codelet A fully qualified HMPP codelet

Kernel A qualified kernel with a number of dimensions n greater than 1

Loop or Grid None

Access None

Other The computation density score is computed using a formula based on a statistic

analysis of the kernel.

Elements contributing to a high score:

 Number of operations

 Number of intrinsic operations

Elements contributing to a low score:

 Number of memory accesses

 Number of array accesses

 Number of conditionals

 Number of flow operations

6.2.5 2D Convolution Patterns

Diagnosis A 2D convolution pattern was found writing <symbol name> over <induction variable Y>

and <induction variable X>

Advice You should consider using an optimized kernel for this access, more information in the

HMPP Cookbook

Statistic Minimum stencil offset over each induction variable

Statistic Maximum stencil offset over each induction variable

Diagnosis reason

Scope Criteria

Codelet A fully qualified HMPP codelet

Kernel A fully qualified kernel with a number of dimensions n equal to 2

 And with 2 qualified induction variables

Loop or Grid A qualified grid of dimension 2

Access A memory access pattern made of a set of computations using a set of data

from 2D region around a destination of the computation. The size of the

memory region is the stencil.

Other None

6.3 HMPP Performance Analyzer Metrics

The HMPP Performance Analyzer metrics are divided in two parts:

 Synthetic metrics based on the statistical information of the profiling traces. These metrics are

calculated depending on the presence of certain events in the profiling file. They provide pertinent

information to the kernel behavior analysis.

 Raw metrics extracted from the profiling traces. The metrics are exhaustively listed from the data

found in the profiling traces.

6.3.1 Synthetic Metrics

6.3.1.1 Kernel Name

The name used to identify the kernel is the C++ demangled name as generated by HMPP. The real
kernel name is the name used by the dynamic library and the NVidia Profiler.

6.3.1.2 Average GPU Execution Time

Display the arithmetic average of kernel execution time on the GPU. This metric is systematically
selected by the NVidia™ profiler and therefore always available.

6.3.1.3 Gridification / Grid / Thread Block Size

Display a summary of the kernel grid properties. If sizes of both blocks and threads are available,
then the kernel number of blocks in the grid and number of threads is computed.

For example:

grid 113x113=12769 blocks, thread block size of 8x8x1, 817216 threads

If only one size, blocks or threads, is available, only their respective number is computed.

6.3.1.4 Global Memory Read Throughput

Display the read throughput of the global memory in Giga bytes per second per TPC. The
computation is the following: (gld_32*32 + gld_64*64 + gld_128*128) / gputime. The TPC is the
Texture Processing Cluster: a group composed of 1 to 3 multi-processors. The ‘gld_xx’ metrics count
the number of memory transactions operated by the TPC.

This metric is for the moment restricted to CUDA architectures 1.2 and 1.3.

6.3.1.5 Global Memory Write Throughput

Display the write throughput of the global memory in Giga bytes per second per TPC. The
computation is the following: (gst_32*32 + gst_64*64 + gst_128*128) / gputime. The TPC is the
Texture Processing Cluster: a group composed of 1 to 3 multi-processors. The ‘gst_xx’ metrics count
the number of memory transactions operated by the TPC.

This metric is for the moment restricted to CUDA architectures 1.2 and 1.3.

6.3.1.6 Global Memory Throughput

Display the overall throughput of the global memory in Giga bytes per second per TPC. The
computation is the following: (gld32*32 + gld_64*64 + gld_128*128 + gst32*32 + gst_64*64 +
gst_128*128) / gputime. The TPC is the Texture Processing Cluster: a group composed of 1 to 3
multi-processors. The ‘gld_xx’ and ‘gst_xx’ metrics count the number of memory transactions
operated by the TPC.

This metric is for the moment restricted to CUDA architectures 1.2 and 1.3.

6.3.1.7 Load/Store Execution Density

Display the number of load or store transactions executed by µs in the kernel. The computation is the
following: (gld32 + gld_64 + gld_128 + gst32 + gst_64 + gst_128) / gputime.

6.3.1.8 Branch Divergence / Branch Ratio

Display the ratio between the number of divergent branches over the number of branches. This ratio
should be kept low unless the number of branches is small.

6.3.1.9 Computation Density

Display the number of instructions executed by µs in the kernel.

This metric is proportional with the instruction throughput ratio of the kernel. The real throughput ratio
can be computed multiplying the computation density by the maximum number of instructions issued
per cycle and divided by the frequency.

6.3.1.10 Load/Store Code Density

Display the ratio between the number of load or store transactions over the total number of
instructions. The computation is the following: (gld_32 + gld_64 + gld_128 + gst_32 + gst_64 +
gst_128) / instructions.

6.3.2 Raw Metrics

The raw metrics are provided by NVIDIA profiling traces. For further details, please refer to the
standard CUDA SDK documentation.

HMPP Performance Analyzer exhaustively lists all metrics found in the traces of each kernel:

 Number of measures: the number of profiling trace entries used to calculate the

statistics.

 Total: the sum of all trace values.

 Arithmetic average: the total divided by the number of measures.

 Maximum value among all trace values.

 Minimum value among all trace values.

6.4 Performance Analyzer : CUDA counters

Below, some information regarding the various counters used for each run. For further details,

please refer to [R7].

6.4.1 1.3 NVIDIA GPU Architecture

Run #1 Gridsize Number of blocks in a grid along the X and Y dimensions

for a kernel launch.

 Threadblocksize Number of threads in a block along the X, Y and Z

dimensions for a kernel launch.

 Regperthread Number of registers used per thread for a kernel launch.

 divergent_branch Number of divergent branches within a warp. This

counter is incremented by one if at least one thread in a

warp diverges (that is, follows a different execution path)

via a data dependent conditional branch. The counter is

incremented by one at each point of divergence in a

warp.

 branch Number of branches taken by threads executing a

kernel. This counter is incremented by one if at least one

thread in a warp takes the branch. Note that barrier

instructions (__syncThreads()) also get counted as

branches.

 sm_cta_launched Number of threads blocks launched on a multiprocessor.

 instructions Number of instructions executed.

Run #2 Gridsize

Threadblocksize

Regperthread

See above

 local_load Number of local memory load transactions. Each local

load request will generate one transaction irrespective of

the size of the transaction.

 local_store Number of local memory store transactions; incremented

by 2 for each 32-byte transaction, by 4 for each 64-byte

transaction and by 8 for each 128-byte transaction for

compute devices having compute capability 1.x. It is

incremented by 1 irrespective of the size of the

transaction for compute devices having compute

capability 2.0.

 gld_32b Number of 32 byte global memory load transactions;

incremented by 1 for each 32 byte transaction.

 gld_64b Number of 64 byte global memory load transactions;

incremented by 1 for each 64 byte transaction.

Run #3 Gridsize

Threadblocksize

Regperthread

See above

 gld_128b

Number of 128 byte global memory load transactions;

incremented by 1 for each 128 byte transaction.

 gst_32b

Number of 32 byte global memory store transactions;

incremented by 2 for each 32 byte transaction.

 gst_64b

Number of 64 byte global memory store transactions;

incremented by 4 for each 64 byte transaction.

 gst_128b Number of 128 byte global memory store transactions;

incremented by 8 for each 128 byte transaction.

6.4.2 2.0 NVIDIA GPU Architecture

Run #1 Gridsize Number of blocks in a grid along the X and Y dimensions

for a kernel launch.

 Threadblocksize Number of threads in a block along the X, Y and Z

dimensions for a kernel launch.

 Regperthread Number of registers used per thread for a kernel launch.

 threads_launched Number of threads launched on a

multiprocessor.

 warps_launched Number of warps launched on a

multiprocessor.

 fb_subp0_read_sectors Number of read requests sent to sub-partition 0 of all the

DRAM units

 fb_subp0_write_sectors Number of write requests sent to sub-partition 0 of all the

DRAM units

Run #2 Gridsize

Threadblocksize

Regperthread

See above

 gld_request Number of global memory load requests.

 gst_request Number of global memory store requests.

 local_load Number of local memory load transactions. Each local

load request will generate one transaction irrespective of

the size of the transaction.

 local_store Number of local memory store transactions. It is

incremented by 1 irrespective of the size of the

transaction for compute devices having compute

capability 2.0.

 fb_subp1_read_sectors Number of read requests sent to sub-partition 1 of all the

DRAM units

 fb_subp1_write_sectors Number of read requests sent to sub-partition 1 of all the

DRAM units

Run #3 Gridsize

Threadblocksize

Regperthread

See above

 l1_global_load_hit Number of global load hits in L1 cache.

 l1_global_load_miss Number of global load misses in L1 cache.

Run #4 Gridsize

Threadblocksize

Regperthread

See above

 l1_local_load_hit Number of local load hits in L1 cache.

 l1_local_load_miss Number of local load misses in L1 cache

Run #5 Gridsize

Threadblocksize

Regperthread

See above

 inst_executed Number of instructions executed, do not

include replays.

 l1_local_store_hit Number of local store hits in L1 cache.

 l1_local_store_miss Number of local store misses in L1 cache.

Run #6 Gridsize

Threadblocksize

Regperthread

See above

 branch Number of branches taken by threads executing a

kernel. This counter is incremented by one if at least one

thread in a warp takes the branch. Note that barrier

instructions (__syncThreads()) also

get counted as branches.

Run #7 Gridsize

Threadblocksize

See above

Regperthread

 divergent_branch Number of divergent branches within a warp. This

counter is incremented by one if at least one thread in a

warp diverges (that is, follows a different execution path)

via a data dependent conditional branch. The counter is

incremented by one at each point of divergence in a

warp.

Headquarters - FRANCE

Immeuble CAP Nord

4A Allée Marie Berhaut

35000 Rennes

France

Tel.: +33 (0)2 22 51 16 00

info@caps-entreprise.com

CAPS - USA

4701 Patrick Drive Bldg 12

Santa Clara

CA 95054

Tel.: +1 408 550 2887 x70

usa@caps-entreprise.com

CAPS - CHINA

Suite E2, 30/F

JuneYao International Plaza

789, Zhaojiabang Road,

Shanghai 200032

Tel.: +86 21 3363 0057

apac@caps-entreprise.com

