
OLCF and NICS/RDAV Tutorial: Parallel R and High Performance
Computing
Prepared by Amy Szczepanski, Pragnesh Patel, and George Ostrouchov.

http://olcf.ornl.gov/ and http://rdav.nics.tennessee.edu/

1. You can download R from www.r-project.org. Installation will depend on your OS. You will also
need packages multicore, foreach, doMC, doSNOW, and pnmath. All of these except the last are
available at www.r-project.org. The tar file for the llast one is at
http://www.stat.uiowa.edu/∼luke/R/experimental/pnmath 0.0-3.tar.gz. Download it and
install from within R by install.packages(pkgs=’’pnmath 0.0-3.tar.gz’’).

Launch R on your computer.

2. Last time there was a request for more ggplot2 stat examples. Here are a few to try on your own:

ggplot(diamonds, mapping=aes(carat, price)) + geom_point(size=1) +

stat_bin2d(alpha=I(1/1.5))

ggplot(diamonds, mapping=aes(carat, price)) + geom_point(size=1) +

stat_bin2d(alpha=I(1/1.5)) + coord_polar()

ggplot(diamonds, mapping=aes(carat, price)) + geom_point(size=1) +

stat_bin2d(alpha=I(1/1.5)) + scale_x_log10() + scale_y_log10()

ggplot(diamonds, mapping=aes(price,fill=clarity)) + geom_histogram()

ggplot(diamonds, mapping=aes(carat, price)) + geom_point() + stat_density2d() +

scale_x_log10() + scale_y_log10()

ggplot(diamonds, mapping=aes(carat, price)) + stat_binhex(bins=50) +

scale_x_log10() + scale_y_log10()

ggplot(diamonds, mapping=aes(depth,table,color=cut)) + geom_point() +

stat_density2d(aes(x=depth,y=table,color="1"))

ggplot(diamonds, mapping=aes(depth,table)) + stat_binhex() + facet_wrap(~cut)

3. There was another question about getting your data into R. This is answered in a most
comprehensive way in the “R Data Import/Export” manual at
http://cran.r-project.org/manuals.html.

4. Today we will be learning:

• A bit about interpreter nature of R.

• A bit about timing and profiling.

• Parallelizing without rewriting.

• Parallelizing with minor rewriting.

• Some words about R with MPI or clusters.

• Some words R with GPU and with large memory.

5. R is an interpreted language, like python or matlab, so anything involving the interpreter is
necessarily slow compared to compiled languages. However, many functions and some operators
are calls to compiled code, so they are generally just as fast as compiled code.

The first thing to consider in speeding up an R code is conversion of any loops, especially nested
loops, into matrix expressions and matrix functions. A good source of suggestions is
http://manuals.bioinformatics.ucr.edu/home/programming-in-r#Progr noloops. Consider
this example:

myMA <- matrix(rnorm(1000000), 100000, 10)
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system.time(myMAmean <- apply(myMA, 1, mean)); myMAmean[1:4]

system.time(myMAmean <- rowMeans(myMA)); myMAmean[1:4]

6. Nautilus is a 1024 core SMP so many of these examples will run much the same way on Nautilus as
they would on your own multicore laptop.

Lens is a cluster of 32 16-core nodes for a total of 512 cores.

I will use 16 cores on Lens and my 2-core laptop for all my examples.

7. On lens, I am going to allocate 1 node with 16 cores to run my R scripts.

qsub -A chargeaccount -I -X -lnodes=1:ppn=16,walltime=1:00:00

The -I flag make the allocation interactive and puts me in a shell on the node. The -X flag allows X11
forwarding, and walltime requests 1 hour.

To make R available, we

module load r

8. To compare the performance of parallel and serial calculations, we will need to quantify
performance. The easiest way to find out how long it takes an R function to run is with the function
system.time().

9. Speed-ups for free: If our installation of R is compiled with Intel’s MKL library or AMD’s ACML
library , we’ll automatically get multi-threaded implementations of standard linear algebra
functions. Here is an example of an R script that demonstrates this. This script will create a matrix X
filled with random numbers from a normal distribution and will calculate XtX two ways:

(a) Using the matrix multiplication operation %*% to multiply Xt by X.

(b) Using the statistics function crossprod().

Then it calls the all.equal() function to make sure that it got the same answer from all three
calculations.

its = 2500

dim = 1750

X = matrix(rnorm(its*dim),its, dim)

# BLAS matrix mult

system.time({C1 = t(X) %*% X})

# BLAS matrix mult

system.time({C2 = crossprod(X)})

print(all.equal(C,C1,C2))

10. In addition to using system.time() we can use Rprof to profile our code. Here is the same code,
slightly rewritten.

its = 2500

dim = 1750

X = matrix(rnorm(its*dim),its, dim)

my.cross.prod <- function(X)

{
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C = matrix(0, ncol(X), ncol(X))

for(i in 1:nrow(X))

{

C = C + X[i,] %o% X[i,]

}

return(C)

}

Rprof("matrix-mult.out")

C = my.cross.prod(X)

C1 = t(X) %*% X

C2 = crossprod(X)

Rprof(NULL)

print(all.equal(C,C1,C2))

quit(save="no")

After we run this code, we have a fille called matrix-mult.out that has the timing information in it.
We would use R CMD Rprof matrix-mult.out to see which functions we spend the most time in.

11. Another easy way to get a speed-up is to use the pnmath package in R. This package takes many of
the standard math functions in R and replaces them with multi-threaded versions, using OpenMP.
Here’s a quick example of some code that you could run in an interactive R session to try this out. It
creates two vectors of random numbers (uniform distribution) and applies some math functions to
them. Some functions get more of a speed-up than others with pnmath.

v1 <- runif(1000)

v2 <- runif(100000000)

system.time(qtukey(v1,2,3))

system.time(exp(v2))

system.time(sqrt(v2))

library(pnmath)

system.time(qtukey(v1,2,3))

system.time(exp(v2))

system.time(sqrt(v2))

12. Here are some timings of some R functions using pnmath on 4 and 8 cores on Nautilus:
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Function Four cores Eight cores
sqrt() 0.207 0.199
exp() 0.069 0
dnorm() 0.055 0.001
lgamma() 0.013 0.013
dpois() 0 0
df() 0.019 0.009
pt() 0.004 0.002
qchisq() 0.04 0.02
psigamma() 0.007 0.004
qbeta() 0.062 0.031
qnchisq() 5.356 2.683
ptukey() 61.436 30.602
qtukey() 334.185 165.328

13. When using pnmath, we can set the number of threads in our R script with setNumPnmathThreads(8).

14. Some methods of running R in parallel require us to write our code in a certain way. We’ll look at
loop parallelism next. Once by applying a function to every item in a list and then at parallel for()
loops. The pnmath package is still experimental and interacts badly with the fork() mechanism (our
next topic), so I will restart my R session to unload the pnmath library.

15. The multicore package has a function mclapply() that allows us to apply a function to every item in a
list (multicore list apply). It also has the function pvec() that allows us to apply a function to every
element of a vector. We load this package with library(multicore). We can use the following
commands to check how many cores are available, to set the number of cores to use, or to see how
many cores we are using:

library(multicore)

multicore:::detectCores()

options(cores = 8)

getOption('cores')

Note that multicore relies on fork() and spawns new processes.

16. A simple example with mclapply() or pvec():

x <- mclapply(1:1000, sqrt)

y <- pvec(1:1000, sqrt)

The main difference between these two has to do with assumptions on how the calculation can be
applied to the vector.

17. A slightly more complicated example, comparing mclapply() to lapply():

library(ggplot2)

library(multicore)

rdata <- function(n, par)

{

x <- 2*runif(n) - 1

m <- 0 + 1*x + 2*x^2 + 3*x^3

y <- exp(m)

z <- round(exp(m + rnorm(n, sd=par)), 0)

data.frame(list(y=y, z=z, x1=x, x2=x^2, x3=x^3))

}
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fitmodel <- function(dat)

{

mod <- glm(z ~ x1 + x2 + x3, data=dat, family=poisson)

mod$coefficients

}

obs <- lapply(rep(10000, 100), rdata, par=2)

ggplot(data=obs[[1]]) + geom_point(aes(x1, z)) +

geom_line(aes(x1, y), color="red") + scale_y_log10()

system.time(results <- lapply(obs, fitmodel))

system.time(resultsmc <- mclapply(obs, fitmodel))

18. This package also has a parallel() and collect() construct.

19. The next level of complication is the foreach package. With this package, you can have a for() loop
run in parallel. It requires you to tell R which method of parallelization you want to use. There are
many options, including multicore (which we just saw), SMP, Rmpi, snow, and others. You tell R that
you want the loop to run in parallel by specifying %dopar%. For it to run in serial, you would say
%do%. Here is an illustration of the multicore and snow options.

library(doMC)

library(foreach)

registerDoMC()

foreach(i=1:16) %dopar%

{

test <- rnorm(100000)

loess.smooth(test, test)

}

library(doSNOW)

library(foreach)

registerDoSNOW(makeCluster(2, type = "SOCK"))

foreach(i=1:16) %dopar%

{

test <- rnorm(100000)

loess.smooth(test, test)

}

20. Other ways of parallelizing code in R include snow (simple network of workstations) and Rmpi. With
snow, you define a cluster and then can use functions such as clusterApply() to have each node in a
cluster apply a function to an item from a list.

21. There is a GSoC project in the works to use OpenMP directives in R. OpenMP in FORTRAN and in C
directs the compiler on how to produce parallel SMP code. In a similar way, this GSoC project
develops a pre-compiler for R to use OpenMP directives to produce R code instrumented with some
of the tools we just discussed.

22. Although there is a 64-bit version of R, there is a problem: The indexing is limited to 32-bit integers.
One way to deal with this is to split up the data across processors with separate R sessions that
communicate via MPI.

23. Rmpi is pretty much what it sounds like. For some clusters, a combination of spreading loop
iterations out to the nodes and using pnmath so that each node runs multithreaded math operations
can be effective. Here is a simple Hello World example:

library(Rmpi, quietly=TRUE)

rank <- mpi.comm.rank(0)

size <- mpi.comm.size(0)
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cat("Hello World from", rank, ":", size, "\n")

mpi.quit(save = "no")

I saved this script as HelloWorldBatch.R and I will run it with orterun Rscript

HelloWorldBatch.R

24. The gputools package provides R interfaces to handful common statistical algorithms. They are
implemented using mixture of CUDA language, CUBLAS library and CULA library. It contains
many other functions, including hierarchical clustering, SVM training, SVD, Least-squares fit, linear
modeling, and many others. Less-communicative algorithms seeing speedups over 20 times on data
set of moderate size, but speed up factors vary with CPU, memory configurations and, of course,
GPU. Here is an example:

library(gputools)

matA <- matrix(runif(3*2), 3, 2)

matB <- matrix(runif(3*4), 3, 4)

gpuCrossprod(matA, matB) # Perform Matrix Cross-product with a GPU

numVectors <- 5

dimension <- 10

Vectors <- matrix(runif(numVectors*dimension), >numVectors, dimension)

gpuDist(Vectors, "euclidean")

gpuDist(Vectors, "maximum")

gpuDist(Vectors, "manhattan")

gpuDist(Vectors, "minkowski", 4)

25. For working with large data on SMP machines, consider the packages bigmemory, biganalytics,
bigalgebra, and bigtabulate. The data structures may be allocated to shared memory, allowing separate
processes on the same computer share access to single copy of the date set. The data structures may
also be file-backend allowing users to easily manage and analyze data sets larger than available RAM
and share them across nodes of a cluster. This generally needs a parallel file system for efficiency.

26. Summary of these packages:

bigmemory: supports the creation, manipulation and storage of large matrices.

bigalgebra: provides linear algebra functionality with large matrices.

biganalytics: extends the functionality of bigmemory.

bigtabulate: supports table(), split() and tapply() like functionality for large matrices.

foreach + bigmemory: a winning combination for massive data SMP programming.

27. Here is an example that uses a very, very large matrix. This example illustrates how to work with a
matrix with more than 231 − 1 elements.

# big.matrix: no 2^31-1 object size limitation.

library(bigmemory)

R <- 3e9 # 3 billion rows

C <- 2 # 2 columns

print("48 GB total size:")

R*C*8 # 48 GB total size
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date()

x <- filebacked.big.matrix(R, C, type='double',backingfile='huge-data.bin',
descriptorfile='huge-data.desc')
## Generates huge-data.bin and huge-data.desc files.

## Now we can use huge-data.desc file in any R session.

x[1,] <- rnorm(C)

x[nrow(x),] <- runif(C)

summary(x[1,])

summary(x[nrow(x),])

date()

Note: This example will leave a 48 GB file on your hard drive!

28. Here is another series of examples that work with a large data set. This uses the airline data set. You
can download the data from http://stat-computing.org/dataexpo/2009/the-data.html. This
example is based on the year 2008 data, which comes in the file 2008.csv.bz2 and can be extracted
with bzip2 -d *.bz2, giving you the 659 MB spreadsheet.

This script will create a binary file-backing for this matrix, which we name airline.bin and a
descriptor file that we name airline.desc. These files allow R to access the large data set more quickly.

library(bigmemory)

library(biganalytics)

x <- read.big.matrix("2008.csv", type="integer", header=TRUE,

backingfile="airline.bin", descriptorfile="airline.desc", extraCols="Age")

summary(x)

29. This next script will let us use this backing file to access the data quickly in later R sessions, without
having to take several minutes to read the spreadsheet.

library(bigmemory)

library(biganalytics)

xdesc<- dget("airline.desc") ## we do not need to read all data from csv again.

x<-attach.big.matrix(xdesc)

system.time(numplanes<-colmax(x,"TailNum", na.rm=TRUE))

system.time(numplanes<-colmax(x,"TailNum", na.rm=TRUE))

system.time(colmin(x, 1))

system.time(a <- x[,1])

system.time(a <- x[,2])

colnames(x)

tail(x, 1)

30. A great reference for R in an HPC environment is:
http://dirk.eddelbuettel.com/papers/useR2009hpcTutorial.pdf
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