
OLCF and NICS/RDAV Tutorial: Graphics with R using ggplot2
Prepared by Amy Szczepanski, Pragnesh Patel, and George Ostrouchov.

http://olcf.ornl.gov/ and http://rdav.nics.tennessee.edu/

For this tutorial you should have installed R from www.r-project.org. Also, install the ggplot2 package if
you do not have it already. Installation will depend on your OS.



1. Launch R on your computer. Once R is running, give the command:

library(ggplot2)

Almost every example today will be based on the diamonds dataset that is included with the ggplot2
package.

2. We’ll load the data set with data(diamonds). This is a dataset that is built in to the ggplot2 package.

3. Let’s try to understand this data. Remember that last time we used the following commands to get
started.

head(diamonds)

summary(diamonds)

str(diamonds)

4. There are several ways to make plots with ggplot2. You can make “quick” plots with qplot() or you
can use the full power of the grammar with commands that build your graphs up in layers.

5. Remember, to get help on qplot(), give the command ?qplot. To see some examples of graphs done
with qplot(), you can give the command example(qplot).

6. Let’s get to know the data with some really basic graphs. As we saw from the results of the str()

function, some of our variables are numbers and some of them are factors. We start with one variable
at a time.

qplot(cut, data=diamonds)

qplot(price, data=diamonds)

qplot(price, data=diamonds, binwidth=100)

7. Let’s examine the relationship between the price of the diamond as a function of the “four Cs.”

qplot(carat, price, data=diamonds)

qplot(carat, price, data=diamonds, alpha=I(1/10))

Notice there are not many “almost” two carat diamonds but lots of two carat diamonds!

8. Let’s keep adding more to the plot. A log transformation will bring carat and price distribution
closer to uniform.

qplot(carat, price, data=diamonds, log="xy")

qplot(carat, price, data=diamonds, log="xy", facets = cut ~ color)

qplot(carat, price, data=diamonds, log="xy", facets = cut ~ color, color=clarity)

9. To understand better what is going on, let’s switch to the ggplot() function and the Layered
Grammar of Graphics viewpoint.

p <- ggplot(diamonds, aes(carat, price))

p

p + layer(geom="point")

p + layer(geom="point", alpha=I(1/10)

p + layer(geom="point") + scale_x_log10() + scale_y_log10()

p + layer(geom="point") + scale_x_log10() + scale_y_log10() +

facet_grid(cut ~ color)

To map clarity to color, we first change the mapping via aes()

p <- ggplot(diamonds, aes(carat, price, color=clarity))

p + layer(geom="point") + scale_x_log10() + scale_y_log10()

10. So far we duplicated what we did earlier via qplot(). Let’s add another layer.



p + layer(geom="point") + layer(stat="smooth") + scale_x_log10() + scale_y_log10()

p + layer(geom="point",stat="smooth") + scale_x_log10() + scale_y_log10()

p + layer(stat="identity", geom="point") + layer(stat="smooth", geom="smooth") + scale_x_log10() + scale_y_log10()

11. Because geoms and stats are the main components of a layer, there is another way to specify these.
This is my favorite way to work with ggplot.

p + geom_point() + stat_smooth() + scale_x_log10() + scale_y_log10()

p <- p + scale_x_log10() + scale_y_log10()

p + geom_point() + stat_smooth(method="lm)

12. The geoms that I use most frequently are: point, jitter, smooth, histogram, boxplot, and bar.

13. We can set the color, fill, size, and shape.

14. Let’s use qplot() to look at the relationship between clarity and price, once with jitter as the geom
and once with boxplot.

p <- ggplot(diamonds, aes(clarity, carat))

p + geom_point()

p + geom_jitter()

p + geom_boxplot()

p + stat_boxplot()

15. Instead of using the entire data set, we can also work with a subset. Instead of having
data=diamonds, we could have instead data = subset(diamonds, carat==1). Try these on your own:

p <- ggplot(subset(diamonds, carat == 1), aes(clarity, price))

p + geom_boxplot()

p + geom_boxplot() + geom_jitter()

p + geom_jitter() + geom_boxplot()

p + geom_jitter() + geom_boxplot() + facet_wrap(~cut)

p + geom_jitter() + geom_boxplot() + facet_grid(color~cut)

16. As we talked about last time, everything in R is an object. These graphs are no different!

p <- ggplot(diamonds, aes(clarity, price))

str(p)

summary(p)

p <- p + geom_point()

summary(p)

17. The geoms include: abline, area, bar, bin2d, blank, boxplot, contour, crossbar, density, density2d,
errorbar, errorbarh, freqpoly, hex, histogram, hline, jitter, line, linerange, path, point, pointrange,
polygon, quantile, rect, ribbon, rug, segment, smooth, step, text, tile, and vline. If your R installation
has tab completion, you can see the whole list of geoms by typing geom and then tab. Not every
geom works for every type of data.

18. Some interesting available scale include: alpha, size, and shape.

19. The coord include: cartesian, flip, polar, equal, map, and trans. Some of these require further
parameters.

20. the available aesthetics depend on the geom. They often include: x, y, color (colour), fill, linetype,
size, weight, xmin, xmax, ymin, and ymax.

21. What kind of adjustments can we make to our graph, especially as we are preparing it for
publication? Consider the following graph:



ggplot(diamonds, aes(x=carat, y=price)) + geom_point()

We can change the theme from a grey background to a white background:

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + theme_bw()

The two built-in themes are theme bw() and theme gray(). We can set the theme for all graphs from
this point forward with theme set().

ggplot(diamonds, aes(x=carat, y=price)) + geom_point() + opts(title="This is our

graph", plot.title=theme_text(colour="red", size=20))

ggplot(diamonds, aes(x=cut)) + geom_bar() + opts(axis.text.x=theme_text(hjust=0,

angle=-90))

22. Recall from last time that we have several options for saving our graphs, including the pdf() and
png() functions.


