

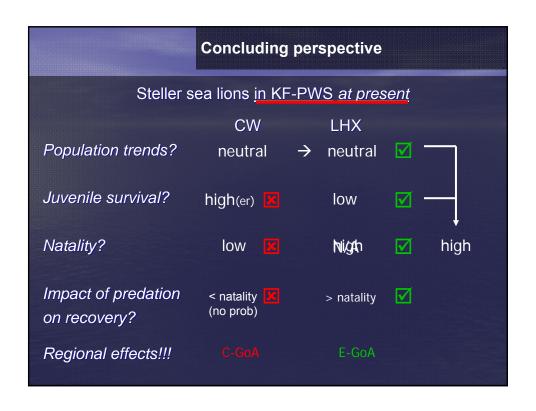
Context - Holmes et al. Ecol. Appl. 2007 Computational inferential model based on time-varying Leslie Population Matrix (LPM) Leslie Population Matrix: seeded with initial pup count → annual survival schedules (ages 0-31 yrs) successive → yields counts per year class years → annual fecundity schedules (0-31) \rightarrow yields pups per fem. year class Σ Imputil prediction in the prediction of the pred as hypotheses becker the paper trajectory & juvenile fraction //T Output: \rightarrow juvenile survival (12-36 mo) after *n* years → overall natality (#pups / females

	Context – predicted juv survival rates	
Survival rate esti	mates 12 – 36 months (a	adjusted)
	HFYS - CGoA apparent	LHX – PWS/KF actual
Pre-decline	0.753	N/A
Peak decline	0.422 (0.4-0.47)	N/A
→2004/2006	0.720 (0.7-0.77)	0.5 (0.4-0.62)
LHX LHX	venile survival in PWS/KF data mix of females and males! data from PWS – KF region only data from small sample size, pos	(E-GoA)

```
Context – Holmes et al. Ecol. Appl. 2007

Computational inferential model based on time-varying Leslie Population Matrix (LPM)

Leslie Population Matrix:
seeded with initial pup count annual survival schedules (ages 0-31 yrs)


→ yields counts per year class annual fecundity schedules (0-31)

→ yields pups per fem. year class 

Output: → overall natality (#pups / females of reprod age)
```

	Context – predi	cted natality		
Natality estimates (# <u>all</u> pups / # females age >4-21 years)				
	HFYS - CGoA	LHX & HFYS 0-3 4+ yrs		
Pre-decline Σ sched	0.494 _{ule} 0.515	N/A		
\$5555555555555555555555555555555555555	0.520 (0.7-0.77) tule 0.331 (0.32-0.35)			
Natality possibly quite high PWS/KF!				
	ect natality estimate! sted for J/T metric (C-GoA)			

adding proportion of predation to population matrix using predation rate of (0.875 yr 2 & 3, -33% yr 1, -25% p.a. for yrs >3) using ASR for yrs 0-1 from Pendleton & Maniscalco = NMML (0.65) 50.3% (45 - 71) of females born are consumed before primiparity 19.2% die by other causes 30.5% are recruited More females are consumed than recruited!

Concluding perspective

Survival & Predation

- an empirically intractable problem?

We CAN quantify predation!

- Not a technical issue, but a permit issue!

Let's keep an open mind about whether:

juvenile survival has recovered natality is "critically" low

Need to study survival & predation & natality (test models) at same spatial & temporal resolution (reduce variability)

→ LHX Mk II with parturition detection – a true Life History Tag for individual animals: survival, predation, EoL emigration, age at primiparity, lifetime reproductive success

Acknowledgements

Roger Hill & Wildlife Computers
Marty Haulena (TMMC, Vanc Aq)
Pam Tuomi (ASLC)
John Maniscalco & video team (ASLC)
ASLC capture team, husbandry & veterinary staff

Funding through:

- North Pacific Marine Research Program
- Pollock Conservation Cooperative Research Program
- Steller Sea Lion Research Initiative (NOAA)
- Alaska Sea Life Center
- North Pacific Universities Marine Mammal Research Consortium

NMFS Permits # 1034-1685, 881-1668, 881-1890