Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data Scott Frazier Department of Fisheries & Wildlife Sciences 302 ABNR Building University of Missouri, Columbia MO 65211-7240 After photo of WRP site and David L. Galat U.S. Geological Survey, Missouri Cooperative Fish & Wildlife Research Unit 302 ABNR Building, University of Missouri, Columbia, MO 65211-7240 Prepared for: Natural Resources Conservation Service, Resource Inventory & Assessment Division, Conservation Effects Assessment Project, Beltsville, MD 20705-5410. May 2009 # Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data Scott Frazier Department of Fisheries & Wildlife Sciences 302 ABNR Building University of Missouri Columbia, MO 65211-7240 and ¹David L. Galat U.S. Geological Survey Missouri Cooperative Fish & Wildlife Research Unit 302 ABNR Building University of Missouri Columbia, MO 65211-7240 Email: galatd@missouri.edu May 2009 Prepared for: Natural Resources Conservation Service, Resource Inventory & Assessment Division, Conservation Effects Assessment Project, Beltsville, MD 20705-5410. ¹Author to whom correspondence should be addressed Suggested citation: Frazier, S. and D.L. Galat. 2009. Analysis of Missouri Wetlands Reserve Program easement monitoring data. Final Report to Natural Resources Conservation Service, Resource Inventory & Assessment Division, Conservation Effects Assessment Project. University of Missouri, Columbia, MO. Cover Photos: Aerial photographs of a before (left, 18 October 1998) and after (right, 23 October 2006) 250 acre WRP easement Massasauga Flats in southwest Linn County, Missouri. Source: Dale Humburg, Missouri Department of Conservation. ## Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data ### **Executive Summary** Against a historical backdrop of massive wetland loss, Missouri was one of nine states to first enroll in the USDA's Wetlands Reserve Program. The WRP is one of a host of voluntary conservation programs for landowners that are supported and administered by the Department's Natural Resources Conservation Service (NRCS). The goal of the WRP is to maximize wetland functions and values, and optimize wildlife habitat "on every acre enrolled..." Whereas the Program is national in scope, Missouri is one of the leading states in both number and area of easements enrolled. Missouri is also in the unique position of having gone further than any other state in terms of ecological monitoring of WRP sites. Whereas WRP policy mandates monitoring easements at least once every 3 years, typical WRP monitoring is primarily concerned with Program compliance. However since sites were being visited anyway for this purpose, the Missouri NRCS office and the Missouri Department of Conservation (MDC) joined together in an ecological monitoring program to quantify the habitat value of Missouri wetlands restored through the WRP. Compliance and ecological monitoring data in Missouri were collected by contracted "technical service providers". The initial monitoring dataset covered a period of approximately three *fiscal* years (2004-2006) and involved single-visits to 594 easement sites. Ecological data were collected in the field using GIS software on handheld computers, a global positioning system (GPS), and custom electronic data forms. Previously digitized easement boundaries, planned wetland habitat type boundaries (polygons), and information on installed practices were used with the mobile GIS and GPS in the field to locate and verify features. Post-restoration wetland habitat type was recorded using a modified Cowardin habitat classification system (Cowardin et al. 1979). Habitat data variables were also collected during monitoring for input into habitat suitability index (HSI) models for several representative bird species. In October 2006, the "Missouri WRP Analysis Project" commenced to analyze this ecological monitoring dataset. It was executed by the University of Missouri and USGS for the existing program. Analyses employed GIS and conventional database methods. Data analysis focused on easements for which pre-restoration Cowardin wetland classes had been mapped and digitized for an earlier project. The resulting overlapping "parent" dataset for analyses covered approximately 66,700 acres in 594 conservation easements. The restoration age of easements included in the analysis ranged from 2.7 to 12.2 years. "Habitat succession" was indicated by change in land cover conditions observed before and after restoration. This analysis demonstrated a clear change from primarily agricultural cropland cover to herbaceous or forested wetland vegetation. HSI indices derived from three models for species associated with non-forested habitats, and three for species associated with forested habitats, were analyzed to quantify wildlife habitat values. Post-restoration HSI scores were markedly higher than the assigned pre-restoration baseline for all non-forest species models and for two of the three forest species models on the restored cropland. The increase in habitat quality (HSI) was greatest for species associated with emergent herbaceous habitats, which develop faster than forest habitats, but are often a precursor of forested wetlands. These results suggest that WRP is contributing substantially to Missouri wetland wildlife conservation. Whereas direct observation during single site visits did not directly indicate WRP site importance to rare, threatened or endangered species, GIS analysis of species ranges revealed that a slight majority of WRP sites do provide habitat that potentially supports rare, threatened or endangered species. The contrast between WRP sites in Missouri's four Ecological Sections was also looked at in the study, as well as the utility of site photography employed in the Missouri WRP monitoring program. Recommendations based on analyses in the project study are suggested to further improve ecological monitoring of WRP easements in Missouri and elsewhere. # Final Report Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data # Table of Contents | Executive Summary | 1 | |--|-----| | List of Tables | 4 | | List of Figures | 6 | | Chapter 1: Overview of Project and Report | 8 | | Chapter 2: Summary Findings | 12 | | Chapter 3: Species Analysis | 23 | | Chapter 4: Restoration Status | 37 | | Chapter 5: Photographic Documentation | 48 | | Chapter 6: Conclusions and Recommendations | 60 | | Acknowledgements | 71 | | Annex 1 | 72 | | Annex 2 | 84 | | Annex 3 | 86 | | Annex 4 | 151 | | Annex 5 | 174 | # Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data # List of Tables and Boxes | Table 5.1. Parent and select derived photography dataset components available fo Missouri WRP easement monitoring analysis50 | |--| | Table 6.1. Operational sequence for adaptive management. (Adapted from Williams et a 2007) | | Box 6.1. (Source: Zedler 2000). Succession theory is central to ecological restoration63 | | Table 6.2. Five suggested criteria for ecological success to apply to Missouri's Wetland Reserve Program. (Adapted from Palmer et al. 2005)64 | | Table 6.3. Restoration monitoring can be classified into six overlapping categories (Sources Barko et al. 2006, Block et al. 2001)65-66 | | Table 6.4. The myths of restoration and their features (Source: Hilderbrand et al. 2005) | | Table 6.5. Ten mistakes in forest (wetland) biodiversity indicators. (Source: Failing & Gregory 2003)68 | # Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data # List of Figures | Figure 2.1. Map displaying general distribution of WRP easements in Missouri (January 2007)15 | |---| | Figure 2.2. Map depicting the general distribution of 594 WRP easements monitored in Missouri during FY2004 – 200615 | | Figure 2.3. Three conservation categories of Missouri's WRP easements15 | | Figure 2.4. Missouri's four ecological sections17 | | Figure 2.5. Overlap of Mississippi Alluvial Basin and the Lower Mississippi Alluvial Valley17 | | Figure 2.6a. All WRP easements enrolled per Missouri Ecological Section at January 200718 | | Figure 2.6b. Acreage of all WRP easements enrolled per Missouri Ecological Section a January 2007 | | Figure 2.7a. Number of WRP easements monitored in each Missouri Ecological Section (FY2004-2006) | | Figure 2.7b. Acreage of WRP easements monitored in each Missouri Ecological Section (FY2004-2006) | | Figure 2.8. Missouri's WRP sites on shaded relief topographic background19 | | Figure 4.1. Missouri WRP HSI species38 | | Figure 4.2. Land-cover status before and after restoration of WRP easements in Missouri.———————————————————————————————————— | | Figure 4.3. Relative land-cover composition observed in two post-restoration age classes o Missouri WRP easements42 | | Figure 4.4. Land-cover before and after wetland restoration on former cropland enrolled in WRP in Missouri | | Figure 4.5. Habitat Suitability Index (HSI) value ranges recorded for species associated with non-forest habitats following wetland restoration43 | |--| | Figure 4.6. Habitat Suitability Index (HSI) value ranges recorded for species associated with forest habitats44 | | Figure 5.1. Natural and affected relationships between components in the Missouri WRF Monitoring "photographic dataset."52 | | Figure 5.2. Randomly selected WRP photograph and its metadata record53 | |
Figure 6.1. Key considerations when setting goals for habitat restoration programs (Source Miller & Hobbs 2007)66 | ### Analysis of Missouri Wetlands Reserve Program Easement Monitoring Data Chapter 1: Project Overview #### Introduction This is the Final Report for the project initially entitled "Assessing the Effectiveness of the Wetlands Reserve Program in Missouri through Analysis of Existing Easement Data and Linkage to Previous Floodplain Investigations." The project is referred to as the "[Missouri] WRP Analysis Project" or simply "the project" in this report. The Missouri WRP Analysis project was a cooperative undertaking of the Natural Resources Conservation Service (NRCS), the Missouri Department of Conservation (MDC), and the University of Missouri (School of Natural Resources, Department of Fisheries & Wildlife Sciences) through the Missouri Cooperative Fish and Wildlife Research Unit along with the United States Geological Survey (USGS). Funding was provided by the Conservation Effects Assessment Project (CEAP – wildlife component) of NRCS (under Contract No. 68-3H75-3-122 Mod 13) to the University of Missouri (Account No. C00013696, DA130). The goal of this project was to conduct geospatial and database analyses of a dataset covering 594 Missouri Wetlands Reserve Program easements monitored over a three-year period (Fiscal Years 2004-2006) by the NRCS and MDC, cooperating. The project proposal (Annex 1) envisioned six products: - 1) A complete summary of wetland area and distribution, restored wetland types, and hydrologic condition. - 2) A complete listing of plant and animal taxa with emphases on rare and endangered species. - 3) An evaluation of restoration status including influence on plant and animal response. - 4) Photographic documentation of wetland benefits and values resulting from WRP restorations. - 5) Analysis of other data in Missouri (e.g., Missouri River Post-flood Evaluation, Avian Use of Missouri River Floodplain Wetlands Evaluation, fall migratory bird surveys, etc.) to determine the usefulness in documenting wildlife response to WRP restored wetlands. - 6) Recommendations for improved WRP monitoring. The project commenced on 2 October 2006 with the installation of Scott Frazier as project officer. Dr. David L. Galat of the Missouri Cooperative Research Unit (USGS and University of Missouri) served as project supervisor. Elizabeth Cook was the GIS specialist adviser from NRCS. The project was conducted with the guidance of a *de facto* steering committee composed of representatives of cooperating agencies and other experts (see the annex of this chapter - Annex 1 - for the list of members). The following products, in addition to this Final Report, were also produced: - Oral PowerPoint Presentation entitled "Ecological Monitoring Insights: the Wetlands Reserve Program in Missouri" (by S. Frazier and D. Galat) delivered at the Soil and Water Conservation Society Annual Conference, July 21–26, Tampa, Florida. - CEAP Conservation Insight. Ecological Monitoring Insights: the Wetlands Reserve Program in Missouri (2008). See References. Missouri WRP Analysis Project findings were also featured in the NRCS in-house publication "CEAP Highlights" August 2007 edition. ### **Background** The United States Department of Agriculture sponsors a host of voluntary conservation programs for landowners that are supported and administered by its Natural Resources Conservation Service (NRCS). Collectively, these programs help people to improve the functioning of ecosystem services and natural values on their lands, and to ameliorate damage from natural processes and disasters. Society also benefits both economically and environmentally from these programs (NRCS 2007d). One such conservation program is aimed at wetlands. The Wetlands Reserve Program (WRP) provides landowners "the opportunity to protect, restore, and enhance wetlands on their property... in an environmentally beneficial and cost effective manner." NRCS provides technical and financial support to assist with wetland restoration. The goal of the program is to "achieve the greatest wetland functions and values, along with optimum wildlife habitat, on every acre enrolled..." Through the WRP, landowners have an opportunity to establish long-term conservation including practices which enhance and protect wildlife (NRCS. 2007b, 2007c). Three conservation options are available to landowners through WRP: Permanent easements, 30-year easements, and restoration cost-share agreements. The Wetlands Reserve Program was authorized in the 1990 "Farm Bill." It was reauthorized in the Farm Security and Rural Investment Act of 2002 (i.e. Farm Bill), to a total nationwide cap of 2,275,000 acres. At April 2007, there were 9,951 projects on 1,899,979 acres enrolled in the program across the country (NRCS 2007c). The Wetlands Reserve Program started in Missouri as a pilot project in 1992 along with eight other states. As of September 2006, 787 WRP applications had been funded statewide encompassing 115,583 acres (NRCS 2007a). Nationwide, Wetlands Reserve Program monitoring has typically focused solely on administrative compliance and implementation of restoration practices. The Missouri WRP is unique among states in that it includes field ecological monitoring in addition to administrative compliance monitoring for all WRP easements (Charles Rewa, NRCS, pers. comm.). Ecological and compliance monitoring data were collected on almost 600 WRP easements throughout Missouri during 2003–2005, through a partnership between NRCS and the Missouri Department of Conservation (NRCS 2006). The data accrued under this work were analyzed under the WRP Analysis Project. CEAP (the project funder) is an interagency effort that began in 2003. It is aimed at quantifying the environmental benefits of conservation practices used by private landowners participating in selected USDA conservation programs like WRP (NRCS 2007e). The Wildlife Component of the CEAP "National Assessment" seeks quantitative information on the effects of the USDA's conservation practices and programs on fish and wildlife and their habitats in agriculture influenced landscapes in the United States. Within CEAP, wildlife component and wetlands component works are linked (NRCS 2006). ### **Report Structure** This Final Report is structured by analyses. The project proposal (see Annex 1) served as guideline for initial selection of analyses. Final selection of analyses was based on availability and characteristics of data, and the discussion and advice of steering group members. The proposed Product 5, *An Analysis of other data in restoration data in Missouri*, was deemed asymmetrical in scope to the other products after the project commenced, and has not been included in this report. However issues pertinent to restoration studies and monitoring in general are covered in the final chapter, Conclusions and Recommendations. Chapters are paired with an annex (as necessary), numbered accordingly, where more detailed supplementary materials are found. The voluminous body of other supplementary or complementary work compiled or created in support of this project, including databases, programs (applications), graphical outputs, methods documents and other materials, has been systematically archived on compact disc with Elizabeth Cook, USDA-NRCS 601 Business Loop 70 W, Parkade Center Suite 250, Columbia, MO 65203; email: elizabeth.cook@mo.usda.gov. #### References Frazier S and Galat D. 2008. Ecological Monitoring Insights from the Wetlands Reserve Program in Missouri. CEAP Conservation Insight (February 2008). United States Department of Agriculture. Natural Resources Conservation Service. Accessed 31 December 2008 at ftp://ftp-fc.sc.egov.usda.gov/NHQ/nri/ceap/MO_WRP_021108.pdf Natural Resources Conservation Service (NRCS). 2006. Work Plan for the Wildlife Component Conservation Effects Assessment Project (CEAP) National Assessment. August 15, 2006. USDA, Natural Resources Conservation Service Resource. Inventory and Assessment Division. Beltsville, Maryland. Working Draft. Also available at http://www.nrcs.usda.gov/technical/nri/ceap/wildlifeworkplan/ Natural Resources Conservation Service (NRCS). 2007a. NRCS in Missouri. October 1, 2005 - September 30, 2006. United States Department of Agriculture. Natural Resources Conservation Service. Natural Resources Conservation Service (NRCS). 2007b. Wetlands Reserve Program. Accessed 5 November 2007 at www.nrcs.usda.gov/PROGRAMS/wrp/. Natural Resources Conservation Service (NRCS). 2007c. Key Points – Wetlands Reserve Program. April 2007. Accessed 5 November 2007 at http://www.nrcs.usda.gov/PROGRAMS/wrp/2007WRPKeyPoints.pdf. Natural Resources Conservation Service (NRCS). 2007d. NRCS Conservation Programs. Updated 08/23/2007. Accessed 5 November 2007 at www.nrcs.usda.gov/PROGRAMS/. Natural Resources Conservation Service (NRCS). 2007e. Conservation Effects Assessment Project (CEAP). Updated 10/15/2007. Accessed 5 November 2007 at www.nrcs.usda.gov/Technical/nri/ceap/. ### Chapter 2: Summary Findings ### **Background** At the beginning of major European settlement (ca 1780s), the territory of present day Missouri is estimated to have held slightly more than 4.8 million acres of wetlands, or an area equivalent to nearly 11% of the state today. The vast majority of these wetlands were associated with the state's great rivers, the Mississippi and Missouri, and their major tributaries. Large-scale wetland losses began in Missouri after the federal Swamp Act (1850) was enacted. This legislation, while targeting flood control and reclamation for agriculture, resulted in the transfer federal lands to the state and ultimately into private hands, and led to massive drainage. Channelization and damming of rivers also contributed to the loss and degradation of the state's wetlands. By the early 1980s, losses due to agricultural conversion, urban development, and
flood-control measures resulted in a decrease of approximately 87 percent of Missouri's wetlands to about 643,000 acres, or approximately 1.4 percent of the state's area (Demas and Demcheck, 1996, citing others including Dahl, 1990, Epperson, 1992 and Shaw and Fredine, 1971). Wetlands, typically components in a larger hydrologic system, provide a composite of significant and influential ecological and socio-economic benefits and services. Wetlands may contribute to the amelioration of flooding, groundwater replenishment, sediment and nutrient retention and export, and water purification. Wetlands also afford opportunities for recreation and tourism as well as education and research, and support economic activities like food, fisheries and timber production. Wetlands are often reservoirs of biodiversity, providing habitats for birds, fish and other animals and plants, including threatened and endangered species. See De Groot et al (2006), Stuip et al (2002), Ramsar Convention Bureau (2000) and Barbier et al (1997) for information on wetland values, benefits and functions, and wetland valuation. #### Introduction Compliance and ecological monitoring data in Missouri were collected on WRP easements by contracted specialists ("technical service providers" or TSPs). This initial monitoring dataset covered a period of approximately three *fiscal* years (2004-2006) and involved single-visits to 594 easement sites. Monitoring data enable assessment of restoration progress, namely allowing evaluation of whether site-specific species targets are being met. Monitoring provides the feedback necessary to adjust WRP restoration to continually deliver positive responses from wetland fauna and flora. The WRP Analysis Project commenced in October 2006 for the purpose of analyzing the data accrued during the previous, separate monitoring regime. This chapter provides a *summary* of WRP easement distribution and area, eco-geography and restored wetland types. #### Methods #### Primary Datasets Compliance and ecological data were collected during previous WRP field monitoring regime, using mobile GIS software on handheld computers, GPS, and custom electronic data entry forms to populate GIS attribute tables. GIS data were in ESRI® "shapefile" (digital vector) format. The associated attribute (descriptive) component of shapefile format data is stored in linked "DBF" format files. Attribute data are tabular, with conventional data "fields" and "records." Fields may be of several types, including character, numeric and logical. WRP monitoring data files also included many free-form text "comment" fields dedicated to various themes, where non-structured data were entered. Monitoring data were collected at both the easement and sub-easement (polygon and sub-polygon) levels, and recorded spatially (with linked attribute information) in two primary corresponding datasets (comp_3yrall.shp and plan_3yrall.shp, respectively). Whole easement data included both administrative compliance/management and ecological data, whereas polygon data were primarily ecological. The "enrolled dataset" (wrp_a_mo.shp), an administrative running total of the state's enrolled WRP easements (to January 2007), was available for basic analysis. Current wetland habitat types were recorded in the Missouri monitored WRP dataset utilizing a habitat data standard based on a *modified* version of "Classification of wetland and deepwater habitats of the United States" (Cowardin *et al*, 1979; see ModifiedCowardin.xls & ModifiedCowardin-Families.xls in Annex 4) hereafter referred to as "modified Cowardin codes." A separate, partially complete spatial dataset (29_wrp_existing.shp) of digitized site boundaries with habitat condition (also modified Cowardin codes) *existing* at enrollment – the "existing dataset" – was available for comparative analysis. #### Stratification Datasets The Missouri Ecological Classification System (Nigh and Schroeder, 2002) was selected for (any) geographical stratification of the Missouri WRP dataset. Two (core-) equivalent GIS shapefiles representing this dataset were obtained from NRCS and MDC (ecslta.shp and lta2-03data.shp, respectively). The spatially hierarchical system integrates a wide variety of physical and biotic factors to delineate ecological units at all levels of the hierarchy (Nigh and Schroeder, 2002). It divides Missouri into four ecological sections: 1) Central Dissected Till Plains – CDTP (north); 2) Osage Plains – OP (west); 3) Ozark Highlands – OH (south) and 4) Mississippi Alluvial Basin – MAB (southeast). The latter region, also known as the "boot heel" because of its shape, coincides with the northernmost extent of the Lower Mississippi Alluvial Valley (LMAV). (See maps of these regions as figures in Results). The geomorphic stratification of the LMVA by Saucier (1994) was nominated for any subsequent detailed stratification of the boot heel region. #### **Analyses** GIS shapefile format files were analyzed with ESRI® ArcMap[™] (ArcGIS[™]) 9.2 software. Microsoft® Office Excel® 2003 and Microsoft® FoxPro 2.6a (X) software were also used for supplementary and complementary analysis of (DBF) attribute data. #### **Summary Analysis** Summary statistics were obtained using the abovementioned GIS's "statistics" and "summarize" facilities, conventional database counting, summing and filtering techniques and/or Excel® PivotTable® functionality. Full methodology treatments are found in the specific chapter where *detailed* analyses are featured. #### Stratification Enrolled WRP easements and Missouri monitored WRP polygons were variously plotted on a Missouri base map (NAD_1983_UTM_Zone_15N / GCS_North_American_1983 "MOBORDER.shp" obtained from MDC). Each of the four Missouri ecological sections were "clipped" using ArcMap™ to obtain sectional subsets of whole and partial easements contained within the section. (See "Clip Method Example.doc", Annex 2, for the detailed GIS "clipping" technique used). Sectional "clips" were analyzed for shared easements using Excel®. #### **Habitat Analysis** Modified Cowardin habitat codes (records) were simplified to facilitate analysis via a method developed under this project (see *Derivation, definition and rationale for Cowardin four character codes* in "Cowardin four character codes.doc" in Annex 4). Several discrete standard elements were first identified in the parent codes. Individual alphanumeric characters were adjusted, and character position and order were standardized within each code record to enable cleaving of segments within multiple code strings. "Prefixes" denoting land restoration "status" and "land-type" prefixes were removed, as were "water regime" and "special modifier" "suffixes." These manipulations distilled the parent code to a core "four character code" that encompassed the "System, Class and Subclass" levels of the original coding system. Four-Character Codes were sorted and summed using PivotTable® functionality to provide the summary analysis. However, the primary focus of habitat analyses undertaken during the project was to document change or succession. This is covered in Chapter 4: Restoration Status. #### Results At January 2007, 825 WRP sites had been enrolled in Missouri (Figure 2.1). These easements extended over approximately 119,437 acres. The monitored subset (i.e. the WRP analysis dataset) consisted of 594 of these easements (Figure 2.2), and covered approximately 66,706 acres. The majority of monitored easements (94%) were composed of more than one land-unit ("polygon"). WRP easements fell into one of three conservation categories: Permanent easements (719 or 87% of enrolled Missouri easements), 30-year easements (86 or 10%), and restoration cost-share agreements (20 or 2%). See Figure 2.3. **Figure 2.1.** Map displaying general distribution of WRP easements in Missouri (January, 2007). **Figure 2.2.** Map depicting the general distribution of 594 WRP easements monitored in Missouri during FY2004 – 2006 (in light blue). **Figure 2.3.** There are three conservation categories of WRP easements. Missouri's 825 easements are dominated by "permanent" easements which constitute 87% of all easements enrolled. 30-year easements make up 10% of the total and cost-share agreements account for 2% of Missouri WRP easements. #### **Ecological Stratification** Missouri covers approximately 44,600,000 acres. Division into Ecological Sections results in four partitions of the state of widely varying size. The Ozark Highlands section is largest at over 23,000,000 acres while the Mississippi Alluvial Basin is smallest measuring just over 2,500,000 acres. See Figure 2.4 for the geographic position of the "eco-sections" and Table 2.1 for the acreage of each region. Figure 2.5 illustrates the link between Missouri's MAB eco-section and the larger LMAV (mentioned above). The Central Dissected Till Plains contained the most easements (including partial easements) of any eco-section from both the enrolled (542 of 825: 66%) and monitored (388 of 594: 65%) datasets. The CDTP also hosted the largest WRP acreage of any of the eco-sections (65,032 acres: 54% of enrolled acreage, and 37,268 acres: 56% of total acres). The MAB contained the next largest extent of acreage in the enrolled dataset (20,396 acres) whereas in the monitored dataset, the second-highest acreage was found in the OH (15,980 acres). The Osage Plains eco-section contained the least acreage of any eco-section in both datasets (16,768 and 6,154 acres, respectively). The largest Missouri WRP easement (6,997 acres) was located in the OP eco-section while the smallest (2 acres) was found in the Ozark Highlands. Site breakdowns per each *clipped* eco-section for both the enrolled and monitored datasets are listed in Tables 2.2 and 2.3, and graphically depicted in Figures 2.6a & b and 2.7a & b, respectively. Figure 2.4. Missouri's four ecological sections: Central Dissected Till Plains (purple), Osage Plains
(green), Ozark Highlands (blue) and Mississippi Alluvial Basin (tan); from Nigh & Schroeder, 2002. **Figure 2.5.** Overlap of Mississippi Alluvial Basin (Nigh & Schroeder, 2002) and the Lower Mississippi Alluvial Valley (Saucier, 1994), in brown. **Table 2.1.** Acreage of Missouri's Four Ecological Sections (from Nigh & Schroeder, 2002) | ECOLOGICAL SECTION | ACRES | |-------------------------------|------------| | Ozark Highlands | 23,186,097 | | Central Dissected Till Plains | 14,885,200 | | Osage Plains | 3,987,320 | | Mississippi Alluvial Basin | 2,537,195 | | MISSOURI TOTAL | 44,595,812 | **Table 2.2.** Stratified Ecological Section breakdown of the full WRP easement enrollment dataset (at January 2007) | | | ACRES | |--|-----------|-----------| | ECOLOGICAL SECTION | ALL SITES | (rounded) | | Central Dissected Till Plains (14,885,200 acres) | 542 | 65,032 | | Mississippi Alluvial Basin (2,537,195 acres) | 104 | 20,396 | | Ozark Highlands (23,186,097 acres) | 125 | 17,135 | | Osage Plains (3,987,320 acres) | 70 | 16,768 | | Sum of raw clipped section datasets | 841 | 119,331 | | Entire WRP dataset | 825 | 119,437 | | WRP "transboundary" sites (difference as technical | | | | artifact of GIS processing) | 16 | 107 | **Figure 2.6a.** All WRP easements enrolled per Missouri Ecological Section depicted using graduated symbols and value labels (at January 2007). **Figure 2.6b.** Acreage of all WRP easements enrolled per Missouri Ecological Section depicted using graduated symbols and value labels (at January 2007). **Table 2.3.** Stratified Ecological Section breakdown of the Monitored WRP easement dataset (FY2004-2006) | | MONITORED | ACRES | |--|-----------|-----------| | ECOLOGICAL SECTION | SITES | (rounded) | | Central Dissected Till Plains (14,885,200 acres) | 388 | 37,267 | | Ozark Highlands (23,186,097 acres) | 109 | 15,980 | | Mississippi Alluvial Basin (2,537,195 acres) | 54 | 7,276 | | Osage Plains (3,987,320 acres) | 55 | 6,154 | | Sum of raw clipped section datasets | 606 | 66,678 | | Entire monitored WRP dataset | 594 | 66,704 | | WRP "transboundary" sites (difference as technical | | | | artifact of GIS processing) | 12 | 27 | **Figure 2.7a.** Number of WRP easements monitored in each Missouri Ecological Section depicted using graduated symbols and value labels (FY2004-2006). **Figure 2.7b.** Acreage of WRP easements monitored in each Missouri Ecological Section depicted using graduated symbols and value labels (FY2004-2006). The distribution of Missouri's WRP sites in terms of general topography, one of the main elements underlying Missouri's ecological section concept, can be observed in Figure 2.8. #### Restored Wetland Habitats There were 536 easements in *common* (overlapping in some way) between the existing (*de facto* baseline) and monitored datasets; 530 of these easement records included modified Cowardin habitat codes. This "common monitored dataset" totaled 58,415 acres. More precise GIS results indicated 488 "appreciable" (set at >0.40 acres) common easements (or part easements) measuring 52,208 acres. **Figure 2.8.** Missouri's WRP sites (blue) plotted on a general shaded relief topographic background, with eco-section boundaries (yellow). There were a total of 422 unique modified Cowardin codes employed for recording habitat in the monitored easements of the appreciable common dataset. Simplification of the habitat codes resulted in 21 unique core, four-character codes (the unit developed for comparing habitats under this project). The most widespread restored class represented by four character codes was Palustrine Broad-leaved Deciduous Forest (26,304 acres, or 50% of the total). Results for all four-character code restored classes are tabulated in Table 2.4. **Table 2.4.** Process simplification of the 422 unique variants of modified Cowardin habitat codes recorded within the 52,208 acre habitat restoration dataset resulted in a more manageable 21 "four-character codes," the core habitat class unit for comparative habitat analyses developed for this study. The summed area of each habitat class was also calculated, listed in descending order. | Four Character Code description | Code | Acres | |---|------|--------| | Palustrine Forested Broad-leaved Deciduous | PFO1 | 26,304 | | Palustrine Emergent Persistent | PEM1 | 11,474 | | Palustrine Emergent Non-persistent | PEM2 | 9,650 | | Other Riparian Woody | ORP3 | 959 | | Palustrine Open Water | POWZ | 855 | | Palustrine Floodplain Non-hydric soils, Woody | PFP3 | 659 | | Upland Herbaceous Introduced | UHE2 | 633 | | Upland Herbaceous Native | UHE1 | 515 | | Upland Wooded Deciduous | UWO1 | 470 | | Palustrine Scrub Shrub Broad-leaved Deciduous | PSS1 | 279 | | Palustrine Floodplain Non-hydric soils, Herbaceous | PFP2 | 156 | | Other Riparian Herbaceous | ORP2 | 73 | | Palustrine Forested Needle-leaved Deciduous | PFO2 | 72 | | Palustrine Substantially Altered Non-persistent | PSA2 | 47 | | Other Farmed Wetland or Farmed Wetland Pasture, Cropped | OFW1 | 19 | | Palustrine Forested (unspecified) | PFO | 15 | Table 2.4. (continued) | Other Substantially Altered, Herbaceous | OSA2 | 13 | |---|------|--------| | Palustrine Forested Dead | PFO5 | 6 | | Palustrine Substantially Altered Persistent | PSA1 | 3 | | Other Substantially Altered, Open Water | OSA3 | 2 | | Upland Wooded Deciduous | UWO | 2 | | TOTAL Code Classes | 21 | 52,208 | Regional stratification of (derived, four-character code) restored habitat classes mirrored the broader results above. In the un-stratified dataset and three of the four eco-sections, the top three habitat classes (in terms of extent) were the same. These were (in descending order) Palustrine Broad-leaved Deciduous Forest (PFO1), Palustrine Emergent Persistent (PEM1) and Palustrine Emergent Non-Persistent (PEM2). Only in the Osage Plains eco-section were there differences, and these concerned the ranking *order* of the same three restored habitat classes (Table 2.5). **Table 2.5.** Eco-regional stratification of the five most-extensive four-character code (F-C-C) habitat classes of WRP easements monitored during restoration. | CDTP | section | OH so | ection | OP se | ection | MAB s | section | |-------|---------|-------|--------|-------|--------|-------|---------| | F-C-C | acres | F-C-C | acres | F-C-C | acres | F-C-C | acres | | PFO1 | 14,261 | PFO1 | 9390 | PEM2 | 2,054 | PFO1 | 1,329 | | PEM1 | 7,805 | PEM1 | 1419 | PFO1 | 1,456 | PEM1 | 1,199 | | PEM2 | 5,868 | PEM2 | 1136 | PEM1 | 1,059 | PEM2 | 674 | | ORP3 | 626 | PFP3 | 640 | UHE1 | 134 | PSS1 | 106 | | UHE2 | 572 | POWZ | 341 | POWZ | 55 | PFO2 | 65 | #### Discussion The vast majority of Missouri's WRP easements are contracted on a permanent basis. Indeed, considered with the 30-year contracts, only a few of Missouri easements are *not* in it for the long haul. While site selection and contracting are administrative rather than ecological, putting these easements into wetland conservation for such a long time will have ecological impacts, hopefully restoring benefits and services of wetland habitats that have been previously lost. Ecological region stratification of the WRP dataset was undertaken to see if any patterns emerged in the distribution of WRP wetlands and restored wetland types, ultimately with a view to assist in assessing the effectiveness of restoration of Missouri Wetlands Reserve Program sites. Nigh and Schroeder's (2002) Atlas of Missouri Ecoregions divides Missouri into four Ecological Sections. These are delineated from a host of interacting biotic and abiotic factors. One of the foremost and most obvious is the lay of the land, the topography. We have found that in terms of sheer area, Missouri's largest eco-section (Ozark Highlands) holds nearly the least WRP acreage of any eco-section. Conversely, the smallest of four eco-sections (Mississippi Alluvial Basin), hosts the second-highest easement acreage (Figures 2.6a & b). Notwithstanding the aforementioned administrative considerations in the determination of WRP sites (--or perhaps enabling it), why this near inverse relationship? The answer may be due to the topography of these eco-regions (Figure 2.8). Missouri is bordered and bisected by two great rivers, the Mississippi and the Missouri. The Mississippi Alluvial Basin as its name reveals is wholly formed and influenced by the great river. This is what makes it so fertile and what led to the need to now restore its drained-for-agriculture wetlands. It is not surprising to find so much WRP acreage here given what has been lost. Likewise, the CDTP's pre-imminent position as the eco-section with the most Missouri WRP acreage comes not only from its large area but from the large potential for, and realized concentration of easements bounding the branches of the Grand River, a major tributary of the Missouri. On the other hand, the largest but most "mountainous" eco-section, the Ozark Highlands is the also by area, clearly the most depauperate in (agricultural) wetlands. But here too, it is along the Missouri River where most of its (potential) WRP easements are found. Despite the differences seen in restored acreages between the eco-sections, there is a strong similarity between these regions in the most dominant kinds of wetlands that have been or are undergoing restoration (See again Table 2.5). In each region it is the palustrine wetlands that have been restored most often. Usually these are forested followed by emergent types, and if not, the forested types constitute a very large share. As this is a summary chapter, the subject of restoration has only received summary treatment here. Chapter four will provide a detailed treatment of selected restoration elements including detailed methods, results, discussion and
recommendations. #### References Barbier, E.B., Acreman, M.C. and Knowler, D. 1997. Economic valuation of wetlands: A guide for policy makers and planners. Ramsar Convention Bureau, Gland, Switzerland. Cowardin, L.M., Carter, V., Golet, F.C. and LaRoe, E.T. 1979. Classification of Wetland and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service Report FWS/OBS-79/31. Washington D.C. 131 p. Dahl, T.E., 1990, Wetlands–losses in the United States, 1780's to 1980's: Washington, D.C., U.S. Fish and Wildlife Service Report to Congress. 13 p. De Groot, R.S., Stuip, M.A.M., Finlayson, C.M. & Davidson, N. 2006. Valuing wetlands: guidance for valuing the benefits derived from wetland ecosystem services, Ramsar Technical Report No. 3/CBD Technical Series No. 27. Ramsar Convention Secretariat, Gland, Switzerland & Secretariat of the Convention on Biological Diversity, Montreal, Canada. Demas, C.R., and Demcheck, D.K.. 1996. Missouri Wetland Resources *in* National Water Summary on Wetland Resources: U.S. Geological Survey Water-Supply Paper 2425. pp 249-253. Epperson, J.E. 1992. Missouri Wetlands: A Vanishing Resource. Missouri Department of Natural Resources, Division of Geology and Land Survey. Water Resources Report No. 39. Nigh, T.A. and Schroeder, W.A.. 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation. Jefferson City, Missouri. xii + 212 p and GIS data. Ramsar Convention Bureau. 2000. Wetland Values and Functions. (Information Pack). Ramsar Convention Secretariat, Gland, Switzerland. On-line version available at: http://www.ramsar.org/info/values intro e.htm Natural Resources Conservation Service (NRCS). 2006. NRCS in Missouri. October 1, 2005 - September 30, 2006. Available at: http://www.mo.nrcs.usda.gov/news/news/Annual%20Report%2006.pdf Saucier, R. T. 1994. Geomorphology and quaternary geologic history of the Lower Mississippi Valley. U.S. Army Corps of Engineers. Waterways Experiment Station, Vicksburg, Mississippi, USA. Shaw, S.P., and Fredine, C.G. 1956. Wetlands of the United States—their extent, and their value to waterfowl and other wildlife: U.S. Fish and Wildlife Service Circular 39. 67 p. Stuip, M.A.M., Baker, C.J. and Oosterberg, W. 2002. The Socio-economics of Wetlands. Wetlands International and RIZA, The Netherlands. ### Chapter 3: Species Analysis #### Introduction Recording observations of species that reside or visit restored wetlands is one component of Missouri's unique WRP ecological monitoring program. Such observations provide an indication about the ecological state of the sites and the progress of restoration. Enhancement of easement biota is a major goal of the WRP (NRCS [2007]). The Wildlife Component of NRCS's Conservation Effects Assessment Project (CEAP) seeks to quantify the effects of USDA "conservation practices and programs on fish and wildlife and their habitats in landscapes influenced by agriculture in the United States" (NRCS 2006). This chapter details the direct and implied importance of Missouri's WRP sites to species, including rare, threatened or endangered species, based on analyses of available data. Initial summaries of animal and plant species observations collected during ecological monitoring of Missouri WRP sites are presented. Species data are augmented with "heritage" range data of Missouri rare, threatened and endangered species. The objective here was to look for implied/potential easement contributions to the maintenance and protection of these species by virtue of site proximity to their ranges. This chapter's analyses also contribute to documenting wildlife effects under the CEAP Wildlife Component. Monitoring and analysis of wildlife habitat are discussed in Chapter 4. #### Methods #### Primary Datasets Ecological data including species observation data were collected and stored as described in Chapter 2: Summary Findings. Likewise the same primary datasets corresponding to easement and sub-easement (polygon and sub-polygon) levels (comp_3yrall.shp and plan_3yrall.shp, respectively) were employed in the species analyses. #### **MONHP** Dataset The Missouri Natural Heritage Program (MONHP¹) dataset, a suite of six GIS layers (shapefiles) of Missouri's *conservation status species* ("status species") and communities, was ¹ "The MONHP receives biological data from the Missouri Natural Features Inventory, field biologists, universities, scientific literature, herbaria and other individuals and organizations. This information obtained under a MOU between the project officer and the Missouri Department of Conservation (MDC). One layer, Hertpoly.shp (comprised of lumped Heritage taxa and community element observations as extrapolated range polygons), was selected for use from the MDC MONHP dataset. NRCS also provided individual layers (shapefiles) comprised of a single higher taxon (or a group of related taxa) processed from the MONHP dataset, with the approval of MDC. #### Subsidiary Plant Databases The PLANTS (National) Database (NPDB) of NRCS was selected as the primary plant reference source for the project following extensive on-line testing. The on-line NPDB was selected because: 1) it was versatile, including capable of issuing outputs in formats compatible with project databases; 2) the NPDB was *actively* being developed and maintained by the same agency that administers the WRP (i.e. NRCS); 3) botanists at the National Plants Data Center (sponsor of the NPDB)² were responsive to queries and troubleshooting (pers. obs. S. Frazier); and 4) the NPDB is a major cooperative intra-agency effort within the USDA, but it also involves several other federal and academic partners³, thereby becoming a national standard. Comprehensive (MOPLNTZ3.DBF) and summary (DICVEG1.DBF) plant data dictionaries were developed using external information sources (Table 3.1). A data dictionary of Missouri rare, threatened or endangered plant species (ST&EPLNT.DBF) was also compiled from the MONHP heritage dataset to help identify status species in voluminous observation data. This dictionary contained Missouri plants with any one or more of the following statuses: federal status (Endangered, Threatened), state status (Endangered) and/or state rank (S1, S2 or S3 state-ranked elements, including those assigned a range of these *SRANK*s that includes at least one of these values). Any species with a Global Rank (GRANK) were for all practical purposes also SRANK species, and it was not necessary to filter these species out separately. (A detailed explanation of how MONHP "ranking" has been applied in this analysis is found in the document: "WRP Site Proximity to T&E Species Ranges 1.doc" in Annex 3). A checklist of "species and communities of conservation concern" is also produced by MDC's MONHP annually (see Missouri Natural Heritage Program 2007). MDC also hosts a complementary on-line source of Missouri species information (including status species) called the Missouri Fish and Wildlife Information System (MOFWIS).⁴ These sources were also consulted during the project. provides an understanding of the abundance, distribution, condition, and conservation needs of these sensitive elements. There are currently over 18,000 element occurrence records of more than 800 sensitive species and natural community types in Missouri." from http://www.mdc.mo.gov/nathis/aboutmohhp.htm. ² http://npdc.usda.gov/ ³ See http://plants.usda.gov/partners.html ⁴ http://mdc4.mdc.mo.gov/applications/mofwis/mofwis search1.aspx **Table 3.1**. The main plant taxonomic and distribution sources consulted during this project for checking plant observations (concerning questions of taxonomy and distribution) and building plant dictionaries. #### **Primary sources** USDA, NRCS. 2007. The PLANTS Database (http://plants.usda.gov, 19 November 2007). National Plant Data Center, Baton Rouge, LA 70874-4490 USA. Integrated Taxonomic Information System on-line database (http://www.itis.gov, 19 November 2007). #### Supplementary sources USDA, ARS, National Genetic Resources Program. Germplasm Resources Information Network - (GRIN) [Online Database]. National Germplasm Resources Laboratory, Beltsville, Maryland. URL: http://www.ars-grin.gov/cgi-bin/npgs/html/taxgenform.pl (19 November 2007) The International Plant Names Index (2004). Published on the Internet http://www.ipni.org [accessed 19 November 2007]. #### <u>Analyses</u> The analyses examine animals, plants, and then rare, threatened and endangered species, separately. Select, detailed, step-by-step methods used in developing this analysis are found under "Methods" in Annex 3. #### **Animals** Incidental animal sightings were recorded in free-form comment fields at the easement level. These comments, and feature level monitoring files, were "mined" for faunal observations using a combination of simple database filtering techniques and visual scrolling. #### **Plants** Plant observations were recorded in dedicated data fields at the polygon level and sometimes in comment fields at the easement and feature (sub-polygon) level. The three most dominant plant species (based on "percent canopy cover") were generally recorded for each polygon. These species were referred to as Species1, Species2 and Species3 (in order of decreasing dominance). However the specific percentages of canopy closure (or acreages) of dominant plants were not recorded in the monitoring dataset. Species1, Species2 and Species3 dominant plant observation records were normalized – removing non-species data, converting shorthand, correcting misspellings, standardizing usage and translating common names to scientific names when possible. Query lists of discrepancies were forwarded to the
TSPs and any reply input received was used to effect further corrections. (Annex 3 "Methods" includes additional information on the methods employed in developing the plant dictionary). Plant species observations were then subjected to simple frequency analyses using Microsoft® Office Excel® 2003 using PivotTable® feature to derive the most commonly recorded species. The total number of unique species recorded in the monitoring dataset was also calculated. Seventy six GIS "line-feature" records and 127 "polygon-feature" records that included "abbreviated" and/or *common* plant-names were not analyzed owing to their ambiguous, non-standard format, and the *un*likelihood that they contained status species given the purposes of the files concerned. #### Rare, Threatened or Endangered Species Observations of faunal status-species (a subset of animal observations) were restricted to comment fields. (A logical [yes/no] data field indicating easements *ranked* for status species was not species specific). The low number of total faunal observations yielded by mining the free-form text enabled manual cross-checking of these sightings against the animal status-species listed in the aforementioned "species of conservation concern" checklist (see Missouri Natural Heritage Program 2007). Plants, with three dedicated data fields in each monitored polygon record, required an additional, more conventional database approach to check for status species. Using a "database relation," processed plant monitoring observation data were checked against the records of rare, threatened or endangered species in the dictionary list of Missouri status species plants (ST&EPLNT.DBF). The MONHP heritage dataset was also employed to provide a measure of implied potential importance of WRP sites to rare, threatened and endangered species (plants and animals) and natural communities. This was accomplished through GIS spatial proximity analyses, primarily using the ArcMap™ "Geoprocessing – Intersect" procedure. First, the collective status-species range polygons (of all included taxonomic groups) were spatially related to two WRP datasets: 1) *all* WRP sites (enrolled through January 2007), and 2) the *monitored set* of WRP sites (those 594 easements monitored during *fiscal* years 2004-2006). Then, the spatial relationship of each (higher) taxon level (e.g. "birds") to the set of (monitored) easements was examined. Species and natural community data were lumped in the general (non-taxon-specific) MONHP base layer (Hertpoly.shp); however total community records were low. The constitution of taxonomic groupings in the analyses was determined by the source taxon-specific GIS shapefiles received from NRCS (Missouri). Whereas these analyses typically involved the basic spatial intersection of a WRP easement (site) dataset and the range of all or a specific taxonomic group(s) of status species, there were some variations. Detailed proximity analysis methods have been documented in Annex 3 ("Methods" WRP Site Proximity to T&E Species Ranges 2). Stratification Stratification analyses involving Rare, Threatened or Endangered Species and Missouri WRP easements involved the same ecological section datasets and methods described in Chapter 2: Summary Findings. See also "Clip Method Example.doc" in Annex 2 for the detailed GIS technique used. #### Results #### **Animals** Eight bird species were recorded from incidental observations on 12 (2%) of 594 monitored WRP easements (Table 3.2). A few easement records also mentioned "ducks" or "rails." *Sign* of two mammal species were also noted on several easements, usually in the context of damage to the site or structures. **Table 3.2.** Minimum number of individuals of faunal species and the number of easements they were observed on during monitoring of Missouri WRP sites, 2003-2005. | | Total minimum | Number of easements | |--|-----------------------|---------------------| | Observed species | number of individuals | | | American bittern (Botaurus lentiginosus) | 4 | 3 | | least bittern (Ixobrychus exilis) | 9 | 3 | | great egret (Ardea alba) | 45 | 1 | | bald eagle (Haliaeetus leucocephalus) | 2 | 2 | | king rail (Rallus elegans) | 1 | 1 | | purple gallinule (Porphyrula martinica) | 1 | 1 | | greater yellowlegs (Tringa melanoleuca) | "several" | 1* | | lesser yellowlegs (Tringa flavipes) | "several" | 1* | | beaver (Castor canadensis) | ; | 4 | | muskrat (Ondatra zibethicus) | 5 | 3 | ^{*} greater and lesser yellowlegs observed together on the same easement #### Plants The total number of unique species recorded in 594 Missouri WRP easements as (co-) dominant plants was 238. (The complete list of these species is found in Annex 3, Table A3.1). This total represents a maximum number of species because some records only listed genus (i.e. there was no species epithet). If some of the genus-only entries prove to match already recorded species of that genus, then the number of unique species will decrease. Approximately 40 species names did not match entries in the project's Missouri plant dictionary. Some of these may have represented synonyms. (These names were forwarded to the TSPs and await resolution). These 238 unique species were divided among 45 plant families (Table 3.3). Just over 42% (or 94 of 222) of the plant species recorded could be roughly ascribed to "herbaceous" plant life forms. "Grass" forms were represented by 68 species (~31%) and "woody" forms by 60 plant species (27%). **Table 3.3.** The 45 families of plants (listed in taxonomic order) and the maximum number of species recorded from each family during monitoring of Missouri WRP sites, 2003-2005. | Family | No. of species | Family | No. of species | | |-------------------------------------|----------------|------------------------------------|----------------|--| | Azollaceae Azolla family | 1 | Amaranthaceae Amaranth family | 1 | | | Cupressaceae Cypress family | 2 | Polygonaceae Buckwheat family | 10 | | | Alismataceae Water-plantain family | 5 | Ebenaceae Ebony family | 1 | | | Potamogetonaceae Pondweed family | 1 | Malvaceae Mallow family | 3 | | | Lemnaceae Duckweed family | 2 | Salicaceae Willow family | 7 | | | Cyperaceae Sedge family | 17 | Betulaceae Birch family | 1 | | | Poaceae Grass family | 55 | Fagaceae Beech family | 12 | | | Sparganiaceae Bur-reed family | 1 | Hamamelidaceae Witch-hazel family | 1 | | | Typhaceae Cat-tail family | 3 | Platanaceae Plane-tree family | 1 | | | Liliaceae Lily family | 3 | Juglandaceae Walnut family | 5 | | | Asteraceae Aster family | 34 | Moraceae Mulberry family | 3 | | | Hippuridaceae Mare's-tail family | 1 | Ulmaceae Elm family | 6 | | | Campanulaceae Bellflower family | 1 | Nelumbonaceae Lotus-lily family | 1 | | | Caprifoliaceae Honeysuckle family | 1 | Apiaceae Carrot family | 1 | | | Apocynaceae Dogbane family | 2 | Aquifoliaceae Holly family | 1 | | | Asclepiadaceae Milkweed family | 1 | Cornaceae Dogwood family | 2 | | | Lamiaceae Mint family | 1 | Fabaceae Pea family | 21 | | | Verbenaceae Verbena family | 2 | Lythraceae Loosestrife family | 2 | | | Plantaginaceae Plantain family | 1 | Onagraceae Evening Primrose family | 5 | | | Rubiaceae Madder family | 1 | Rosaceae Rose family | 7 | | | Bignoniaceae Trumpet-creeper family | 1 | Aceraceae Maple family | 5 | | | Oleaceae Olive family | 1 | Anacardiaceae Sumac family | 4 | | | Scrophulariaceae Figwort family | 1 | TOTAL Species | 238 | | The most commonly recorded dominant plant species on an easement basis was *Populus deltoides*, the eastern cottonwood (35.7% of the 594 monitored sites). This was followed closely by *Acer saccharinum* (32.5% of easements) the silver maple. The third most commonly encountered dominant species on Missouri's monitored WRP sites was another tree *Salix nigra*, the black willow (21.7% of sites, Table 3.4). The three most commonly recorded species when records of dominant and co-dominant plants were lumped were the same three tree species, but in a different numerical order: *Salix nigra*, *Populus deltoides* and *Acer saccharinum* (derived from Table 3.5). **Table 3.4.** The most commonly recorded dominant plants (by greatest proportion of "canopy cover") in Missouri's 594 monitored WRP easements. | | No. | | No. | |--------------------------------|-------|-------------------------------------|-------| | Species | Sites | Species | Sites | | Populus deltoides (tree) | 212 | Quercus palustris (tree) | 79 | | Acer saccharinum (tree) | 193 | Phalaris arundinacea (grass) | 70 | | Salix nigra (tree) | 129 | Polygonum pensylvanicum (forb/herb) | 62 | | Echinochloa crus-galli (grass) | 103 | Fraxinus pennsylvanica (tree) | 60 | | Aster pilosus (forb/herb) | 84 | Solidago nemoralis (forb/herb) | 54 | **Table 3.5.** The most commonly recorded plant species in three categories of (descending) dominance in 594 monitored Missouri WRP easements. "Species1" refers to the most dominant plant by highest percentage of canopy cover, "Species 2" the second most dominant, and "Species3," the third most dominant plant species. | | No. | | No. | | No. | |-------------------------|-------|-------------------------|-------|------------------------|-------| | SPECIES 1 | Sites | SPECIES 2 | Sites | SPECIES 3 | Sites | | Populus deltoides | 212 | Salix nigra | 199 | Salix nigra | 167 | | Acer saccharinum | 193 | Acer saccharinum | 155 | Fraxinus pennsylvanica | 143 | | Salix nigra | 129 | Populus deltoides | 154 | Populus deltoides | 118 | | Echinochloa crus-galli | 103 | Fraxinus pennsylvanica | 128 | Platanus occidentalis | 98 | | Aster pilosus | 84 | Echinochloa crus-galli | 110 | Acer saccharinum | 97 | | Quercus palustris | 79 | Solidago nemoralis | 94 | Echinochloa crus-galli | 81 | | Phalaris arundinacea | 70 | Aster pilosus | 85 | Quercus palustris | 80 | | Polygonum pensylvanicum | 62 | Polygonum pensylvanicum | 66 | Acer negundo | 79 | | Fraxinus pennsylvanica | 60 | Quercus
palustris | 64 | Aster pilosus | 77 | | Solidago nemoralis | 54 | Acer negundo | 58 | Solidago nemoralis | 76 | ### Rare, Threatened or Endangered Species Within the WRP monitoring dataset, 481 (81%) of the 594 easements were *flagged* as being ranked important for status species (animals *or* plants). Five observed species were also of rare, threatened or endangered status (Table 3.6). *No* status-species plants were among those recorded in the three dedicated plant species data fields of the monitoring dataset. Other plant species data in GIS easement feature files were not analyzed for conservation status because they were not recorded in a standard format. Furthermore, it is unlikely these records contained any status species given the purpose of the files that held them. Table 3.6. Status species fauna observed in Missouri's monitored WRP sites. | Observed species | Conservation status | |--|----------------------------| | American bittern (Botaurus lentiginosus) | MONHP-S1; State-Endangered | | least bittern (Ixobrychus exilis) | MONHP-S3 | | great egret (Ardea alba) | MONHP-S3 | | bald eagle (Haliaeetus leucocephalus) | MONHP-S3; State-Endangered | | king rail (Rallus elegans) | MONHP-S1; State-Endangered | Augmentation of the sparse status species *observation* results above was effected through intersection of Missouri WRP easement datasets with Missouri Natural Heritage Program (MONHP) datasets. A slight majority of *enrolled* WRP sites (52% or 431 of 825 sites) do provide habitat that *potentially* supports (208) rare, threatened or endangered species, based on the proximity of the sites to known and extrapolated status species ranges. Collectively, 316 of 594 (or 53%) of *monitored* easements provide potential habitat to 186 status species. Potential support of WRP habitats to individual taxonomic groupings of status species varied from a high of 57% (enrolled sites) for status birds to 5% (enrolled or monitored sites) for status mammals not including bats. The results of all status species proximity analyses are summarized below in Table 3.7. Detailed results for Table 3.7 are found in Annex 3: Results (T&E Proximity Summary.doc). **Table 3.7.** Summary Results: Proximity Analyses for WRP Sites and *Status Species*. | Analysis | Dataset 1 | Dataset 2 | Result of Spatial Intersection | | | | |----------------|----------------------------|---|---|--|--|--| | 1 | 825 Enrolled WRP | All T&E species range | 439 (53% of) easements intersected 217 MONHP | | | | | | sites | polygons | T&E species/community ranges ¹ | | | | | as above | as above | as above | 396 (48% of) easements intersected 182 MONHP T&E | | | | | 2 | Product of
Analysis#1 | 594 Monitored WRP sites | species ranges ² 320 (54% of) monitored easements intersected 193 MONHP T&E species/community ranges | | | | | as above | as above | as above | 305 (51% of) monitored easements intersected 183 MONHP T&E species/community ranges ³ | | | | | 3 | 594 Monitored
WRP sites | All T&E species range polygons | 316 (53% of) monitored easements intersected 186 MONHP T&E species ranges ⁴ | | | | | as above | as above | as above | 307 (52%) monitored easements intersected 183 MONHP T&E species/community ranges ³ | | | | | 4 | 825 Enrolled WRP sites | All T&E species range points | Observations of 43 T&E species occurred within 38 (5% of) WRP easements | | | | | 5B | 825 Enrolled WRP sites | Buffered T&E Bat range polygons | 128 (16% of) easements intersected ranges of 2 SRANK123 bat species | | | | | 5C | 594 Monitored
WRP sites | Buffered T&E Bat range polygons | 104 (18% of) monitored easements intersected ranges of 2 SRANK123 bat species | | | | | as above | as above | as above | 93 (16% of) monitored wooded easements intersected ranges of 2 SRANK123 bat species | | | | | 6A | 825 Enrolled WRP sites | Buffered T&E Bird range polygons | 467 (57% of) easements intersected 24 T&E bird species ranges | | | | | 6B | 594 Monitored
WRP sites | Buffered T&E Bird range polygons | 322 (54% of) monitored easements intersected 24 T&E bird species ranges | | | | | 7A | 825 Enrolled WRP sites | Buffered T&E Mammal range polygons | 43 (5% of) easements intersected 6 T&E mammal species ranges. | | | | | 7B | 594 Monitored
WRP sites | Buffered T&E Mammal range polygons | 29 (5% of) monitored easements intersected 4 T&E mammal species ranges | | | | | 8A | 825 Enrolled WRP sites | Buffered T&E reptile-
amphibian-insect range
polygons | 108 (13% of) easements intersected 22 T&E reptile and/or amphibian and/or insect species ranges | | | | | 8B | 594 Monitored
WRP sites | Buffered T&E reptile-
amphibian-insect range
polygons | 75 (13%) monitored easements intersected 16 T&E reptile and/or amphibian and/or insect species ranges | | | | | 9 ⁵ | 825 Enrolled WRP sites | Buffered T&E fish-
crustacean-mollusc range
polygons | 90 (11% of) easements intersected 16 T&E fish and/or crustacean and/or mollusc species spatially generalized ranges | | | | | 10A | 825 Enrolled WRP sites | Buffered T&E plant distribution polygons | 97 (12% of) easements intersected 62 T&E plant distributions | | | | | 10B | 594 Monitored
WRP sites | Buffered T&E plant distribution polygons | 71 (12% of) monitored easements intersected 44 T&E plant species distributions | | | | #### Notes for Table 3.7 T&E = rare, threatened or endangered - 1 = If status community records are excluded, the numbers are 431 (52% of) easements/208 species ranges - 2 = results when fish (and status communities) are excluded - 3 = including only those fish range records that overlapped with "POWZ" palustrine open water habitat. - 4 = Analysis 2 and Analysis 3 yielded, for all practical purposes, identical results. Analysis 2 was regarded as redundant. - 5 = Analysis of this taxonomic grouping was undertaken for the all enrolled WRP dataset only. Status species range and WRP site proximity analyses results were also analyzed by Missouri's Ecological Sections. By percentage of WRP sites, the smallest ecological section, the Mississippi Alluvial Basin or MAB (2,537,195 acres), provided the highest percentages of potential support of any eco-section to status species in every category analyzed except bats. A total of 97.1% of enrolled WRP sites intersected status species ranges for all taxa (lumped) in the MAB. Status bird ranges intersected 71.2% of MAB enrolled WRP sites. The MAB also had the highest percentage of areal coverage by status species ranges (92%). The ecosection with the highest percentage of sites offering potential support for bats (40.8% of sites) was the Ozark Highlands or OH, the largest eco-section (23,186,097 acres). The lowest percentages WRP sites intersecting status species ranges was observed in the Osage Plains or OP (3,987,320 acres), where 38.6% of sites provided potential support to status species (all taxa; lumped), and percentages for all categories analyzed were the lowest of any eco-section except for plants. The Central Dissected Till Plains or CDTP (14,885,200 acres) showed the lowest percentage of WRP sites providing potential support to status plants (5.7% of sites). See Table 3.8 for full results of the eco-sectional breakdown for Missouri's enrolled WRP sites. **Table 3.8.** Summary Results: Proximity Analyses for WRP Sites and *Status Species* by Missouri's Ecological Sections. | Missouri s i | Sites Intersecting Species Ranges | | | | | | | | |-------------------------|-----------------------------------|-------------|------|---------------|-------|-----------------------------------|------------------------------|--------| | ALL (825) WRP SITES | | all
taxa | bats | other mammals | birds | reptiles
amphibians
insects | fish crustaceans
molluscs | plants | | | Sites in Range | 433 | 128 | 43 | 467 | 108 | 90 | 97 | | State- | Total Sites | 825 | 825 | 825 | 825 | 825 | 825 | 825 | | wide | Percent | 52.5 | 15.5 | 5.2 | 56.6 | 13.1 | 10.9 | 11.8 | | | Sites in Range | 222 | 71 | 23 | 310 | 56 | 44 | 31 | | Central
Dissected | Total Sites | 542 | 542 | 542 | 542 | 542 | 542 | 542 | | Till Plains | Percent | 41.0 | 13.1 | 4.2 | 57.2 | 10.3 | 8.1 | 5.7 | | | Sites in Range | 27 | 0 | 1 | 29 | 2 | 3 | 8 | | Osage | Total Sites | 70 | 70 | 70 | 70 | 70 | 70 | 70 | | Plains | Percent | 38.6 | 0.0 | 1.4 | 41.4 | 2.9 | 4.3 | 11.4 | | | Sites in Range | 87 | 51 | 4 | 56 | 12 | 10 | 26 | | Ozark | Total Sites | 125 | 125 | 125 | 125 | 125 | 125 | 125 | | Highlands | Percent | 69.6 | 40.8 | 3.2 | 44.8 | 9.6 | 8.0 | 20.8 | | | Sites in Range | 101 | 6 | 18 | 74 | 38 | 33 | 35 | | Mississippi
Alluvial | Total Sites | 104 | 104 | 104 | 104 | 104 | 104 | 104 | | Basin | Percent | 97.1 | 5.8 | 17.3 | 71.2 | 36.5 | 31.7 | 33.7 | #### Discussion Robust lists of animals and plants that would: a) illustrate the biodiversity observed in easements under WRP restoration, and b) examine the extent to which WRP easements support and sustain rare, threatened and endangered species of flora and fauna did not result from this analysis. Just 10 animal species were noted on 594 easements during three years of monitoring (Table 3.2). Site monitoring, at least in terms of this project's analysis dataset, was limited to a single site visit. Most animals are generally inconspicuous, shy and/or mobile, and there's a high likelihood that most species will not be observed during monitoring that is limited to a solitary site visit. This effect can be exacerbated further by the seasonality, weather, time of day of the visit and other factors. The corollary to single-site-visits is that there is no monitoring emphasis on field recording of animal presence and use of Missouri's WRP sites. This is
by design because comprehensive faunal listing is not cost effective. This intent is evidenced by the absence of data recording procedures and structures for faunal observations. This does not discount the broader WRP emphasis on species, however. The form used for "ranking" suitability of proposed WRP sites uses, if not direct observations, then *association* to status species based on proximity to their ranges. The analysis of such proximities became the default primary species analysis for this product owing to the dearth of direct (faunal) observations. Given the high likelihood that fiscal constraints preclude intensive animal surveying across the entire WRP site network, it is necessary to either discount the importance of this component of ecological monitoring, or to find alternatives. If it is unrealistic to adequately survey and document the importance of fauna in all WRP easements, site by site, perhaps on a programmatic level it may be useful to document them on a representative sample basis. For example, a more rigorous monitoring program could be conducted on 10% of all sites with each of the four ecological sections. Another possibility, either as a surrogate, or as an adjunct to representative surveying, is to make use of existing species observation data. There are a number of Missouri WRP easements that include public lands. Many of these areas likely have existing species lists. In addition, certain WRP sites are known bird watching sites, and bird lists from these areas could be obtained to supplement the WRP monitoring dataset. See Chapter 6 for general monitoring design recommendations to detect temporal trends. In contrast, plant observation data were plentiful, and were a primary target of monitoring data collection, as exemplified by dedicated data fields and thousands of records entered. Thus, delivering a simple plant list (Table A3.1, Annex 3) and ranking plant species by number of easement records (Tables 3.4 & 3.5) was possible. There was however, no scientifically robust way to associate acreage to the "dominant species" within an easement unit (polygon), because the "percentages of canopy cover" which connoted the dominance, were *not* specified in the data. Even if they had been specified, the accuracy of such figures may have been suspect given methodology concerns. Some taxonomic issues emerged as they are always wont to do, but this and other issues were overshadowed by a predominating question about the applicability and efficacy of using plant canopy cover in the monitoring methodology. As with animal observations, seasonality and single-site-visits call into question the value of collecting plant data as it is currently being done. Since monitoring is a year round activity, a significant portion of plant observations take place outside of the growing season. For ephemeral herbaceous emergents, identifying the species and calculating the "percentage canopy cover" for the three most dominant cohorts on each land unit (polygon) comprising a WRP easement may present some real problems, especially in winter. A similar problem with persistence of identifiable vegetation was seen during a period of prolonged drought (S. Young, pers. comm.). The absolutely fundamental nature of this question of "appropriateness" of canopy cover was voiced during project meetings, when the issue of discrepancies in plant species names was being discussed (S. Frazier, pers. obs.). But dealing with the species names issue is a moot point in the short term until this larger methodology issue is resolved. Perhaps an integrated suite of data gathering methods including targeted and intensive survey scheduling and aerial/remote sensing options would provide a more useful approach for procuring plant species coverage data. ⁵ Internal Project Meeting Minutes from 12 October 2006. The effort to effectively *emphasize* rare, threatened and endangered species, from among those species *directly* observed was not possible. For animals this was simply due to the dearth of total sightings. This is slightly ironic since conservation status species are emphasized in the WRP site ranking/selection process. Some 81% of easements were ranked as being important for status species. Unfortunately the particular species used in ranking are *not* recorded in the monitoring dataset. The disconnect between recording these species in individual hardcopy files and not in the centralized monitoring dataset needs to be addressed. An NRCS WRP administrative database also includes specific status species occurrence information in its easement records. However only eight easements from the *monitoring dataset* are included among the status species records found in the *administrative database* and no further analysis of the latter dataset was undertaken. Whereas plant observation records were plentiful in the monitoring dataset, *none* of them involved rare, threatened or endangered species (as defined in this analysis). This is not surprising since the emphasis placed on recording plants in the field has to do with *dominant* species and these species typically do not warrant a conservation status. The link between the MONHP heritage dataset and the WRP ranking/site designation process has been alluded to previously. The latter process calls upon the former dataset. The MONHP dataset also provides a ready "surrogate" for indicating the potential importance of WRP sites to rare, threatened and endangered status species, in lieu of (a paucity of) direct observations. A cursory look at the results of the several proximity analyses involving WRP sites and MONHP range data summarized above (in Table 3.7) does suggest, that a slight majority of WRP sites do provide habitat that potentially supports rare, threatened or endangered species. For individual taxonomic groupings, the level of implied importance of these WRP easements varies, as would be expected. Anticipated differences in potential support to status species among the subsets of WRP sites in each ecological section were also demonstrated. Another indirect but certainly more scientifically rigorous measure of the potential importance of WRP easements to wildlife is provided by the calculation of numeric Habitat Suitability Indices or HSI through the application of a Wildlife Habitat Appraisal Guide. An analysis of HSI values derived for Missouri's monitored WRP sites is part of Chapter 4, "Restoration Status." ## Recommendations This chapter was concerned with delivery of those most familiar and tangible of monitoring products: Site Species Lists. However, owing to logistical and fiscal constraints, the procedures and mechanisms currently in place for this kind of descriptive monitoring are insufficiently resourced to service a broad and ever growing network of sites. It seems certain that comprehensive and effective survey and recording of species observations on all polygons of all WRP sites is unrealistic, simply because it is not cost effective. However inventorying the biota of a representative sample of sites does seem within reach, and results from such an aligned approach can probably satisfy the need to evaluate in that traditional and tangible way, what "biodiversification" can be expected to attend WRP wetland restorations. The following recommendations are specific to the issue of species inventories. However the emphasis and importance that compilation of species lists achieves within WRP monitoring should be informed by an integrated holistic WRP monitoring program (See Chapter 6, WRP Monitoring Recommendations). Other program-wide recommendations may have relevance to this issue. #### Recommendation 3.1 To whatever extent species observation data are collected on/for WRP sites, they should be collected and recorded statewide according to an annually evaluated comprehensive data collection, recording and management protocol, which includes detailed relevant guidance for managing species information. #### Recommendation 3.2 The protocol should specify the taxonomic authorities (sources) which will be followed for each higher taxon included. These sources should be peer recognized and dynamic (updated and maintained) standards, with a biogeographical foundation that is compatible within the national mosaic. This project found the NRCS "PLANTS" National Database to meet these specifications for Missouri monitored WRP plant species. ### Recommendation 3.3 All species inventory data that are amassed or used in the ranking/selection of WRP easements, and that may be collected and stored about WRP sites at the regional NRCS or MDC offices, should be obtained and integrated into the centralized WRP monitoring information system. ## Recommendation 3.4 Representative sampling and use of alternative data sources should become constituent parts of the strategy and toolset for acquiring all necessary species inventory information. - 3.4.1. Existing and planned species inventories from state and federal public lands that are also WRP easements should be integrated into the centralized WRP monitoring information system. - 3.4.2. Species inventory information collected on Missouri WRP sites by others outside of the program and which might presumably be readily available (e.g., from amateur bird watching networks) should be obtained and integrated into the centralized WRP monitoring information system. ## Recommendation 3.5 The extent to which aerial photography and remote sensing can deliver useful quality plant community information (instead of ground surveys) should be assessed. ## References Missouri Natural Heritage Program. 2007. Missouri species and communities of conservation concern checklist. Missouri Department of Conservation. Jefferson City, Missouri. 51pp. Also available at: mdc.mo.gov/documents/nathis/endangered/checklist.pdf Natural Resources Conservation Service (NRCS). [2007].
Conservation Programs Manual Title 440, Wetland Reserve Program, Pt. 514.01(A). Accessed 29 November 2007 at www.info.usda.gov/scripts/lpsiis.dll/M/M/440-514-A.htm Natural Resources Conservation Service (NRCS) 2006. Work Plan for the Wildlife Component Conservation Effects Assessment Project (CEAP) National Assessment. August 15, 2006. USDA, Natural Resources Conservation Service Resource. Inventory and Assessment Division. Beltsville, Maryland. Working Draft. Also available at: www.nrcs.usda.gov/technical/nri/ceap/wildlifeworkplan/ # Chapter 4: Restoration Status ## Introduction Chapter 2 provided *summary* analyses undertaken in this study including those focusing on habitats. Chapter 3 looked at the direct and implied importance of Missouri's WRP sites to species. The current chapter uses these ecological components – habitats and species – as the primary *indicators* in analyses of wetland restoration success on Missouri WRP easements. The habitat analyses reported in this chapter document change or succession of wetlands undergoing restoration. This chapter includes an analysis of Habitat Suitability Indices (HSI) recorded during monitoring as a surrogate for restoration success, whereby HSI values increase as habitats succeed to become of (potentially) greater importance to Missouri wildlife. ## Methods ## Primary Datasets The ecological monitoring data analyzed in this chapter were recorded in the manner and structures previously described (Chapters 2 and 3) on an easement (for HSI) and sub-easement/(sub-)polygon (for habitat) basis. ### **Habitat Succession** Two datasets – a "before restoration" dataset known as the "existing dataset" (29_wrp_existing.shp) and an "after restoration" or "current dataset" (plan_3yrall.shp) – provided the basis for analyzing habitat succession on WRP lands. Both existing and current spatial easement datasets recorded wetland habitat types with "modified Cowardin codes" (after Cowardin *et al*, 1979; see ModifiedCowardin.xls & ModifiedCowardin-Families.xls, Annex 4). The recorded codes were then simplified under this project into core, "four-character codes" (Chapter 2) to facilitate analysis (see Cowardin four character codes.doc, Annex 4). # Habitat Suitability Indices In Missouri, where the many WRP sites being monitored could only be visited once (or occasionally twice), the Habitat Suitability Index (HSI) was selected as a surrogate measure ⁶ Dataset in which pre-restoration land cover (using the modified Cowardin wetland classes) had been mapped and digitized in an earlier project; also can be considered the "starting dataset". ⁷ Also known as the "monitored dataset" since modified Cowardin habitats were recorded during the monitoring visit at some time after the existing dataset had been digitized. or indicator of effectiveness of habitat restoration for wildlife. These models are driven by habitat variables measured in the field that are associated with species' life-history requirements documented in the scientific literature. Habitat variable values measured in the field are combined through the use of algorithms that represent species-specific habitat associations to generate HSI scores for each site. HSI is a numerical index without units that represents the potential of a specific habitat to support a particular species. HSI scores run from a low of 0 (unsuitable for a species) to a theoretical high of 1 (optimum for a species), (USFWS 1981). During monitoring, HSI data were recorded on an easement basis (in comp_3yrall.dbf) for six⁸ representative species that had been selected for the Missouri WRP dataset (Figure 4.1), namely three species, *Anas platyrhynchos* (mallard), *Aix sponsa* (wood duck) and *Protonotaria citrea* (prothonotary warbler) for "forested" habitats and three species, mallard, *Ixobrychus exilis* (least bittern) and *Tringa flavipes* (lesser yellowlegs) for non-forested habitats. All 157 of the HSI models originally published by the U.S. Fish and Wildlife Service are available in PDF format on the National Wetlands Research Center Library pages at http://www.nwrc.usgs.gov/wdb/pub/hsi/hsiintro.htm (accessed 31 December 2008). (See Schamberger *et al* 1982; USACE 1998; Rennie *et al* 2000; Burgman *et al* 2001; and Barry *et al* 2006 for more information on Habitat Suitability Indices). # <u>Analyses</u> GIS shapefile format files were analyzed with ESRI® ArcMap[™] (ArcGIS[™]) 9.2 software. Microsoft® Office Excel® 2003 and Microsoft® FoxPro 2.6a (X) software were also used for supplementary and complementary analysis of (DBF) attribute data. ⁸ There were actually just 5 species, but the mallard was used both as a forest and a non-forest indicator species. ## **Habitat Succession Analysis** Change in land-cover or "habitat succession" was examined by contrasting before and after restoration conditions and at discrete, four-year intervals. Starting habitat *condition* was provided by the abovementioned "existing" digitized spatial dataset. The coverage of this "starting dataset" was that portion of the overall WRP spatial dataset where digitization of initial habitat condition had been completed previously. The *period* assessed for habitat change or succession (restoration age) was that amount of time between the starting time as documented in project files (and regarded as the date when the initial habitat condition was recorded) and the date of the site monitoring visit, where modified Cowardin habitat codes (as well as other data) were again recorded. Any polygons (land parcels) where Cowardin habitat data were unrecorded in either dataset, were discarded from the analyses of habitat succession. A spatial (GIS) intersection was then established between the two datasets. This process may produce many small "slivers" (polygons) where small differences in digitization between the intersecting spatial datasets occur. The GIS intersection in the WRP analyses was refined by excluding "negligible" polygon slivers (somewhat arbitrarily defined in this study as polygons < 0.40 acres in extent). The refined overlap resulting from this intersection yielded a parent dataset, the "common appreciable intersect" (Common_appreciable_intersect.shp) from which child datasets were derived for all subsequent analyses of habitat succession representing WRP restoration. (See Habitat polygon succession analysis procedure 1.doc in Annex 4 for the detailed methods employed. For a graphically illustrated example of WRP easement habitat succession, See: WRP easement illustrated restoration example.doc in Annex 4). The successional fate of lands of agricultural origin was looked at in more detail using a relevant subset, "Common_appreciable_intersect_AG_origin.shp." The following steps summarize the method by which this was achieved: - 1. Select easements that were agricultural at the start of restoration ("existing") - 2. Find the common agreement numbers between this "existing" subset and the "monitored" dataset - 3. Eliminate any polygons which do not contain Cowardin data - 4. Establish an intersection of remaining Cowardin polygons between the "existing" (agricultural origin) and "monitored" datasets - 5. Discard/alleviate the influence of "slivers" (negligible GIS artifacts) - 6. Determine the restoration fate of the Agricultural-origin polygons into the following successors: Forest; Scrub Shrub; Non-Woody Vegetated; Agricultural; and Other/Open Water. (See Habitat polygon succession analysis procedure 2.doc in Annex 4 for the detailed methods used). To look at change in a more meaningful way, boundaries for the duration of time that easements were undergoing restoration were established. Dates recorded for "start" of restoration and the date of the monitoring site visit ("review" date) provided the period of longest duration. Easements where one or both of these dates were unknown, were excluded. Three time intervals of approximately 4 years duration were selected for a more detailed analysis of change. Acreage corresponding to each habitat group (or species for HSI) was then apportioned according to these age-class intervals, and converted to percentages of total acres in each of the age classes (see Results). ## **HSI** Analysis Records were selected from the parent HSI dataset where at least one of the six representative species had an HSI value greater than zero. This subset became an interim database in the development of a successor to the parent in the analyses. The vast majority of easements were represented by a single HSI data record (listing HSI values for the six species on one easement). The few multiple data-record easements in the interim HSI dataset were consolidated into single data-record easements (records) so that the number of data records equaled the number of easements. This dataset (HSI!ZER2.DBF/.XLS) became the final HSI dataset from which all other subsets were derived in subsequent analyses. To relate indicator species to the representative habitat, first records for easements containing HSI values for forest species were intersected to WRP parcels containing forested/wooded land-cover types. However, these parcels were filtered to select only those that originated from agricultural land-cover. Likewise, HSI records for easements corresponding to non-forest representative species were related to intersecting WRP parcels containing emergent/herbaceous land-cover types that originated from agricultural land-cover. HSI values run from a low (poor for species) of 0.100 (assigned baseline) to a theoretical high (good for species) of 0.999. Values were arbitrarily clustered into four HSI range groups of *up to* 0.100, 0.101-0.399, 0.400-0.699 and 0.700-0.999. Since on-site HSI data do not exist for sites prior to restoration, pre-restoration HSI values for all species were assigned an
arbitrary value of 0.1. An analysis of HSI data by age categories followed the relevant methodology described above under Habitat Succession Analysis. ### Results The dataset of monitored sites covered approximately 66,700 acres in 594 conservation easements. The "existing" pre-restoration land-cover dataset consisted of 599 easements covering approximately 87,140 acres. The overlap between these two datasets yielded the parent database – the "common appreciable intersection" for the study, covering approximately 52,208 acres in 488 easements. That subset of the common easements (easements with parcels in common) that were of agricultural origin was approximately 39,731 acres in extent and was comprised in 469 easements. The longest duration of time between "start of restoration" and "monitored date" was 12.2 years; the shortest was 2.7 years. Therefore, the abovementioned three (approximate) 4-year time intervals considered were: 0.1 to 4, 4.1 - 8 and 8.1 – 12.2 years. However, the net acreage for the 1st age class of 0.1 to 4 years proved nearly negligible in terms of illustrating trend (measuring only 669 acres). For this reason the habitat analyses disregarded the 0 - 4 year interval as an age class and considered a dataset of approximately 43,762 acres at intervals of "start time" (time 0) to "review date" (effective "end date") or at the two age-class intervals of 4.1 - 8 years after the "start of restoration" (or after restoration began) and 8.1 – 12.2 years after restoration began. These two time intervals encompassed 33,700 acres of lands with agricultural origins. For the HSI analyses, acreage corresponding to each species was apportioned according to the age-class intervals mentioned above. Analysis of HSI data by age categories showed no discernable patterns among age classes examined, and no further age class results involving HSI are reported. All figures in Results are supported by detailed Excel® worksheets in the CD archive of this project. ### **Habitat Succession** Figure 4.2 presents an overall breakdown of five general land-cover classes for the period just before restoration commenced, and at the time the site was monitored. A successional shift from former cropland to natural and semi-natural land-covers is evident. Figure 4.3 is a refinement of the successional analysis, charting restoration progress within two discrete (approximate) 4-year periods (4.1-8 years and 8.1-12.2 years since restoration began). By the fifth year of restoration, only scant remnants of cropland remain. As reported above, records falling into a 0.1 to 4-year age interval were not included. It is important to remember that the total acreage in each discrete age-interval will vary. Thus the *percentage* of the total acreage that each land-cover class constitutes in each age-interval was used to reflect habitat changes. Figure 4.4 represents the successional fate of the exclusive subset of WRP lands that were comprised of cropland types at the start of restoration. At easement monitoring, almost all of the lands had succeeded to emergent-herbaceous and forested-wooded land-cover types. The forest-woodland category is a mixture of natural regeneration and tree planting. # Habitat Suitability Indices Ultimately, the HSI analysis for forest species suitability encompassed approximately 15,700 acres of forested/wooded land of agricultural origin. Similarly, the HSI analysis for nonforest species suitability encompassed approximately 16,900 acres of emergent/herbaceous cover on land of agricultural origin. Post-restoration HSI scores appear markedly higher than the pre-restoration score (0.1) for all non-forest models (Figure 4.5) and two of the three forest models (Figure 4.6). The magnitude of the increase in habitat quality was greatest for species associated with emergent-herbaceous (non-forest) habitats that develop faster than forest, and are often an early precursor of forested wetlands. However, 45% of acres restored showed no improvement of habitat quality for the lesser yellowlegs, an early successional wetland species that prefers the sparse vegetation characteristic of the earlier stages of restoration. In contrast, least bittern showed the greatest improvement in habitat quality due to its dependence on dense herbaceous vegetation, a condition which increased on most easements as succession proceeded following wetland restoration (Figure 4.5). The mallard, a species associated with both forested and non-forest categories of restored land, depending on the season, showed the least HSI improvement of species associated with forest (Figure 4.6). However the forest model for mallard relies on mature bottomland hardwood forest – a habitat that has not had time to develop fully in the majority of study sites. Habitat Suitability Indices on restored forested sites exceeded the baseline value to a greater extent in the wood duck and prothonotary warbler models. ## Discussion This chapter has detailed two different sets of analyses aimed at directly gauging the restoration success or effectiveness of the Wetland Reserve Program in Missouri. The first looked at the successional change in land-cover from the start of restoration to the point when data were recorded during a monitoring visit – considered the end of restoration (for the purpose of this study). The second set of analyses concerned change over time as well, in this instance change toward more optimum habitat for several "representative" bird species, through an examination of Habitat Suitability Indices or HSI. Whereas succession of plant communities on individual sites was not closely tracked through time, observation of land-cover conditions among sites of varying post-restoration age can be used as an indicator of how wetland vegetation changes in the years following restoration. Ecological monitoring data from wetlands enrolled in WRP in Missouri *clearly* show land-cover changes associated with wetland restoration, with major shifts from open crop fields to forested wetlands through time. This includes both passive succession and active intervention. However it was not possible to globally analyze the relative influence of each of these restoration paths because such data were not uniformly systematized, quantified or accessible throughout the monitoring dataset. Some easements contained significant areas of natural vegetation at enrollment. These areas were excluded from the HSI analysis because it was assumed that they already possessed some higher than baseline measure of wildlife habitat value. An HSI of 0.1 was assigned to the remaining areas assumed to have very limited wildlife value, since their pre-restoration condition consisted of cropland. Habitat quality (as modeled and represented by HSI values) for select wetland wildlife species has improved due to WRP restoration in Missouri. For non-forest species (e.g., least bittern) habitat quality is better in the early (herbaceous) years following restoration than in older easements, where forest succeeds open habitat. For forest species, habitat quality is expected to continue to improve as trees mature. Whereas an analysis of HSI data by age categories showed no patterns among age classes examined, as wetlands succeed in the future, temporal changes in habitat quality for indicator species are expected to emerge. Therefore, *overall* values presented above provide the most useful HSI information at this time. Habitat Suitability Index scores are based on hypotheses of species-habitat relationships and do not connote proven cause and effect. Whereas, some HSI models have been validated by species response data, most rely on published life-history requirements and species experts for their reliability. As a planning tool, HSI scores provide a useful measure of the *potential* of the habitat to support particular fish and wildlife species in a study area. Ecological monitoring in Missouri provides clear *indications* of the regional ecological and wildlife benefits of WRP. Continued and enhanced ecological monitoring of WRP easements is needed to track the value of habitat and other wetland functions through time to maximize benefits derived from the program. ### Recommendations Chapter 3 (Missouri WRP Species Analysis) noted logistical and fiscal constraints to comprehensive and regular descriptive monitoring in the context of species observations. These same concerns attend to other aspects of ecological monitoring with an ever growing network of sites. Nevertheless, monitoring change in land cover can to some extent be insulated from these constraints, since at a minimum, it only requires data recording at enrolment (restoration start time) and at an obligatory site monitoring visit (effective restoration study end). A comprehensive recording of species observations on all polygons of all WRP sites is unrealistic; however, it seems reasonable that Habitat Suitability Indices could be calculated to a much greater precision than simply at the whole easement level as has been done at present. After all, the vast majority of easements support more than just one habitat and these habitats have been recorded in the monitoring dataset. Chapter 5 (Photographic Documentation) will provide recommendations as to how photography including aerial photography and remote sensing might assist monitoring of successional change. ### Recommendation 4.1 Habitat Suitability Index calculations are currently applied at the easement level for each representative species, however habitat data upon which they depend are recorded on at the "management unit" (e.g., crop field) or polygon level. This imprecision should be rectified to the extent that is possible. Habitat Suitability Indices should be calculated for every polygon exceeding a designated threshold acreage. ### Recommendation 4.2 Habitat Suitability Index scores indicate the *potential* of the habitat to support wildlife species. Although this is a useful
and practical tool, it is theoretical and based on expert opinion, therby making comparisons between different species models difficult. Some authors (e.g., Burgman *et al* 2001; Barry *et al* 2006) have questioned the suitability, reliability of, and reliance on HSIs under certain situations or for certain purposes. Habitat Suitability Indices should be evaluated in the context of (Missouri) WRP to assess their suitability over other alternatives. ### Recommendation 4.3 Missouri WRP sites are adding natural and semi-natural habitat to the state's natural areas resource. However in the WRP ecological monitoring program these sites are primarily looked at as isolates rather than as elements in a functional natural mosaic. There is a wealth of designated conservation and natural area types in Missouri, often in proximity to or encompassing WRP sites. An envisioned analysis of WRP sites as functional elements in the greater natural landscape of Missouri that did not eventuate under this study should be realized in subsequent analyses to demonstrate the full extent of WRP contribution to wildlife. #### Recommendation 4.4 In common with Recommendation 3.5 (and 5.6), more detailed study and guidance on the feasibility and limitations of using aerial photography and remote sensing to bolster visual documentation of restoration progress (habitat succession) given the fiscal and logistical constraints to multiple site visits is needed. Specific guidelines for applying these technologies should be developed. # References Barry D, Fischer RA, Hoffman KW, Barry T, Zimmerman EG and Dickson KL. 2006 Assessment of Habitat Values for Indicator Species and Avian Communities in a Riparian Forest. Southeastern Naturalist: Vol. 5, No. 2 pp. 295–310. Burgman MA, Breininger DR, Duncan BR and Ferson S. 2001. Setting Reliability Bounds on Habitat Suitability Indices. Ecological Applications, Vol. 11, No. 1., pp. 70-78. Rennie JC, Clark JD and Sweeney JM. 2000. Evaluation of habitat suitability index models for assessing biotic resources In: Hansen, Mark; Burk, Tom, eds. Integrated tools for natural resources inventories in the 21st century. Gen. Tech. Rep. NC-212. St. Paul, MN: U.S. Dept. of Agriculture, Forest Service, North Central Forest Experiment Station. 321-325. Schamberger M, Farmer AH and Terrell JW. 1982. Habitat suitability index models: introduction. USDI. Fish and Wildlife Service. FWS/OBS-82/10. 2 pp. USACE. 1998. Habitat Suitability Index Model Availability for Wetland Cover Types. WRP Technical Note, FW-RS-2.1. January 1998. United States Army Corps of Engineers; Engineer Research and Development Center; Wetlands Research Program. Accessed 31 December 2008 at http://el.erdc.usace.army.mil/wrtc/wrp/tnotes/fwrs2-1.pdf U.S. Fish and Wildlife Service. 1981. Standards for the development of Habitat Suitability Index models. ESM 103, Division of Ecological Services, Washington, DC. # **Photograph Credits** | wood duck Dave Menke, U.S. Fish and Wildlife Service (public domain) | Credits for Figure 4.1. Missouri
WRP HSI species. | lesser yellowlegs U.S. Fish and Wildlife Service (public domain) | |---|---|--| | prothonotary warbler Peter Kondrashov, used with permission. | mallard Gary M. Stolz, U.S. Fish and Wildlife Service (public domain) | least bittern Chris Valentine, used with permission. | # Chapter 5: Photographic Documentation ## Introduction Wetland inventory activities can contribute to wetland monitoring⁹. Many wetland inventories have been ground-based, often with the support of maps, aerial photography and increasingly, satellite imagery (Finlayson 2001). While aerial photography has been the basis of many wetland inventories, ground photography has been used as well in historical analyses and long-term monitoring, including monitoring of change in landscape and (wooded and forest) vegetation (Curtin et al 2002; Clay et al 2001; Ducrotoy et al 2001). Ground photography is useful for documenting prior conditions (Palmer et al 2005) and conditions that are difficult to quantify on a field datasheet (Lund et al 1995) and it creates a permanent record for future monitoring (Ducrotoy et al 2001). It also can assist with interpretation and ground-truthing of aerial photos (USFWS 2006). Ground photography is currently used, or proposed for use, in various ways in (wetland) survey/monitoring protocols (see USFWS 2006, Bracciano 2005; Boyd et al 2006, Clay et al 2001 and Ducrotoy et al 2001). Ground photographs were taken during monitoring of Missouri WRP easements and provided to the project for analysis, with a view to documenting the efficacy of WRP restoration. Here we summarize this photographic documentation, describe the analyses undertaken, and make recommendations to improve the protocol for site photography in Missouri WRP monitoring. ## **Methods** # Photographic datasets Missouri WRP digital photographs were provided to the analysis project on a data CD and filed in *supra*folders labeled by fiscal year. An affiliated e-mail message indicated that this photographic dataset was not complete, owing to a technical issue with some digital photographic files (not included on the CD) which could not be opened. All photographs were in "JPEG" image format. Two sources of *information about* Missouri WRP site photographs were available for analysis: 1) attribute data associated with separate GIS photo points (information about the photograph entered into the WRP GIS, relative to the position of the photograph point; GIS file described below), and 2) information linked to, and about the photographs themselves (metadata). For the latter source, there were potentially two *kinds* of metadata ⁹ For discussion on the relationship and distinctions between inventory, assessment and monitory, as part of wetland management, see Finlayson et al. 2001and Ramsar Convention Secretariat 2004, 2007. that could be extracted from a WRP site photograph; information that was automatically acquired at the time of recording (i.e., by a digital camera) and information that was subsequently manually added to a digital photo. The first kind of metadata is called Exchangeable Image file Format or "ExIF" metadata, and includes technical information about the photograph (e.g., shutter speed and lens aperture) but *not* about the subject of the photo. Exchangeable Image file Format information is generally not very useful for documenting the efficacy of restoration. However as GPS readings become part of routine, automatically acquired photographic data, ExIF metadata will become increasingly useful for site monitoring. The second type of metadata, optional "creator information," meta information that is added to the digital image by the photographer/custodian (e.g., photograph description and location details) using camera/imaging software, holds the most potential for analysis of site attributes. The photographic filing system of folders (easements), and in some cases, filenames (of the photographs) also proved useful in the collective photographic dataset analysis. ### **GIS** dataset The GIS dataset employed in this analysis was a shapefile¹⁰ (firstmon-all-field_pt-photos.shp) containing 2,595 photo points with associated attribute data (including photo number, bearings and other information stored as "comments"). # Photo file preparation and analysis Several methods for preparing and analyzing meta information on the digital photographs and photographic records of the monitored Missouri WRP easement dataset were developed under the project. These are detailed in Annex 5 - Photo Documentation Methods.doc. ### Digital photographs The photographic filing system was copied from the provided data CD to the project computer using the file manager, Microsoft® Windows® ExplorerTM. The structure and content of this dataset were examined, and folders and files were moved, removed and/or renamed as necessary to standardize filing and labeling. Digital photographs that could not be ascribed to specific easements in the monitored WRP dataset were removed from the analysis. Random samples in excess of 100 digital photo metadata records were accessed using Corel® Paint Shop Pro® X (10.03). The reorganized folder structure and contents were captured and converted as surrogate records of the digital photographs, with a view to analysis using a detailed method sequence, including specialized software. (See Annex 5 – Methods: Method 3). These records were imported into a database ALLPHOTO.DBF created for this purpose and fields were $^{^{10}}$ A geographic "digital vector" format file (by $\mathrm{ESRI} \circledR)$ used in GIS. populated using Microsoft® FoxPro 2.6a (X), and the database was analyzed in Microsoft® Office Excel® 2003 using PivotTable® functionality in the spreadsheet PhotoCount.xls. ### GIS photo points The non-referenced, GIS photo points layer (firstmon-all-field_pt-photos.shp) including "bearing" information (orientation of camera to subject) and "comments" was associated with relevant easement records via a spatial intersection (photos_intersect_plan.shp) using the "Geoprocessing – Intersect" procedure with ESRI® ArcMap™ (ArcGIS™) 9.2. This associated the easement agreement number to the photo points, enabling further analysis. These combined records were parsed and prepared for database (FOTOINTS.DBF) analysis (See Annex 5 – Methods: Method 5). ## Comparing datasets Database relations were established between the processed outputs of the analyses of photographs and of photo points to identify intersections. Table 5.1 summarizes the photographic coverage of monitored WRP easements in Missouri per relevant dataset. **Table 5.1.** Parent and select derived photography dataset components available for Missouri WRP easement monitoring
analysis. | Base Theme | Description | Records | Easements | |--|---|---------|--------------| | monitored | All monitored WRP easements | 594 | 594 | | easements | | | | | photo points | Parent GIS spatial file of easement photo points | 2,595 | no key field | | Raw digital | Gross contents of photographic filing system | 2,492 | 545 | | photographic dataset | (analysis dataset) | | | | Screened digital | Net digital photographs in filing system | 2,380 | 530 | | photographs | | | | | monitored | Easements with digital photo(s) | 532 | 530 | | easements | (No photo present) | | (64) | | photo points | GIS easement photo points intersecting monitored | 2,300 | 464 | | in monitored | easement units (polygons) | | | | easement
units | | | | | photo points and easements with photos | GIS monitored easement photo points and easements with digital photos | 2,172 | 424 | | photo points and digital photos | GIS monitored easement photo points and digital photos from monitored easements | 2,084 | 414 | Beginning with the parent dataset of 594 easements, database processing, spatial analysis and intersecting with GIS or database relations revealed various levels of photographic coverage. For digital photos, 530 out of 594 easements had them. GIS photo point records occurred for 464 easements. When these two datasets were "intersected" the overlapping coverage dropped to between 424 - 414 easements (depending on how the intersections were devised). Figure 5.1 charts the same relationships between the parent datasets (easements, photographs and GIS photo points) and between the derived analyses results and comparisons, in a quasi-flowchart illustration. ## Results Eighty-nine percent of 594 monitored easements were covered by at least one photograph in the analysis dataset. However, recorded information about the *subjects* of those photographs was absent. *None* of the 2,380 photographs that were attributable to specific easements were tagged with "creator" meta information including a description of what the photo represented (based on a random sample of 100 site photographs). Figure 5.2 is an image captured from one of these randomly selected records. Some 110 digital photographs were not considered because they were not attributable to a specific easement, were misallocated to the monitored dataset altogether or were non-easement photos (i.e., general thematic photos). The complete original parent file Photo Datasets Relationships.xls, a workbook containing three worksheets, is found in the project CD archive. **Figure 5.2.** Randomly selected WRP photograph and its metadata record. The advanced information record (button only depicted) was also blank. This spatial intersection of the original 2,595 photo points and 3,728 monitored easement polygons was rectified into single photo-point records to yield **2,300** records of linked photo-point easements. With these two (potential) sources of photographic metadata described above cleaned and organized, a database relation between the two was established. This yielded **2,084** records of GIS photo points from the monitored easement dataset linked to photographs in the photographic filing system. However only 246 (11.8%) of these records contained comments (with potential value for analysis). These comments covered a diverse range of subjects including easement violations, field (plot) numbers, directional orientation, water control structures, invasive species, field boundaries, habitat modification and other information. The combined low number of comments and the disparate subjects they covered did not allow any meaningful analysis of these annotations as regards the documentation of wetland restoration efficacy. ## Discussion Current image management software is "tailor made" for storing information that identifies a digital photograph, and in theory, it can hold information that can be categorized and analyzed. None of a large sample of the digital photographs was populated with any descriptive meta information. The GIS photo points file mirrored the function of a metadata record in that it held a "comments" data field. However, just over 10% of these records contained information and much of this was compliance or management oriented as opposed to ecological information. This is borne out by information from the field, where the routine practice is to record photo number (taken from the camera) and degree heading of photo (using a compass bearing). The main purpose of the photos is to establish a "permanent" photo station that can be used over time to visually document plant and wetland succession. Sometimes, but not often, other information might be recorded such as a violation or damage. Usually representative habitat types on the easement are photographed as well (S. Young, in litt.). However, again, these were not labeled. The absence of embedded information or descriptive commentary meant that other, less promising alternatives for obtaining meta information were explored. It is a tenuous to draw ecological conclusions about a photograph based solely on its engineered database relational association to a particular GIS habitat polygon. The photograph must first actually depict the habitat in order to corroborate it in the database, or in a "proof" of restoration success. Seasonality is an issue for habitats normally identified with herbaceous/emergent vegetation, where a photograph taken in winter (or during a drought) might not actually depict recognizable intact vegetation. Given that photo descriptions were not originally included in standard metadata fields associated with digital photographs, the project officer "described" a sample of photographs by viewing them on computer and recording the observations in a database. This was strictly an effort to gauge the difficulty and time burden of "backfilling" these data, however the exercise raised the question of the efficacy of this after-the-fact approach. The authors can only conclude that completing such an effort on this large dataset does not coincide with what was envisaged for this analysis project. Of most concern was the likelihood that, having never visited those sites, any description crafted by the authors would be inaccurate and render any analysis based on them, invalid. Photo descriptions are inherently far more accurate when written by the photographer/observer of the scene and at the time of the photography, as opposed to being described at a location removed both in time and space, utilizing assembly-line style and pace of data entry. Given the apparent disconnect with what was likely envisioned from the photographs in the project proposal and what was possible with the photographic dataset in hand, it seems pertinent to ask the question "what was the purpose of easement photographs?" A search of the official "WRP Program Manual" (NRCS 2007b) and various field-data instruments in use was undertaken to see what role photography plays in easement monitoring; e.g., when is it called for, how is it to be undertaken and what are its intended uses. Of four likely sources of such information, two yielded a number of allusions to easement photography. Relevant passages (with attribution) have been excerpted to "Summary of guidance on photographic documentation of WRP easements" in Annex 5. The "MISSOURI 20[07] WRP RANKING FORM" (a.k.a. the "Missouri WRP Preliminary Planning Checklist") made no mention of photographic documentation for WRP sites. Similarly the form for landowners, "Missouri WRP Bid Pilot Self Assessment Guide" does not mention photographs or request photographic documentation as part of the submission of a nominated site, although a map is requested if available. [Photographs would seem eminently complementary to providing the evidence requested]. Discounting for the moment, clauses and advice concerning aerial photography, the two other sources did make some references to easement photography. The form "WRPmonitoringagreementATTACHMENT A" is for both compliance and ecological monitoring of WRP easements. This form makes numerous allusions to photography. Several of these are related to recording easement compliance violations including listing examples of the kinds of violations that should be recorded. However photography in reference to ecological monitoring merely mentions that photographs should be taken as part of the process. For both compliance and ecological monitoring, the document instructs that photographs should be taken from "photo points." The document also states that "photos will be spatially associated with the easement boundary." The remaining information source, the "WRP Program Manual" (NRCS 2007b), refers to photography in several sections. Again however, the emphasis seems to be on compliance monitoring photography. However in reference to the Final Restoration Plan, the manual states that "[the]...plan shall consist of the following: photographs that document site conditions before, during, and after restoration." These site conditions should also include visual documentation that would "provide documentation of wetland benefits and values resulting from WRP restorations," the purpose of photographic documentation under this project product (i.e., analysis). Ground photography is a part of a site monitoring "toolkit," especially for compliance monitoring. Compliance photographs typically capture restoration "practices" (e.g., a water control structure) or a violation of a *Compatible Use Authorization* or CUA, (e.g., building construction or a "food plot"). Effective compliance photographs can usually be taken as observed, i.e., at any time. Ground photography has and is being employed in ecological monitoring, especially to *qualitatively document vegetation and land-use
change* (Clay and Marsh 2001). Vegetation attributes that can be interpreted from photographs may include species composition, structure, biomass and health or condition (Lund et al 1995). However in Missouri these attributes vary seasonally. The absence of associated descriptive information (that could be mined, categorized and analyzed) requires an assumption that the easement photographs in the analysis dataset do connote visual information that documents "site conditions." This documentation would be from the time of photographic recording, some time "during restoration." Although photographs of the site before commencement are called for, these were not available for analysis, presumably because they are not part of a centralized dataset. Nor were they often available to the TSPs from the regionally housed individual easement files, although nominally required (S. Young, in litt.). Another consideration in evaluating the potential of photography to document restoration success is the timing and frequency of monitoring visits. Thus far, Missouri WRP site monitoring has run on a schedule of one site visit every three years. In practice this means that only now are sites starting to receive a first follow-up visit. The analysis dataset only includes data – and photographs – from a single site visit. As Missouri experiences four distinct seasons, depending on when a particular site is visited, photographs of habitat and vegetation might depict starkly different images and convey vastly different levels of information, from similar sites (a lush summer versus a barren winter scene, for example). Ground photography to document vegetation succession (as an indication of restoration success) may be more effective during specific times of the year, especially for herbaceous vegetation. ## Recommendations Visual imagery is a powerful medium that can document restoration progress and success. Photographs provide a convincing message to stakeholders and funding sources of WRP program accomplishments. Currently the emphasis of easement photography is on documenting (non-)compliance. However ecological restoration also needs to be documented and this can be supported by easement photography. Time-series documentation is particularly useful. WRP monitoring guidance already suggests that a final restoration plan should contain *before*, *during*, and *after* restoration photographs to document site conditions. However this documentation is on a site-by-site basis and not yet part of a centralized data management system. ### Recommendation 5.1 A large body of digital site photographs has been amassed during monitoring of WRP easements in Missouri. If descriptive information on these photos exists that was not part of the data package available to us (e.g., field notes or a separate dedicated photographic file), it should be affiliated with the photographs. Intermediate data by-products developed under the analysis would provide suitable vehicles for linking and storing any such data. Then if the level and content of new documentation indicated sufficient potential, a new analysis of the photographic resource should be undertaken. ### Recommendation 5.2 All WRP easements should be photographed before, during, and after restoration. Prerestoration photos document starting conditions, including the state of water and vegetation and serve as a baseline against which to compare restoration effectiveness. Photographs should be taken again immediately following restoration activities to provide a reference for subsequent ecological succession (as well as for compliance documentation). Photographs should be taken during each subsequent 3-year visit to record progress of ecological performance relative to restoration objectives. #### Recommendation 5.3. A careful, detailed description and other meta data should be associated with each digital photograph using standard imaging software by the photographer/observer at or near the time the photograph was taken. A simple set of keywords should be developed for and employed in descriptions to facilitate analysis of the ecological state of the easement as depicted in the photograph. ### Recommendation 5.4 Every site monitoring visit should be documented with photography from designated photo points, covering ecological (as well as compliance themes). Vegetation type and seasonality should inform the scheduling of site visits to maximize the utility of the photographs for ecological monitoring. ### Recommendation 5.5 All easement photographs should be part of a centralized data management system for Missouri WRP easements. The data management system should be capable of managing photographs just like any other data item and this should work seamlessly with the WRP GIS. ### Recommendation 5.6 More detailed study and guidance on the feasibility and limitations of using aerial photography and remote sensing to bolster visual documentation of restoration progress given the fiscal and logistical constraints to multiple site visits is needed. Specific guidelines for applying these technologies should be developed. ### Literature Cited Boyd, C.S., Hopkins, K.T. and SVEJCAR, T.J. 2006. A Photo-Based Monitoring Technique for Willow Communities. Wildlife Society Bulletin **34**:1049-1054. Bracciano, D. 2005. Wetland Assessment Procedure (WAP) Instruction Manual for Isolated Wetlands. Southwest Florida Water Management District and Tampa Bay Water, a Regional Water Supply Authority. URL: http://www.swfwmd.state.fl.us/waterres/ntb/wap/files/wap manual2005.pdf [accessed on 29 November 2007] Clay, G.R. and Marsh, S.E. 2001. Monitoring Forest Transitions Using Scanned Ground Photographs as a Primary Data Source. Photogrammetric Engineering & Remote Sensing 67: 319-330. Curtin, C.G., Sayre, N.F. and Lane, B.D. 2002. Transformations of the Chihuahuan Borderlands: grazing, fragmentation, and biodiversity conservation in desert grasslands, Environmental Science & Policy 5:55-68. Ducrotoy, JP.A. and Simpson, SD. 2001. Developments in the application of photography to ecological monitoring, with reference to algal beds. Aquatic Conservation: Marine and Freshwater Ecosystems 11: 123-135. Finlayson, C.M. 2001. Considerations for undertaking a wetland inventory. Pages 11-22 *In* C.M. Finlayson, N.C. Davidson, and N.J. Stevenson (editors). Wetland inventory, assessment and monitoring: practical techniques and identification of major issues. Supervising Scientist Report 161, Supervising Scientist, Darwin, Australia. Finlayson, C.M., Davidson, N.C. & Stevenson, N.J. 2001. Wetland inventory, assessment and monitoring practical techniques and identification of major issues: Summary. *In* Wetland inventory, assessment and monitoring: practical techniques and identification of major issues C.M. Finlayson, N.C. Davidson, and N.J. Stevenson (editors). Supervising Scientist Report 161, Supervising Scientist, Darwin, Australia. Lund, H.G., Evans, D.L. and Linden, D.S. 1995. Scanned, zapped, timed, and digitized: advanced technologies for measuring and monitoring vegetation diversity. Ch. 25 *In* Boyle, T.J.B. and Boontawee, B. (editors). Measuring and Monitoring Biodiversity in Tropical and Temperate Forests. Center for International Forestry Research, Bogor, Indonesia. Natural Resources Conservation Service (NRCS). 2007a. Farm Bill 2002. Wetlands reserve Program. Key Points. April 2007. (Factsheet). URL: http://www.nrcs.usda.gov/PROGRAMS/wrp/2007WRPKeyPoints.pdf [accessed on 21 April 2008] Natural Resources Conservation Service (NRCS). [2007b]. Conservation Programs Manual Title 440, Part 514. Wetland Reserve Program. URL: www.info.usda.gov/scripts/lpsiis.dll/M/M 440 514.htm. [accessed on 29 November 2007] Palmer, M.A., E.S. Bernhardt, J.D. Allan, P.S. Lake, G. Alexander, S. Brooks, J. Carr, S. Clayton, C.N. Dahm, J. Follstad-Shah, D.L. Galat, S. Gloss, P. Goodwin, D.D. Hart, B. Hasset, R. Jenkinson, G.M. Kondolf, R. Lave, J.L. Meyer, T.K. O'Donnelll, L. Pagano, and E. Sudduth. 2005. Standards for ecologically successful river restoration. Journal of Applied Ecology 42: 208-217. Ramsar Convention Secretariat, 2004. Wetland inventory: A Ramsar framework for wetland inventory. Ramsar handbooks for the wise use of wetlands, 2nd edition, vol. 10. Ramsar Convention Secretariat, Gland, Switzerland. Ramsar Convention Secretariat, 2007. Inventory, assessment, and monitoring: An Integrated Framework for wetland inventory, assessment, and monitoring. Ramsar handbooks for the wise use of wetlands, 3rd edition, vol. 11. Ramsar Convention Secretariat, Gland, Switzerland. USFWS 2006. Platte River Recovery Implementation Program. December 07, 2005. Appendix D *in* Biological Opinion on the Platte River Recovery Implementation Program. June 16, 2006. URL: http://www.fws.gov/filedownloads/ftp_region6_upload/Platte%20River%20Final%20Biological%20Opinion/Appendix%20D.pdf [accessed on 29 November 2007]. # Chapter 6: Conclusions and Recommendations # Introduction The purpose of the Conservation Effects Assessment Project (CEAP) is to quantify environmental benefits of conservation practices used by private landowners participating in selected U.S. Department of Agriculture's conservation programs including the Wetland Reserve Program (WRP). This report contributes to the CEAP mission of helping "farmers and ranchers make informed conservation choices" by providing a summary and analysis Missouri's WRP program, including number, area, distribution and type of enrolled parcels; a listing of plant and animal taxa with emphases on rare and endangered species, and; an evaluation of restoration status including influence on plant and animal responses. Restoring habitat for "migratory birds and other wildlife" is the ultimate goal of the national WRP; however, the young age of the program and vegetation
succession, as well as the lack of monitoring, have limited evaluation of program success from this perspective (King et al. 2006). Similarly, our analysis of the Missouri WRP is preliminary as to date most easements have experienced only first-time monitoring and evaluation. This report is intended to provide baseline information that establishes initial gains in wetland value, compliance with easement restrictions, initial vegetation response, and the degree of agreement between predicted and actual wetland recovery. Project findings and results can be used to document progress on the environmental effects of WRP, guide WRP implementation, aid discussions on conservation policy development, and ultimately improve success of the WRP in Missouri and elsewhere. ## **Conclusions** Approximately 119,400 acres on 825 sites, or about 0.27% of the total area of Missouri was enrolled in the WRP program as of January 2007. Nearly 90% of these lands are in permanent easements and about 66% of all enrolled sites and 54% of total enrolled acreage are located in the Central Dissected Till Plains ecoregion of northern Missouri (0.44% of its total area). The subset monitored for this WRP analysis consisted of 72% (594 sites) of the total statewide easements and included approximately 56% (66,706 acres) of the total enrolled acreage. The three dominate wetland habitat types of monitored WRP easement acreage, based on Cowardin et als. (1979) classification were: Palustrine Forested Broad-leaved Deciduous (50.4%), Palustrine Emergent Persistent (22.0%), and Palustrine Emergent Non-persistent (18.5%). Habitat succession, defined as changes in land cover, was examined by contrasting before and after restoration conditions and at discrete four-year intervals. Almost all of the lands that were comprised of cropland at the start of restoration had succeeded to emergent-herbaceous and forested-wooded land-cover types at the time of easement monitoring (range 2.7 to 12.2 years). The forest-woodland category is a mixture of natural regeneration and tree planting. Only scant remnants of cropland remained by the fifth year of restoration. (range 2.7 to 12.2 years). The forest-woodland category is a mixture of natural regeneration and tree planting. Only scant remnants of cropland remained by the fifth year of restoration. Habitat Suitability Index (HSI) data were recorded on an easement basis during monitoring for six representative species (models). Three species, Anas platyrhynchos (mallard), Aix sponsa (wood duck) and Protonotaria citrea (prothonotary warbler) were indicators for "forested" habitats and three species, mallard, Ixobrychus exilis (least bittern) and Tringa flavipes (lesser vellowlegs) were indicators for non-forested habitats. Post-restoration HSI scores were markedly higher than the pre-restoration score (set at 0.1) for all non-forest models and two of the three forest models. The magnitude of the increase in habitat quality was greatest for species associated with emergent-herbaceous (non-forest) habitats that develop faster than forest. Least bittern showed the greatest improvement in habitat quality due to its dependence on dense herbaceous vegetation, which increased on most easements following restoration as succession proceeded. The mallard, a species associated with both forested and non-forest categories of restored land depending on the season, showed the least HSI improvement of species associated with forest. However, mature bottomland hardwood forest on which the mallard model relies, has not had time to develop fully in the majority of study sites. Temporal changes in habitat quality for indicator species are expected to more clearly emerge as wetlands succeed in the future. Ground photographs were taken during monitoring of Missouri WRP easements to document the efficacy of WRP restoration. Eighty-nine percent of monitored easements were covered by at least one photograph in the analysis dataset. However, recorded information about the subjects of those photographs was generally absent. Few of the digital photographs were populated with any descriptive meta-information, and of those that did contain information, much of it was compliance or management oriented as opposed to ecological information. Visual imagery is a powerful medium to demonstrate restoration success. Before, during, and after time series photographic documentation of easements as part of a centralized data management system would be particularly useful to document restoration progress. ## Recommendations Individual preceding Chapters provide specific operational recommendations to improve Missouri's WRP monitoring and evaluation program to better meet the CEAP purpose. Here we provide more strategic recommendations derived from a review of relevant technical literature in restoration ecology that addresses the challenges in achieving restoration success and designing cost-effective monitoring programs to evaluate program performance. Hydrological conditions provide the basic control of wetland structure and functioning (National Research Council 1996). It is poorly known to what degree natural hydrological regimes must be mimicked to restore biodiversity and wetland functioning at the local scale (Zedler 2000). However, identifying essential attributes of the anticipated hydrological regime, including magnitude, timing, frequency, duration, and rate of change of flooding and drying events for the targeted wetland habitat type (e.g., Cowardin 1979) should be a core element of designing and implementing WRP projects. We recommend adopting an adaptive management approach as outlined in Table 6.1 and detailed in Williams et al. (2007) to the Missouri WRP in general and also for individual **Table 6.1.** Operational sequence for adaptive management. (Adapted from Williams et al. 2007) | Step | Purpose | |--------------------------|--| | Setup stage | | | Stakeholder involvement: | Ensure agency and stakeholder commitment to adaptively manage the restoration for its duration. | | Objectives: | Identify clear, measurable, and agreed-upon management objectives to guide decision making and evaluate restoration effectiveness over time. | | Management actions: | Identify a set of potential restoration actions for decision making. | | Models: | Identify models that characterize different ideas (hypotheses) about how the system works. | | Monitoring plans: | Design and implement a monitoring plan to track resource status and other key resource attributes to inform decision making. | | Iterative stage | | | Decision making: | Select restoration actions based on management objectives, resource conditions, and enhanced understanding. | | Follow-up
monitoring: | Use monitoring to track system responses to restoration actions. | | Assessment: | Improve understanding of resource dynamics by comparing predicted and observed change in resource status. | | Iteration: | Cycle back to Steps 1 and 6. | easements. Wetland systems are inherently dynamic and variable and we often poorly understand how they will respond to management actions. Adaptive management recognizes these uncertainties in four ways that monitoring can help address (Williams 2001, Lyons et al 2008). First, environmental spatial and temporal variation often drives wetlands in ways that may or may not be consistent with management prescriptions. Second, considerable uncertainty exists about the underlying ecological mechanisms responsible for observed responses (e.g., rate of vegetation succession; see Box 6.1.). Third, many wetland variables of interest (e.g., population responses of targeted wildlife species) cannot be measured directly given available resources. Fourth, outcomes of restoration actions often deviate in degree and spatial extent from management prescriptions (e.g., dominance in plant species composition). **Box 6.1.** (Source: Zedler 2000). **Succession theory is central to ecological restoration.** In nature, a disturbed habitat immediately begins to change and it continues to develop over centuries. Ecologists recognize broad patterns where sites of different ages occur within a region or when large-scale disturbances are followed over time. Although ecosystem recovery can be perceived as an orderly progression when viewed over long periods at a regional scale (e.g. 200 years for spruce forests that follow glacial melting in Alaska), shorter term, smaller scale patterns are hard to predict. Restorationists seek to achieve a mature community in a short time by overcoming many constraints. Further complicating predictability, restorationists employ site-specific actions to accelerate the developmental process and each action has the potential to change the trajectory of ecosystem development in ways that are largely uncharted. One can argue that following larger restoration sites for longer periods would show that succession theory can predict outcomes. One can also argue that the outcomes of many restoration sites cannot be predicted, because succession theory does not accommodate smaller scale, shorter term, site-specific patterns. The fact remains that wetland restorationists are often charged with achieving specific outcomes on small sites in short periods, although the ability to predict specific outcomes is lacking for such settings, even for well studied communities. Adaptive management addresses these uncertainties by integrating monitoring into decision-making, thereby allowing decision-makers to both achieve management objectives and generate new knowledge about how the system responds to restoration actions (Lyons et al 2008). A key element of adaptive management and any restoration effort is to articulate SMART (i.e., specific, measurable, achievable, relevant, time-dependent) objectives at the outset of the program and
for each restoration project (Gregory & Failing 2002, Tear et al. 2005, Van Cleve et al. 2006). The goal of the national WRP to, "achieve the greatest wetland functions and values, along with optimum wildlife habitat, on every acre enrolled..." needs to be translated into measurable objectives for the state specific program in Missouri. Management objectives should be more than acres enrolled, or practices implemented as designed, but they should identify attributes of ecological success (see Table 6.2, Palmer et al. 2005). The primary purpose of a post-project monitoring program is to evaluate progress at realizing these management objectives. **Table 6.2.** Five suggested criteria for ecological success to apply to Missouri's Wetland Reserve Program. (Adapted from Palmer et al. 2005). | Criteria | Description | |--------------------|--| | A guiding image | A dynamic ecological endpoint is identified a priori and used to guide | | exists | the restoration. | | Ecosystems are | The ecological conditions of the site are measurably enhanced. | | improved | | | Resilience is | The site is more self-sustaining than prior to restoration. | | increased | | | No lasting harm is | Implementing the restoration does not inflict irreparable harm during | | done | construction activity. | | An ecological | Some level of both pre-and post- project assessment is conducted | | assessment is | and information made available. | | completed | | Unfortunately, assessment or monitoring was conducted on only about 10% of over 37,000 river restoration projects evaluated throughout U.S. (Bernhardt et al. 2005) and monitoring was reported on only between 0 and 50% of over 62,000 river-wetland restoration projects within the Upper Mississippi River Basin (O'Donnell and Galat 2007). The Missouri WRP program is an exception to this piecemeal approach to assessing program effectiveness in that over 70% of WRP easements to date have undergone post-project monitoring. Missouri's present WRP monitoring program is largely directed towards compliance and implementation monitoring, along with limited status and trends monitoring (See Table 6.3. for categories of restoration monitoring). **Table 6.3.** Restoration monitoring can be classified into six overlapping categories (Sources: Barko et al. 2006, Block et al. 2001). | Category | Purpose | |---------------------------|--| | Baseline
monitoring | Characterize existing conditions, including natural variability; establish a database for planning or future comparisons; use as a reference of either existing or undisturbed conditions. | | Status & trend monitoring | Evaluate state of system over time, with emphasis on "trends". Key issue is change of conditions over time. May or may not be related to specific project or question. | | Implementation monitoring | Evaluate whether the restoration practices were carried out as planned. Includes monitoring of construction impacts, constructed features, and characterizing immediate post-project conditions. | Table 6.3 (continued) | Category | Purpose | |--------------------------|---| | Effectiveness monitoring | Evaluate whether the restoration practices met stated objectives. May be directed at an individual project or a coordinated suite of multiple projects. Typically requires information about baseline and reference conditions, or desired state of system. | | Validation
monitoring | Advance knowledge of underlying cause and effect relationships. Use demonstration projects to strengthen scientific basis for particular restoration approaches. Monitoring data used to validate models. | | Compliance monitoring | Determine whether specific water quality or ecological integrity criteria are being met, as specified in some environmental standard, regulation, or law. | Effectiveness monitoring is particularly relevant to restoration and requires response variables to be clearly articulated so they can be measured accurately and precisely (Block et al. 2001). Plant species present (Chapter 3) are important indicators of system response to management actions. Identifying reference community composition based on representative species by ecological section (Nigh and Schroeder 2002) and Cowardin (1979) habitat types would further facilitate identifying performance metrics for effectiveness monitoring. Habitat Suitability Index (HSI) models, such as used in the Missouri WRP monitoring program (Chapter 4), have been widely applied to assess habitat quality for a variety of wetland wildlife (National Wetlands Research Center: http://www.nwrc.usgs.gov/wdb/pub/hsi/hsiintro.htm). An HSI is a numerical index that represents the capacity of a given habitat to support a selected species and most HSIs were developed by the U.S. Fish and Wildlife Service between 1980 and 1987 to quantify effects of land management alternatives on wildlife habitat (U.S. Fish and Wildlife Service 1981). Use of HIS models is now often criticized because of unreliable model performance resulting Indices are useful metrics to characterize biodiversity (Failing and Gregory 2003) and from an inconsistent framework for model validation (Roloff and Kernohan 1999). Additionally, HSIs are single species habitat metrics and as such convey little information about overall ecosystem health. Two other approaches to characterize wetland condition have largely replaced HSIs and we recommend they be considered for evaluating WRP easements in Missouri. Multimetric indices such as the Index of Biotic Integrity (IBI) have become popular as a summary tool to evaluate the health of wetlands and the IBI approach is now widely applied for wetland bioassessments (U.S. Environmental Protection Agency: http://www.epa.gov/owow/wetlands/bawwg/biobasic.html). See Mack (2007) for a review of wetland IBIs and the advantages of plant-based wetland IBIs. The hydrogeomorphic (HGM) approach for assessing wetland functions is rapidly gaining favor among multiple federal agencies for identifying wetland restoration and management options (http://el.erdc.usace.army.mil/wetlands/hgmhp.html). The HGM approach requires classification of wetlands based on geomorphic setting, water source, and hydrodynamics. For each wetland type, or subclass, it also requires developing models for each classified wetland, collecting data from reference wetlands, and calibrating the models using that data. The calibrated models are then field tested, revised, and published as a regional guidebook (Smith et al. 1995). Heitmeyer (2008) has applied HGM to evaluate ecosystem restoration and management options for a Missouri Conservation Area and we recommend evaluating the HGM as a more holistic and functional approach for evaluating restoration options and defining potential outcomes for Missouri WRP easements. A major challenge of any WRP program is to develop objective and scientifically defensible performance criteria when what constitutes "optimum wildlife habitat" is poorly known. Miller and Hobbs (2007) summarize a key set of considerations that should be addressed when undertaking habitat restoration projects. These include: (1) determining the target species of the restoration (see also Parrish et al. 2003), (2) deciding on the key habitat elements to be restored, and (3) assessing the project within a landscape-scale context (see Figure 6.1). **Figure 6.1.** Key considerations when setting goals for habitat restoration programs (Source: Miller & Hobbs 2007). Effectiveness monitoring to address these considerations need not be conducted on every easement, or every year. A project-by-project determination of the appropriate level and complexity of monitoring should be made based on the size/cost of the project, the scale of its likely impacts and its benefits and its potential for learning. Monitoring and evaluation of WRP easements shares may similarities with measuring trends in ecological resources in general and the May 1998 issue of *Ecological Applications* (Dixon et al. 1998) contains a collection of papers that can aid in improving effectiveness monitoring for WRP sites. The papers in this issue define what a 'trend' is and what separates long-term trends from other components of temporal variation. Other papers provide design-based survey sampling approaches to monitoring changes in ecological resources, how to generalize to larger regions from a few intensively monitored sentinel sites or many infrequently monitored sites, and others describe statistical techniques for analyzing trends in ecological communities. Additionally, The National Park Service has undertaken a program to inventory and monitor the condition of natural resources in our National Parks that is generally applicable to WRP sites and they provide detailed guidance for how to design an integrated monitoring program (http://science.nature.nps.gov/im/monitor/). We would also like to draw attention to some of the pitfalls others have encountered in ecological restoration projects. Hilderbrand et al. (2005) articulated five central myths under which many restoration and management projects seem to have been conceived and implemented. (see Table 6.4). Identifying such myths can help us recognize our assumptions about complex wetland systems and understand why some
restoration projects to not meet **Table 6.4.** The myths of restoration and their features (Source: Hilderbrand et al. 2005) | Restoration Myth | Features | |---|---| | Carbon Copy | We can restore or create an ecosystem or site that is a copy of a previous or ideal state. Community assembly is predictable; a single endpoint exists. | | Field of Dreams | Restore the physical structure for a particular ecosystem or site, and biotic composition and function will self-assemble. | | Fast Forward | One can accelerate ecosystem or site development by controlling pathways such as dispersal, colonization and community assembly, to reduce the time required to | | Cookbook | Over-use or continued use of a locally unsuccessful restoration prescription because it worked somewhere else, or is in the published literature. | | Command and
Control: Sisyphus
Complex | Assumes We have the knowledge, abilities, and foresight to actively control ecosystem structure and function to manage for a particular ecosystem state indefinitely into the future. | expectations. Failing and Gregory (2003) identify 10 common mistakes in developing and using forest biodiversity indicators from the perspective of making better management choices (see Table 6.5). They are equally applicable to helping CEAP quantify environmental benefits of conservation practices as several of the mistakes stem in part from a focus on thinking about indicators as monitoring effects on forest (wetland) characteristics rather than as decision criteria. **Table 6.5.** Ten mistakes in forest (wetland) biodiversity indicators. (Source: Failing & Gregory 2003). | Mistake | |---| | 1. Failing to define endpoints | | 2. Mixing means and ends | | 3. Ignoring the management context | | 4. Making lists instead of indicators | | 5. Avoiding importance weights for individual indicators | | 6. Avoiding summary indicators or indices because they are considered overly simple | | 7. Failing to link indicators to decisions | | 8. Confusing value judgments with technical judgments | | 9. Substituting data collection for critical thinking | | 10. Oversimplifying: ignoring spatial and temporal tradeoffs | Lastly, cost of monitoring programs is always a challenge as most agencies elect to direct the majority of resources to on-the-ground restoration. However, we cannot overemphasize the necessity of designing and implementing effective ecological monitoring of WRP easements. Adaptive management is not possible without monitoring to assess performance of objectives and, equally important, to learning by doing. As noted above we recommend stratifying Missouri's WRP easements into similar types based on ecological section and dominant habitat types and this approach could redirect limited resources to improved effectiveness monitoring. Successful ecological monitoring programs must be ecologically relevant, statistically credible and cost effective (Hinds 1984). For an ecological monitoring program to be successful the perceived information benefits must justify its cost. Caughlan and Oakley (2001) provide a general framework for building and operating a cost-effective, long-term ecological monitoring program and we urge the Missouri WRP to use the results and recommendations of this report to further cost-effective and realistic expectations of monitoring outcomes. ## References Barko, J., B. Johnson, and C. Theiling. 2006. Environmental Science Panel Report: Implementing adaptive management. U.S. Army Engineer Districts: Rock Island, Rock Island, IL; St. Louis, St. Louis, MO, and St. Paul, St Paul, MN. Bernhardt, E. S., M.A. Palmer, J.D. Allan, G. Alexander, K. Barnas, S. Brooks, J. Carr, S. Clayton, C. Dahm, J. Follstad-Shah, D. Galat, S. Gloss, P. Goodwin, D. Hart, B. Hassett, R. Jenkinson, S. Katz, G. M. Kondolf, P. S. Lake, R. Lave, J.L. Meyer, T.K. O'Donnell, L. Pagano, B. Powell, and E. Sudduth. 2005. Synthesizing U. S. river restoration efforts. Science 308: 636-637. Block, W.M., A.B. Franklin, J.P. Ward, Jr., J. L. Ganey, and G.C. White. 2001. Design and implementation of monitoring studies to evaluate the success of ecological restoration on wildlife. Restoration Ecology 9: 293-303. Caughlan, L., and K. L. Oakley. 2001. Cost considerations for long-term ecological monitoring. Ecological Indicators 1:123-134. Cowardin, L.M., Carter, V., Golet, F.C. and LaRoe, E.T. 1979. Classification of Wetland and Deepwater Habitats of the United States. U.S. Fish and Wildlife Service Report FWS/OBS-79/31. Washington D.C. 131 p. Dixon, P. M., A. R. Olsen, and B. M. Kahn. 1998 (and other papers in this issue). Measuring trends in ecological resources. Ecological Applications 8:225-227. Failing, L., and R. Gregory. 2003. Ten common mistakes in designing biodiversity indicators for forest policy. Journal of Environmental Management 68:121-132. Heitmeyer, M. E. 2008. An evaluation of ecosystem restoration and management options for the Ted Shanks Conservation Area. Greenbrier Wetland Services Report 08-03, Blue Heron Conservation Design and Printing LLC, Bloomfield, MO. Hilderbrand, R. H., A. C. Watts, and A. M. Randle. 2005. The myths of restoration ecology. Ecology and Society 10(1):19: http:// \www.ecologyandsociety.org/vol10/iss11/art19/. Hinds, W. T. 1984. Towards monitoring of long-term trends in terrestrial ecosystems. Environmental Conservation 11:11-18. King, S. L., D. J. Twedt, and R. R. Wilson. 2006. The role of the Wetland Reserve Program in conservation efforts in the Mississippi River Alluvial Valley. Wildlife Society Bulletin 34:914-920. Mack, J. J. 2007. Developing a wetland IBI with statewide application after multiple testing iterations. Ecological Indicators 7: 864–881. Middleton, B. 1999. Wetland restoration, flood pulsing, and disturbance dynamics, John Wiley & Sons, New York. Miller, J. R., and R. J. Hobbs. 2007. Habitat restoration - do we know what we're doing? Restoration Ecology 15:382-390. National Research Council. 1996. Wetlands characteristics and boundaries. National Academy Press, Washington, DC. Nigh, T.A. and Schroeder, W.A.. 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation. Jefferson City, Missouri. xii + 212 p and GIS data. O'Donnell, T. K. and D. L. Galat. 2007. River enhancement in the upper Mississippi River basin: approaches based on river uses, alterations, and management agencies. Restoration Ecology. 15: 538-549. Parrish, J. D., D. P. Braun, and R. S. Unnasch. 2003. Are we conserving what we say we are? Measuring ecological integrity within protected areas. BioScience 53:851-860. Roloff, G.J. and B.J. Kernohan. 1999. Evaluating reliability of habitat suitability index models. Wildlife Society Bulletin 27: 973-985. Smith, R. D., A. Ammann, C. Bartoldus, and M. M. Brinson. 1995. An approach for assessing wetland functions using hydrogeomorphic classification, reference wetlands, and functional indices. Wetlands Research Program Technical Report WRP-DE-9. U.S. Army Corps of Engineers, Washington, D.C. http://lawr.ucdavis.edu/classes/hyd143/HGM.pdf) Tear, T. H., P. Kareiva, P. L. Angermeier, P. Comer, B. Czech, R. Kautz, L. Landon, D. Mehlman, K. Murphy, M. Ruckleshaus, J. M. Scott, and G. Wilhere. 2005. How much is enough? The recurrent problem of setting measurable objectives in conservation. BioScience 55:835-849. U.S. Fish and Wildlife Service. 1981. Standards for the development of habitat suitability index models. U.S. Fish and Wildlife Service, Release No. 1-81, 103 ESM. Van Cleve, F. B., T. Leschine, and T. Klinger. 2006. An evaluation of the influence of natural science in regional-scale restoration projects. Environmental Management 37:367-379. Williams, B. K., R. C. Szaro, and C. D. Shapiro. 2007. Adaptive management: The U. S. Department of the Interior technical guide. U. S. Department of the Interior, Washington D.C. Zedler, J. B. 2000. Progress in wetland restoration ecology. TREE 15: 402-407. ## Acknowledgements We would like to thank Elizabeth Cook for providing invaluable GIS technical support. Kevin Dacey (MDC), Harold Deckerd (NRCS), Chris Hamilton (NRCS), Doug Helmers (NRCS), Dale Humburg (MDC), and Mike Roell (MDC) collectively guided project design and feedback on process. We particularly appreciate input from Rob Leonard and Steve Young who shared their field notes and experiences collecting project data. Charles Rewa is thanked for providing financial and logistical support throughout this effort. Karen Decker contributed to layout and production of the final product. This is a contribution from the Missouri Cooperative Fish and Wildlife Research Unit (U.S. Geological Survey, Missouri Department of Conservation, University of Missouri, Wildlife Management Institute, and U.S. Fish and Wildlife Service cooperating). Funding was provided by the Conservation Effects Assessment Project (CEAP – wildlife component) of NRCS (under Contract No. 68-3H75-3-122 Modifications #13 and 20) via the Upper and Middle Mississippi Valley Cooperative Ecosystem Studies Unit (CESU) to the University of Missouri (Account No. C00013696, DA130). ## **ANNEX 1** #### SUPPLEMENTARY PROJECT DOCUMENTATION ## Missouri WRP Analysis Project ## **Table of Contents** - 1. CEAP WRP Monitoring Analysis Proposal - <u>De facto WRP Analysis Project Steering Committee</u> Members - 3. WRP Analysis Project Timeline - 4. WRP Analysis Project Two-month Summary Report Note: The Progress Report of 17 January 2007, entitled "A Retrospective Analysis of Conservation Effects of WRP Sites in Missouri" is a PowerPoint presentation found in the project's CD archives. #### PROJECT PROPOSAL
Assessing the Effectiveness of the Wetlands Reserve Program in Missouri through Analysis of Existing Easement Data and Linkage to Previous Floodplain Investigations #### **Principle Investigators:** Dr. David Galat, U.S. Geological Survey, Cooperative Fish and Wildlife Research Unit and University of Missouri Dr. Mickey Heitmeyer, University of Missouri – Gaylord Memorial Laboratory #### **Collaborators:** Liz Cook, Natural Resources Conservation Service Frank Nelson, Missouri Department of Conservation Dr. Andy Raedeke, Missouri Department of Conservation Dave Graber, Missouri Department of Conservation #### **Funding Requested:** Fiscal Year 2006: \$49,500 #### **Proposal:** Evaluate data from 600 Wetlands Reserve Program (WRP) easements collected during 2003-2005 in Missouri to assess initial effectiveness regarding wetland functions and values and to enhance future monitoring and evaluation protocols. #### **Products:** - 1) A complete summary of wetland area and distribution, restored wetland types, and hydrologic condition. - 2) A complete listing of plant and animal taxa with emphases on rare and endangered species. - 3) An evaluation of restoration status including influence on plant and animal response. - 4) Photographic documentation of wetland benefits and values resulting from WRP restorations. - 5) Analysis of other data in Missouri (e.g., Missouri River Post-flood Evaluation, Avian Use of Missouri River Floodplain Wetlands Evaluation, fall migratory bird surveys, etc.) to determine the usefulness in documenting wildlife response to WRP restored wetlands. - 6) Recommendations for improved WRP monitoring. #### **Background:** The Wetlands Reserve Program, authorized in the 1990 Farm Bill, is a voluntary program offering landowners the opportunity to protect, restore, and enhance wetlands on their property. The Natural Resources Conservation Service (NRCS) of the United States Department of Agriculture provides technical and financial support to help landowners with their wetland restoration efforts. NRCS has a goal of maximizing wetland functions and values as well as wildlife habitat on every acre enrolled in the program. The objectives of the program include: 1) habitat for migratory birds and other wildlife, in particular at-risk species; 2) protection and improvement of water quality; 3) attenuation of water flows during flooding; 4) recharge of ground water; 5) protection and enhancement of open space and aesthetic quality; 6) protection of flora and fauna which contributes to the Nation's natural heritage; and 7) contribution to education and scientific scholarship. NRCS is making a long term commitment that involves expenditure of federal taxpayer dollars to restore and maintain wetlands (through WRP easements) and associated biological functions and values. Documentation of restoration success, status of easement integrity, and biological response to restoration is needed to determine the effectiveness and appropriateness of restoration activities. Monitoring of WRP restoration is necessary to ensure that planned wetland functions and values are achieved and maintained. Updated information on WRP status also facilitates maintenance and opportunities for wetland enhancement. Ongoing monitoring will provide the basis for continued program improvement. Changes in restoration strategies, management regimes, and the size, distribution, and configuration of WRP easements will be possible only if program elements and implementation are continuously evaluated. Targeted biological monitoring will document whether intended benefits for wetland fauna and flora are achieved and whether objectives for water quality and wetland protection are attained. Missouri is well positioned to assess the effectiveness of WRP. During 2003-2005, 600 easements were monitored using several measures of physical and biological integrity. Information collected included: - 1. Confirmation of boundary and easement identification maps, restoration designs, and wetland reserve plans of operation. - 2. Digital photos from photo stations documenting representative conditions on each site. - 3. GPS coordinates of water control structures, spillways, levees, and location of ingress/egress routes. - 4. Habitat assessment and wetland classification (Cowardin et al. 1979) by GIS subpolygon within each easement. - 5. Condition of restoration practices, management activities, dominant wetland plants, invasive plant species, and wildlife use (to include levees, berms, and water control structures). - 6. Site specific management plans including recommendations for water level management, vegetation control and management, remedial maintenance and - repair, documentation of the appropriateness and application of compatible use activities. - 7. Initial contacts with landowners (as available) to review wetland management objectives, easement plans, and management intent. Initial data have been compiled and verified for the first two years of sampling, which included 408 easements (49,313 acres). Of the 37,792 acres of prior converted cropland evaluated (the remainder was classified upland), 16,289 acres was classified as palustrine emergent, 19,135 acres as palustrine forest, 777 acres as palustrine shrub-scrub, 526 acres as palustrine open water, and 1,066 was classified as "other." Among plants, 230 different species were recorded as the top 3 dominant species among sites, an indication of plant diversity. Gains in wildlife values were evident in increases from assumed habitat suitability values of ≤1 for converted cropland for. Gains in wildlife values are assumed because habitat suitability index values for most wetland migratory birds are quite low for converted cropland (for example, HSI for forest mallards 0.216, forest wood ducks 0.403, forest prothonotary warblers 0.403, non-forest mallards 0.440, non-forest least bitterns 0.484, and non-forest lesser yellowlegs 0.246) but higher for those species in various wetland types after restoration. Preliminary data from first-time monitoring and evaluation efforts are sufficient for establishing initial gains in wetland value, compliance with easement restrictions, initial vegetation response, and the degree of agreement between predicted and actual wetland recovery. The ultimate value from WRP monitoring efforts, however, will be in improved delivery of the program and the response of wetland fauna and flora to restoration. Thus, complete analysis of existing monitoring data should be a prerequisite for amendments to monitoring protocols and, more importantly, to assure efficient and effective WRP delivery. #### **Objectives:** - 1) Ensure accuracy and integrity of existing WRP monitoring data. - 2) Conduct basic analyses of WRP monitoring data to establish the range of wetland conditions, vegetation response and diversity, wildlife use, and easement status. - 3) Determine whether distinctions can be established among sites based on time since restoration, size, wetland type or other physical or ecological characteristics. - 4) Develop a basis for more in-depth evaluation of WRP benefits (both ecological and social). - 5) Recommend adaptations to WRP monitoring protocols that can be applied in Missouri and throughout the U.S. - 6) Link WRP evaluation results to the results of previous floodplain investigations (for example, Missouri River Post-flood Evaluation, Avian Use of Missouri River Floodplain Wetlands Evaluation, fall migratory bird surveys, and so on) #### Approach: Initial effort will focus on data quality control and basic statistical analyses, such as univariate frequency distributions, measures of central tendency, variability, and so on. Next, vegetation and wildlife response to independent variables such as time since establishment and wetland classification modifiers can be explored with more elaborate statistical analyses. Recommendations for improved WRP monitoring will be developed from literature review and the expertise of experienced wetland managers and researchers. Work will be accomplished by a Research Associate (M.S. or Ph.D. degree preferred) supervised by Dr. David Galat (University of Missouri). Interpretation of evaluation results will be a collaboration of the principle investigators, collaborators, research associate, and wetland managers. #### **Budget and Timeline:** Funding for this CEAP agreement will be supported by the CESU Network through the University of Missouri (Dr. Tony Prato as primary contact) and an existing cooperative agreement between the Missouri Department of Conservation and the University of Missouri. The following budget and timeline is anticipated: | Budget | | 2006 | | | 2007 | | | | | | | | | |----------------------------------|----------|------|---|---|------|---|---|---|---|---|---|---|---| | Category | Budget | 0 | N | D | J | F | M | A | M | J | J | A | S | | Coordination/
supervision | \$2,500 | | | | | | | | | | | | | | Materials & Supplies | \$2,600 | | | | | | | | | | | | | | Consultation – Heitmeyer | \$5,000 | | | | | | | | | | | | | | Research
Associate | \$32,400 | | | | | | | | | | | | | | Workshop | \$2,500 | | | | | | | | | | | | | | CESU
Indirect costs
(@10%) | \$4,500 | | | | | | | | | | | | | | Total | \$49,500 | | | | | | | | | | | | | ## **Literature Cited:** Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetland and deepwater habitats of the United States. U.S. Department of the Interior, Fish and Wildlife Service, Washington D.C. ## Occasional Members and Observers of the *de facto* WRP Analysis Project Steering Committee #### Members Elizabeth Cook (NRCS) Kevin Dacey (MDC) Harold Deckerd (NRCS) Scott Frazier¹¹ (UMC) David Galat (USGS/UMC) David Graber (MDC) Chris Hamilton (NRCS) Mickey Heitmeyer (GML) Doug Helmers (NRCS) Dale Humburg (MDC) Rob Leonard (TSP) Andrew Raedeke (MDC) Charles Rewa (NRCS) Mike Roell (MDC) Steve Young (TSP) #### <u>Observers</u> T. Kevin
O'Donnell (UMC) Michael Headrick (UMC) Doreen Mengel (MDC/UMC) GML = Gaylord Memorial Library (University of Missouri) MDC = Missouri Department of Conservation NRCS = Natural Resources Conservation Service (USDA) TSP = Technical Service Provider (contractor) UMC = University of Missouri/Columbia USDA = United States Department of Agriculture USGS = United States Geological Survey ¹¹ Project Officer ## WRP ANALYSIS PROJECT TIMELINE (Main items) | Date | Milestone/Event/Activity | |-----------------|---| | 2 October 2006 | Project Commenced | | 4 October | Project officer Scott Frazier and GIS Specialist Elizabeth Cook met | | | at NRCS State Office for introductory look at WRP spatial dataset | | 12 October | WRP Analysis Project Inception Meeting at MDC Science Center | | 6 November | SF met Technical Service Providers Steve Young and Rob Leonard | | | at Brookfield, Missouri | | 6 December | SF met EC at NRCS State Office | | 17 January 2007 | Project Meeting at NRCS State Office | | 22 January | SF Met SY and RL at Brookfield, Missouri | | 8 February | WRP Analytical-Strategy Meeting at NRCS State Office | | 12 March | Project Meeting at NRCS State Office | | 23 March | SF met Dorothy Butler, Heritage Data Manager, at MDC HQ | | 4 May | Project conference call | | 21 May | SF met EC at NRCS State Office | | 25 May | Project Meeting and conference call at NRCS State Office | | 23-25 July | SF attended/presented preliminary findings at the Soil and Water | | - | Conservation Society Annual Conference, Tampa, Florida | | 16-November | Last funded day of project | #### WRP Project Two-Month Summary Report #### Introduction The Missouri WRP Assessment project commenced on 2 October 2006. The two month mark in the nine-month project has just been reached. The inception phase has been concerned with meeting administrative obligations, gearing up (researching background, obtaining software and data, bolstering skills and making contacts) and preliminary assessment of the dataset. To a lesser extent, some effort has been expended toward design analysis. #### **Installation of Project Officer** The project officer, Scott Frazier, was selected as research specialist for the position. He relocated from Warrensburg Missouri to Columbia during the inception phase. This transition from commuting to relocation now provides for increased (extended) input to the project. #### Meetings There have been three main meetings during this initial phase of the project as summarized below. - Meeting at NRCS (Columbia) to view and obtain dataset (4 October) - Project Inception meeting at Missouri Department of Conservation (Columbia), (12 October) - Meeting at Brookfield, MO to meet the Technical Service Providers (TSP) who monitor Missouri's WRP sites (6 November) A further meeting to at another WRP database at NRCS was requested during the period but did not eventuate. It is likely this meeting will take place during the 1st week of December. In addition, one-on-one meetings were held with two graduate students working on WRP-related studies (Kevin O'Donnell, 6 October, and Doreen Mengel, 24 October) during this period. #### **Persons Met in Connection with the Project** Elizabeth Cook (NRCS) Kevin Dacey (MDC) Harold Deckerd (NRCS) Chris Hamilton (NRCS) Michael Headrick (UMC) Mickey Heitmeyer (UMC-GML) Dale Humburg (MDC) Rob Leonard (TSP) Doreen Mengel (UMC) Kevin O'Donnell (UMC) Mike Roell (MDC) Steve Young (TSP) #### Other Persons Contacted in Connection with the Project Dennis Figg (MDC) Doug Helmers (NRCS) Timothy Nigh (MDC) Charles Rewa (NRCS) Larry Vangilder (MDC) #### Field trip A proposed field trip to a WRP site(s) in Moniteau County with TSP Steve Young was cancelled by the TSP. It will be rescheduled. #### **Provision of Computer and GIS Software** A laptop computer was received for the project on late 13 October. ArcGIS software became functional on 17 October. #### Data Assessment The major effort put forth in the project thus far has been toward assessing the dataset as a basis toward designing and implementing analyses. In order to assess a dataset one must first become familiar with it. The dataset is primarily a GIS system with supplementary attribute data recorded. The project officer has benefited from previous experience with GIS projects and software so that basic spatial concepts were already understood at the outset. Nevertheless as a first time user of ArcGIS (including precursors), time has been allocated to learning the software and this continues. The aforementioned attribute data contain a large number of coded and free-text fields (across several DBF databases) that constitute a potential wealth of information data to be mined under the project (Elizabeth Cook, pers. comm.). The project officer is well versed in this type of data manipulation. The first step in assessment of a dataset is to study metadata or "information on the data", e.g. what kind of data were collected, what are the parameters of the data, how are data interrelated?, etc. Metadata can be highly structured with strict protocols for recording. But in a general sense, there is a need to know something of the origin, structure and content of data before it can be analyzed. In the case of the WRP dataset, most metadata are undocumented. Therefore in the course of looking at the individual databases that make up the dataset, quite some effort has been devoted to establishing rudimentary metadata while assessing those databases. This has not yet yielded formal metadata structures, but has been undertaken to facilitate a rapid assessment of the databases. This assessment is being undertaken in a systematic fashion, one database at a time. On a few occasions datasets received have been problematic, either corrupted or incomplete and therefore not readable within the GIS system. This has been followed up during the period to resolve particular problems. Functional databases have revealed numerous anomalies (e.g. sporadic unconventional use of specific data fields) as well as unequivocal entry errors (e.g. species names). These are being resolved as is possible and systematically documented for, among other purposes, future resolution. The extent to which these possible problems may actually impact negatively on analyses has not been assessed. The results of these initial integrity analyses are being periodically shared with Elizabeth Cook (NRCS) and/or Steve Young/Rob Leonard (TSPs) with a view to understanding data (structures and content) and/or resolution of any real problems. This work continues apace, and is necessary to provide an environment for credible in-depth analyses. #### **Design of Analyses** At the inception meeting it was noted that it would be more meaningful to analyze the Missouri WRP data in a stratified way. Mickey Heitmeyer and others have been contacted toward designating a basic system to use for this purpose and M. Heitmeyer has suggested using the ecological classification "Nigh, T.A., Schroeder, W.A., 2002. Atlas of Missouri Ecoregions. Missouri Department of Conservation" as a basis for stratifying the WRP analysis. It took quite some time and effort to obtain both the hardcopy and (functional) digital versions of this classification. M. Heitmeyer is in the process providing a second overlaying layer comprised of a geomorphology GIS layer produced by Roger Saucier 1994. This combination should allow for correct sorting of SE Missouri sites. Information for similar stratification for the Missouri River and NW/NC Missouri sites should be sent shortly. Another imperative analysis called for in the aforementioned meeting was the derivation of so-called *silver bullets* from the Missouri WRP dataset. These would constitute flagship indicators of the importance/success of the WRP program. As was recognized at the time, a period of intense data management (familiarization/mining/analysis) is needed in order to effect this. And derivation of these key selling points remains a top priority. #### **Constraints** It is two months into the project and certain constraints have become apparent during the inception period. There were a few logistical delays and delays brought on by administrative obligations. In any study with new people there is a period of familiarization required, and the existence of a learning curve is not an unexpected constraint. Data previously collected and entered, but later scrutinized for analysis will undoubtedly precipitate questions. This should be expected to a certain extent by all parties. The absence of most metadata has been somewhat of a constraint for a new analyst. And the apparent absence of a data-checking mechanism might lead to a recommendation already coming out of this project. Busy hectic schedules no doubt impact on turn around times for requested or agreed input. Recognition of the effect this might have on specific aspects of the suite of analyses envisioned in the project is important. However, at this early stage, delays of this nature have not been terribly detrimental because effort has necessarily been spent on shoring up the foundation of the analyses. The project is now poised to make increasing progress assuming potential problems identified in the initial screening are not significant and/or are easily resolvable. Prepared by S. Frazier 4 December 2006 #### ANNEX 2 #### SUPPLEMENTARY PROJECT DOCUMENTATION ## Missouri WRP Analysis Project #### **CLIP METHOD** To *clip* the Missouri WRP sites layer for one of the main divisions or "Sections" (in this example, the Central Dissected Till Plains). ## [Create the Map to use] Add the following layers: wrp_a_mo.shp (all Missouri WRP sites January 2007; 825 unique sites) or plan_3yrall.shp (Missouri's 594 monitored WRP sites) ecslta_Dissolve.shp (Missouri's ecological sections) ## [Create the Clip feature] choose Selection from the main menu choose Set Selectable
Layers tick the MO ecological sections layer; unselect all other layers click Close select the **Central Dissected Till Plains** section polygon with the pointer tool right-click on the MO sections layer in the table of contents choose Selection from the context menu choose Create Layer from Selected Features (the layer is added to the top of the table of contents) *right-click* on the new layer (just appearing at the top of the table of contents) choose Properties from the context menu choose the General tab from the layer properties window rename the layer name, e.g. CDTP section selection turn off the **MO sections** layer and drag it to the bottom of the table of contents This **CDTP section selection** is the "input feature" when running the Geoprocessing | Clip procedure. The selection remains linked to the shapefile **ecslta_Dissolve.shp**. ## [Use the Clip feature for monitored sites] choose Tools from the main menu choose Geoprocessing choose Clip from the ArcToolbox window choose Open Tool choose plan_3yrall.shp from the Input Features ("features to be clipped") drop down list in the Clip window ## **ANNEX 3** #### SUPPLEMENTARY PROJECT DOCUMENTATION ## Missouri WRP Analysis Project #### MISSOURI WRP SPECIES ANALYSES #### **Table of Contents** - 1. METHODS & META INFORMATION - a. Steps to develop the Missouri Plant Dictionaries - b. Description of the Plant Dictionaries - c. Heritage Database Codes - d. WRP Site Proximity to T&E Species Ranges1.doc (separate) - e. WRP Site Proximity to T&E Species Ranges2.doc (separate) #### 2. RESULTS - a. List of dominant plant species recorded in 594 monitored Missouri WRP easements, 2003-2005 (separate: List of dominant plants recorded.doc) - b. Detailed Results from the Proximity Analyses (separate: T&E Proximity Summary.doc) ## Missouri WRP Species Analysis Annex 3: Methods & Meta Information # Steps used to develop the dictionary of Missouri plants - 1. Use the PLANTS (national) database¹² to perform a Missouri state sort - 2. Select a printer-friendly output - 3. Right click, Select All and copy to clipboard - 4. Paste clipboard into Excel ****NOTE: Excel converted the species codes FEBR4 & FEBR7 to 4-Feb and 7-Feb automatically!!! - 5. Remove non-field header text - 6. Save as *.CSV format ****NOTE: the symbol "x" (a specialized -- very small-- "x" denoting [?] "cross") translates as the character "?" in this operation/format. - 7. Rename to *.TXT - 8. Create a database in FoxPro: MOPLANTS.DBF (12,599 records) - 9. Append from the *.TXT file ****NOTE: Using FoxPro replaced the "?" to a " α " (arbitrary character); then use FIXSPECI.PRG¹³, the next steps: - 10. Copy to a new database and used: MOPLNTS1.DBF (as a safety measure) - 11. Insert pipes ("|") as markers for a new field after the root scientific name, to hold additional information such as naming authority and history. - 12. Set a filter to select only species entries that have common names present - 13. Copy to a new database: MOPLANTZ.DBF (4526 records) - 14. Create a delimited text file MOPLNTZ1.TXT (to import later in this process). - 15. Modify MOPLANTZ.DBF by adding a new field to hold all "extra information" currently in the field SCI_NAME. - 16. Move "extra information" into the new field leaving the field SCI_NAME to hold the root scientific name only. - 17. Import MOPLNTZ1.TXT into newly structured MOPLNTZ3.DBF, the base Dictionary of Plants for the WRP Analysis Project. ****NOTE: other international characters do not translate properly ¹²The PLANTS Database (http://plants.usda.gov/) includes information on the vascular and nonvascular plants of the United States and its territories. It includes checklists, species abstracts, distributional data, crop information, plants symbols, growth data, references and a variety of other plant information. ¹³ This and other programs developed for this project are found in the CD archive. ## Missouri WRP Species Analysis Annex 3: Methods & Meta Information: Data Dictionaries ## MISSOURI PLANT DATABASES DEVELOPED AS SPECIES DICTIONARIES FOR WRP MONITORING | DICTIONARIES FOR WRP MONITORING | | | | | | | |---------------------------------|---------|---|--|--|--|--| | NAME | RECORDS | COMMENTS | | | | | | MOPLANTS.DBF | 12599 | This is a parent database created from a printer-friendly output of Missouri Plants from | | | | | | | | http://plants.usda.gov/checklist.html. | | | | | | MOPLNTZ3.DBF | 4526 | This database was derived from MOPLANTS.DBF after | | | | | | | .020 | going through several intermediate forms. It contains | | | | | | | | records for all Missouri plants but records without Common | | | | | | | | names have been removed as a proxy for removal of all | | | | | | | | synonyms. Furthermore all information about variant, | | | | | | | | subspecies, author, priority, year etc has been removed | | | | | | | | from the field SCI_NAME (and has been put into a new field EXTRAINFO) to facilitate comparison with WRP databases | | | | | | | | containing plant species records. This database serves as | | | | | | | | a SPECIES dictionary. | | | | | | DICVEG1.DBF | 3657 | The unique names (SCI_NAME) from MOPLNTZ3.DBF | | | | | | | | copied to Species1, Species2 and Species3 fields in this | | | | | | | | new database to use in checking the species entries in the | | | | | | | | same fields in the Monitored Easement polygons data file COMBPLAN.DBF. | | | | | | MOWETPLA.DBF | 1750 | This is a parent database created from an output of | | | | | | | 1100 | Missouri Wetland Status Indicator Plants from | | | | | | | | http://plants.usda.gov/wetland.html | | | | | | MOWETPL4.DBF | 1509 | This database was ultimately derived from | | | | | | | | MOWETPLA.DBF after going through several intermediate | | | | | | | | forms. It contains records for all Missouri Wetland Status | | | | | | | | Indicator plants excluding synonyms (records without Common names have been removed as a proxy for | | | | | | | | removal of all synonyms). Furthermore all variant and | | | | | | | | subspecies information has been removed from the field | | | | | | | | SCI_NAME (and has been put into the field EXTRAINFO) | | | | | | | | to facilitate comparison with WRP databases containing | | | | | | | | plant species records. This database serves as a SPECIES dictionary. | | | | | | ST&EpInt.DBF/.xls | 113 | This contains Missouri plants with any one or more of the | | | | | | | | following of statuses: federal status (Endangered, | | | | | | | | Threatened), state status (Endangered) and/or state rank | | | | | | | | (S1, S2 or S3 state-ranked elements, including those | | | | | | | | assigned a range of these "SRANKs" that includes at least one of these values). Any species with a Global Rank | | | | | | | | (GRANK) were for all practical purposes also SRANK | | | | | | | | species, and were included by default (but not tagged as | | | | | | | | GRANK species). The source of status data is the MONHP | | | | | | | | "Heritage dataset" obtained under MOU with MDC by this | | | | | | | | project. This database serves as a SPECIES dictionary . | | | | | ### Missouri WRP Species Analysis Annex 3: Methods & Meta Information ## **Heritage Database Codes** #### TERMS AND DEFINITIONS #### **FEDERAL STATUS** The federal status is derived from the provisions of the Endangered Species Act of 1973, as amended, which is administered by the U.S. Fish and Wildlife Service. Passage of the Endangered Species Act of 1973 gave the United States one of the most far-reaching laws ever enacted by any country to prevent the extinction of imperiled animals and plants. Protecting endangered and threatened species and restoring them to the point where their existence is no longer jeopardized is the primary objective of the Fish and Wildlife Service's Endangered Species Program. #### E: Endangered: Any species which is in danger of extinction throughout all or a significant portion of its range. #### T: Threatened: Any species which is likely to become endangered within the foreseeable future. #### C: Candidate: Plants or animals which the Service is reviewing for possible addition to the list of endangered and threatened species. #### PE: Proposed Endangered: Species officially proposed for listing as endangered; final ruling not yet made. #### PT: Proposed Threatened: Species officially proposed for listing as threatened; final ruling not yet made. #### STATE STATUS Rule 3CSR10-4.111 of the Wildlife Code of Missouri and certain state statutes apply to state Code listed species. #### E: "Endangered": Determined by the Department of Conservation under constitutional authority. #### **GLOBAL RANK** A numeric rank (G1 through G5) of relative endangerment based primarily on the number of occurrences of the Element (i.e., species, subspecies, or variety) globally. Other factors in addition to the number of occurrences are considered when assigning a rank, so the numbers of occurrences suggested for each numeric rank below are not absolute guidelines. #### G1: Critically Imperiled: Critically imperiled globally because of extreme rarity or because of some factor(s) making it especially vulnerable to extinction. Typically 5 or fewer occurrences or very few remaining individuals (<1,000) or acres (<2000) or linear miles. #### G2: Imperiled: Imperiled globally because of rarity or because of some factor(s) making it very vulnerable to extinction or elimination. Typically 6 to 20 occurrences or few remaining individuals (1,000 to 3,000) or acres (2,000 to 10,000) or linear miles (10 to 50). #### G3: Vulnerable: Vulnerable globally either because very rare and local throughout its range, found only in a restricted range (even if abundant at some locations), or because of other factors making it vulnerable to extinction or elimination.
Typically 21 to 100 occurrences or between 3,000 and 10,000 individuals. #### G4: Apparently Secure: Uncommon but not rare (although it may be rare in parts of its range, particularly on the periphery), and usually widespread. Apparently not vulnerable in most of its range, but possibly cause for long-term concern. Typically more than 100 occurrences and more than 10,000 individuals. #### G5: Secure: Common; widespread and abundant (although it may be rare in parts of its range, particularly on the periphery). Not vulnerable in most of its range. Typically with considerably more than 100 occurrences and more than 10.000 individuals. #### G#G#: Range Rank: A numeric range rank (e.g., G2G3) is used to indicate uncertainty about the exact status of a taxon. Ranges cannot skip more than one rank (e.g., GU should be used rather than G1G4). #### GNR: Not Ranked: Status has not been assessed. #### GU: Unrankable: Currently unrankable due to lack of information or due to substantially conflicting information about status or trends. Note: Whenever possible, the most likely rank is assigned and the question mark qualifier is added (e.g., G2?) to express uncertainty, or a range rank (e.g., G2G3) is used to delineate the limits (range) of uncertainty. #### GH: Possibly Extinct/Extirpated: Known from only historical occurrences, but may nevertheless still be extant; further searching needed. #### GX: Presumed Extinct: Believed to be extinct throughout its range. Not located despite intensive searches of historical sites and other appropriate habitat, and virtually no likelihood that it will be rediscovered #### SUBRANK. #### T: Taxonomic Subdivision: Rank applies to a subspecies or variety. #### **QUALIFIERS**: #### ?: Inexact Numeric Rank: Denotes inexact numeric rank. (The ? is not used in combination with range ranks.) #### Q: Questionable Taxonomy: Distinctiveness of this entity as a taxon or community at the current level is questionable; resolution of this uncertainty may result in change from a species to a subspecies or hybrid, inclusion of this taxon in another taxon, or inclusion of this community within another community, with the resulting Element having a lower-priority (numerically higher) conservation status rank. #### STATE RANK A numeric rank (S1 through S5) of relative endangerment based primarily on the number of occurrences of the Element (i.e., species, subspecies, or variety) within the state. Other factors considered when assigning a rank include: abundance, population trends, distribution, number of protected sites, degree of threat, suitable habitat trends, level of survey effort and life history. Thus, the number of occurrences suggested for each numeric rank below are not absolute guidelines. Missouri species of conservation concern typically do not fall within the range of S4-S5. #### S1: Critically Imperiled: Critically imperiled in the nation or state because of extreme rarity or because of some factor(s) making it especially vulnerable to extirpation from the state. Typically 5 or fewer occurrences or very few remaining individuals (<1.000). #### S2: Imperiled: Imperiled in the nation or state because of rarity or because of some factor(s) making it very vulnerable to extirpation from the nation or state (1,000 to 3,000). #### S3: Vulnerable: Vulnerable in the nation or state either because rare and uncommon, or found only in a restricted range (even if abundant at some locations), or because of other factors making it vulnerable to extirpation. Typically 21 to 100 occurrences or between 3,000 and 10,000 individuals. #### S4: Apparently Secure: Uncommon but not rare, and usually widespread in the nation or state. Possible cause of long-term concern. Usually more than 100 occurrences and more than 10,000 individuals. #### S5: Secure: Common, widespread, and abundant in the nation or state. Essentially ineradicable under present conditions. Typically with considerably more than 100 occurrences and more than 10,000 individuals. #### S#S#: Range Rank: A numeric range rank (e.g., S2S3) is used to indicate the range of uncertainty about the exact status of the Element. Ranges cannot skip more than one rank (e.g., SU is used rather than S1S4). #### S?: Unranked: Species is not yet ranked in the state. #### SU: Unrankable: Currently unrankable due to lack of information or due to substantially conflicting information about status or trends. #### SE: Exotic: An exotic established in the state; may be native in nearby regions (e.g., house finch or catalpa in eastern U.S.) #### SA: Accidental/Nonregular: Accidental or casual in the state (i.e., infrequent and outside usual range). #### SP: Potential: Potentially occurring in the state but no occurrences reported. #### SR: Reported: Element reported in the state but without persuasive documentation which would provide a basis for either accepting or rejecting (e.g., misidentified specimen) the report. #### SRF: Reported Falsely: Element erroneously reported in the state and the error has persisted in the literature. #### SH: Historical: Element occurred historically in the state (with expectation that it may be rediscovered). Perhaps having not been verified in the past 20 years, and suspected to be still extant. #### SX: Extirpated: Element is believed to be extirpated from the state. #### **QUALIFIERS**: #### ?: Inexact or Uncertain: Denotes inexact or uncertain numeric rank. (The ? qualifies the character immediately preceding it in the SRANK. The ? is not used in combination with range ranks.) Provided by: Missouri Natural Heritage Program. Missouri Department of Conservation. Jefferson City, Missouri. ## WRP Site Proximity to T&E Species/(Community Ranges) Research Topic: To what extent do Missouri's WRP easements provide an implied POTENTIAL contribution to the maintenance and protection of threatened and endangered species/communities by virtue of their proximity to T&E species/community ranges? [Observation records compiled by the Missouri Department of Conservation - Missouri Natural Heritage Program – MONHP] ## Main Questions: In priority order - 1). How may WRP sites *a*) *intersect* T&E species ranges [polygons] or *b*) *contain* T&E species observations [points]? - 2). How many T&E species *a*) ranges intersect WRP sites or *b*) have been observed in WRP sites? "The MDC point shapefiles do not represent the entire spatial extent of any Heritage record; they are intended to be used in small-scale (e.g., entire state) maps. A single point may represent one or more larger, irregularly shaped or disjunct polygons (e.g. aquatic communities can extend along the whole reach of a stream and across several counties but will be represented as a single point). The biology of a species is not reflected in a point-coverage (e.g., two fish occurrences may be mapped at collection sites one mile apart with suitable habitat between, or a gray bat may travel to and forage up and down a stretch of stream." (Missouri Natural Heritage Program GIS Shapefile Fact Sheet.doc) ## **Relevant Datasets:** #### 1. WRP SITES: wrp_a_mo.shp This is the NRCS master file of WRP sites as of 19 January 2007. 930 easement records; 119,437 acres. Unique records: 825 easements THIS IS THE PRIMARY WRP DATASET IN THESE ANALYSES ## 2. HERITAGE "MONHP" POINTS: herallpt.shp This is the MDC file of all Heritage EOs, one point per polygon – one EO may be represented by one-to-many points. 25,028 EO-point records ## 3. HERITAGE "MONHP" POLYGONS: hertpoly.shp This is the MDC file of all Heritage POLYGON element observations (EOs). "Only a polygonal spatial layer can reflect a species' true *sphere of influence*¹⁴" 20,768 EO-polygon records FOR POLYGON EO RECORDS, Select all records that INTERSECT #### 4. NRCS RENDERING OF HERITAGE "MONHP" POINTS These MDC Heritage data relate to the *Missouri Species and Communities of Conservation Concern Checklist*. The individual shapefiles correspond to the columns of the Missouri T&E Species Planning Matrix. They have been buffered to diameters which are based on the particular group represented. These NRCS datasets are coarse, using buffered polygons NOT points. bats_a_mo.shp birds_a_mo.shp fishdb_a_mo.shp (used to make this generalization mentioned below) fish-crustaceans-mollusks_a_mo.shp (spatially generalized to the watershed of the immediate stream segment where they were collected) mammals_a_mo.shp plants_a_mo.shp reptiles-amphibians-insects_a_mo.shp And communities_a_mo.shp ¹⁴ Missouri Natural Heritage Program GIS Shapefile Fact Sheet.doc ## **Ancillary Dataset**: ## 5. HERITAGE "MONHP" EO POINTS: hertpt.shp This is the MDC file of Heritage EOs @ one point per EO. 20,768 EO-point records Presently excluded in lieu of the other point-dataset. ## WRP Site Proximity to T&E Species/(Community Ranges) **ANALYSIS 1** Intersection of MO WRP easements (polygons) and MO T&E species/community ranges (polygons) Parent Map: wrp&poly.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements) And \MDC MONHP\hertpoly.shp (20,768 EO polygon records) **Technique:** Geoprocessing - Intersect Step Sequence: Open wrp&poly.mxd Tools Geoprocessing Intersect Open tool **Input features**: wrp_a_mo hertpoly Output feature class: wrp_Intersect1_hertpoly.shp R/C on wrp_Intersect1_hertpoly Open attribute table 8079 gross intersections **Preliminary Result**: 8079 (2171 unique) intersections resulted from the intersection of (500 unique) easements (wrp_a_mo.shp) and (284 unique) ranked species/community EO-polygon range records (hertpoly.shp). This result is preliminary because we are interested in Threatened and Endangered species as defined in the following box, not all ranked species. NOTE however that 77.5% of these records have an EORANK of "H" or "H?" = "historical." [This is not to be confused with the state imperilment (SRANK) code "SH" = "historical"]. Within the MONHP dataset (acquired February 2007), species (and
communities) have been assigned values of imperilment from the categories found below. For the purposes of these WRP project analyses, "Threatened & Endangered" species (or communities) are considered to be those which are subject to the following qualifications. Within the existing MONHP dataset, all and **only S1, S2 or S3 species** (including those assigned a range of SRANK values that includes one of these values) are included. SH species (see below) are NOT included. In terms of Global "GRANK" species, the following clarifications apply. (Currently) All G1 species (including those that may be assigned a range value that includes a G1 value) are also S1 species (n=50). All G2 species (including aforementioned "range values") which are not SH species (see below) equate to S1 or S2 species and are thus included (n=98 or n=19, respectively; ALL n=117). All G3 species (including aforementioned "range values") which are not SH species equate to S1 (n=331), S2 (n=153) or S3 (n=566) species (ALL n=1050). #### CATEGORIES OF IMPERILMENT #### S1: Critically Imperiled: Critically imperiled in the nation or state because of extreme rarity or because of some factor(s) making it especially vulnerable to extirpation from the state #### S2: Imperiled: Imperiled in the nation or state because of rarity or because of some factor(s) making it very vulnerable to extirpation from the nation or state. #### S3: Vulnerable: Vulnerable in the nation or state either because rare and uncommon, or found only in a restricted range (even if abundant at some locations), or because of other factors making it vulnerable to extirpation. #### SH: Historical: Element occurred historically in the state (with expectation that it may be rediscovered). #### G1: Critically Imperiled: Critically imperiled globally because of extreme rarity or because of some factor(s) making it especially vulnerable to extinction. #### G2: Imperiled: Imperiled globally because of rarity or because of some factor(s) making it very vulnerable to extinction or elimination. #### G3: Vulnerable: Vulnerable globally either because very rare and local throughout its range, found only in a restricted range (even if abundant at some The intermediate product (dataset) **wrp_Intersect1_hertpoly.shp** can provide further (refined) answers. ### **A.** To determine T&E species/communities as defined above COPY wrp_Intersect1_hertpoly.dbf to WRP&POLY.dbf USE WRP&POLY.dbf SET FILTER TO 'S1'\$SRANK OR 'S2'\$SRANK OR 'S3'\$SRANK COPY TO **WRP&POL1.dbf** 6727 intersections ## *Alternatively* **In ArcGIS**, using an equivalent but much longer filter string of every combination present, i.e. "SRANK" = 'S1' OR "SRANK" = 'S1?' OR "SRANK" = 'S1S2' OR "SRANK" = 'S1S3' OR "SRANK" = 'S2' OR "SRANK" = 'S2?' OR "SRANK" = 'S2S3' OR "SRANK" = 'S3' OR "SRANK" = 'S3?' OR "SRANK" = 'S3S4' the result is the same: 6727. This can be saved as a map layer: R/C on wrp_Intersect1_hertpoly Data Export data Selected features [accept default coordinate system: "this layer's source data"] Output shapefile or feature class $C: \label{lem:copy} $$ C: \WRPDB \Work Copy \wrp_intersect 2_hert poly.shp $$$ OK Do you want to add the exported data to the map as a layer? Yes R/C on wrp_intersect2_hertpoly Open attribute table 6727 intersections ## **Preliminary Result**: Either way, this means that 6727 out of the original 8079 intersections of species/community EO-polygon records (hertpoly.shp) and easement polygon records (wrp_a_mo.shp) involve **S1**, **S2** or **S3** ranked T&E species/communities. NOTE however that 76.3% of these records have an EORANK of "H" or "H?" = "historical" while 17.6 % of these records have an EORANK of "E" = "extant." [Based on surrogate dataset WRP&POL1.DBF]. **B.** To determine unique easements with T&E species/communities USE **WRP&POL1** (6727 *intersections*) INDEX ON AGREE_NUM+LEFT(SNAME,45) TO XXX UNIQ -OR- INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT #### **Preliminary Result:** 1766 unique T&E species/community range-WRP polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT **Results:** 439 WRP easements intersected 217 MONHP T&E species/community ranges *OR* 431 easements/208 *species ranges* What this does <u>not</u> tell us: *Do the intersecting easements have* habitats *that would support the species in question?* There are no habitat data in the WRP dataset used in above analysis (wrp_a_mo.shp does not include habitat information). Since fish obviously require water, and riverine and lacustrine habitats are in practice not recorded for most Missouri WRP easements (—there are just 3 freshwater open-water four-character Cowardin codes in use in the *monitoring* dataset), the analysis could me modified to **exclude** (filter out) **all fish records** so as to not inadvertently attribute them to a non-aquatic (non open water) habitat. In this case, the result would be: **Results:** 417 WRP easements intersected 191 MONHP T&E species/community ranges* *OR* 396 easements/182 species ranges* ## WRP Site Proximity to T&E Species/(Community Ranges) **ANALYSIS 2** - Intersection of 6727 MO T&E* species/community records with WRP sites (polygons) **and** 3728 Monitored WRP Cowardin polygons Since there are no habitat data in the WRP dataset used in the above analysis (wrp_a_mo.shp), an intersection with *monitoring* data was effected after the fact, as follows: Parent Map: wrp&poly&cowardin.mxd <u>Datasets</u>: \WorkCopy\wrp_Intersect2_hertpoly.shp (6727 T&E* species/community records intersecting WRP sites) And $\label{lem:workCopy} $$ \end{align*} \end$ polygon records) * = Filtered for S1 and/or S2 and/or S3 ranked species **Technique:** Geoprocessing - Intersect Step Sequence: Open wrp&poly&cowardin.mxd **Tools** Geoprocessing Intersect Open tool Input features: wrp_Intersect2_hertpoly plan_3yrall Output feature class: C:\WRPDB\WorkCopy**WRP_MONHP_COWARDIN.shp** R/C on WRP_MONHP_COWARDIN.shp Open attribute table 26,313 species/community records intersecting WRP easement records Selection Select by attributes Layer: WRP_MONHP_COWARDIN Method: Create a new selection SELECT * FROM WRP_MONHP_COWARDIN WHERE: "FOURCHACOD" <>' ' Verify OK Apply Close R/C on WRP_MONHP_COWARDIN Open attribute table Records (23,404 out of 26,313 Selected) R/C on WRP_MONHP_COWARDIN Data Export data Selected features [Accept the default coordinate system: "this layer's source data"] Output shapefile or feature class C:\WRPDB\WorkCopy**WRPOLHAB.shp** OK Do you want to add the exported data to the map as a layer? Yes R/C on WRPOLHAB.shp Open attribute table 23,404 T&E species/(community) EO Polygon intersecting monitored WRP polygons ## TO DETERMINE UNIQUE RECORDS: #### USE WRPOLHAB.DBF INDEX ON AGREE_NUM+ELCODE+FOURCHACOD TO XXX UNIQ COUNT=**3,020** Unique easement-T&E species/community-habitat polygon combinations COPY TO WRPOLHB1.DBF USE **WRPOLHB1.DBF** INDEX ON AGREE NUM+ELCODE TO XXX UNIQ COUNT=**1312** unique T&E species/community –WRP monitored-polygon intersects INDEX ON ELCODE+FOURCHACOD TO XXX UNIO COUNT=**828** Unique range-habitat combination "polygons" within the intersection INDEX ON AGREE_NUM+FOURCHACOD TO XXX UNIQ COUNT=**779** Unique easement-habitat combination "polygons" within the intersection INDEX ON AGREE NUM TO XXX UNIQ COUNT=320 Unique easements within the intersection INDEX ON ELCODE TO XXX UNIQ COUNT=193 Unique T&E species/community ranges **CLOSE ALL** **CLEAR ALL** #### USE WRPOLHB1.DBF SET FILTER TO ELCODE#'AF' OR (ELCODE='AF' AND FOURCHACOD='POWZ') COUNT=2,710 Unique easement-habitat combinations within the intersection (including only those FISH range records that overlap with "POWZ" palustrine open water habitat records) COPY TO WRPOLHB2.DBF #### USE WRPOLHB2.DBF INDEX ON AGREE NUM+ELCODE TO XXX UNIQ COUNT=**1147** unique T&E species/community –WRP monitored-polygon intersects (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*) INDEX ON AGREE NUM+FOURCHACOD TO XXX UNIQ COUNT=**748** Unique easement-habitat combinations "polygons" within the intersection (*including only those FISH range records that overlap with* "POWZ" palustrine open water habitat records) INDEX ON ELCODE+FOURCHACOD TO XXX UNIQ COUNT=**740** Unique range-habitat combination "polygons" within the intersection (*including only those FISH range records that overlap with* "*POWZ*" palustrine open water habitat records) INDEX ON AGREE_NUM TO XXX UNIQ COUNT=**305** Unique easements within the intersection (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*) INDEX ON ELCODE TO XXX UNIQ COUNT=**183** Unique T&E species/community ranges (including only those FISH range records that overlap with "POWZ" palustrine open water habitat records) #### **USE WRPOLHAB.DBF** SET FILTER TO ELCODE="AF" AND FOURCHACOD= "POWZ" ## COPY TO **WRPTFISH.DBF** (288 RECORDS) USE WRPTFISH.DBF INDEX ON AGREE NUM+ELCODE TO XXX UNIQ COUNT=**68** T&E Fish ranges in palustrine open water habitats ("POWZ") of easements within the intersection INDEX ON AGREE NUM TO XXX UNIQ COUNT=23 Unique easements with T&E Fish ranges in palustrine open water habitats ("POWZ") within the intersection INDEX ON ELCODE TO XXX UNIQ COUNT=14 UNIQUE T&E Fish ranges in palustrine open water habitats ("POWZ") of easements within the intersection **Results: 320** WRP easement sites intersect **193** distinct MONHP T&E species/community ranges **305** easements and **183** T&E species/community ranges intersect (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*) EOs are rated by EORANK and within this dataset, 85.6%
of these records have an EORANK of "H" or "H?" = "historical." ## WRP Site Proximity to T&E Species/(Community Ranges) **ANALYSIS 3** - Intersection of 594 MO WRP easements (3728 polygons) and MO T&E species/community Ranges (polygons) Parent Map: MONHP&WRP_monitored.mxd #### Datasets: \WorkCopy\20070413**plan_3yrall.shp** (3728 monitored WRP polygon records) And \MDC MONHP\hertpoly.shp (20,768 EO polygon records) **Technique:** Geoprocessing - Intersect Step Sequence: ## Open MONHP&WRP monitored.mxd Tools Geoprocessing Intersect Open tool Input features: plan 3yrall hertpoly Output feature class: C:\WRPDB\WorkCopy\plan_intersect_hertpoly.shp R/C on plan intersect hertpoly.shp Open attribute table 29,092 species/community EO-polygon range records Selection Select by attributes Layer: plan_intersect_hertpoly Method: Create a new selection SELECT * FROM plan intersect hertpoly WHERE: "SRANK" = 'S1' OR "SRANK" = 'S1?' OR "SRANK" = 'S1S2' OR "SRANK" = 'S1S3' OR "SRANK" = 'S2' OR "SRANK" = 'S2?' OR "SRANK" = 'S2S3' OR "SRANK" = 'S3' OR "SRANK" = 'S3?' OR "SRANK" = 'S3S4' Verify OK Apply Close R/C on plan_intersect_hertpoly Open attribute table Records (24,389 out of 29,092 Selected) R/C on plan_intersect_hertpoly Data Export data Selected features [Accept the default coordinate system: "this layer's source data"] Output shapefile or feature class C:\WRPDB\WorkCopy\plan_intersect_hertpoly_S123.shp OK Do you want to add the exported data to the map as a layer? Yes R/C on plan_intersect_hertpoly_S123 Open attribute table 24,389 MONHP T&E species/community range record intersections ## COPY plan_intersect_hertpoly_S123.dbf to planpoly.dbf USE planpoly INDEX ON AGREE_NUM+LEFT(SNAME,45) TO XXX UNIQ -OR- INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT **Preliminary Result**: **1325** unique T&E species/community –WRP monitored-polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: #### INDEX ON AGREE NUM TO XXX UNIQ COUNT=**322** Unique easements within the intersection (including *all* FISH records) We can also determine the unique number of T&E species/communities involved by using this command: #### INDEX ON ELCODE TO XXX UNIQ COUNT=**193** Unique T&E species/community ranges (including *all* FISH records) TO DETERMINE UNIQUE RECORDS: #### USE **PLANPOLY** INDEX ON AGREE_NUM+ELCODE+FOURCHACOD TO XXX UNIQ COUNT=**3,396** Unique easement-T&E species/Community-habitat polygon combinations COPY TO PLANPOL1 #### USE **PLANPOL1** (3,396 records) INDEX ON AGREE NUM+ELCODE TO XXX UNIQ COUNT=**1325** unique T&E species/community –WRP monitored-polygon intersects INDEX ON ELCODE+FOURCHACOD TO XXX UNIQ COUNT=**947** Unique range-habitat combination "polygons" within the intersection INDEX ON AGREE NUM+FOURCHACOD TO XXX UNIQ COUNT=**862** Unique easement-habitat combination "polygons" within the intersection INDEX ON AGREE NUM TO XXX UNIQ COUNT=322 Unique easements within the intersection INDEX ON ELCODE TO XXX UNIQ COUNT=193 Unique T&E species/community ranges #### USE **PLANPOL1** (3,396 records) SET FILTER TO ELCODE#'AF' OR (ELCODE='AF' AND FOURCHACOD='POWZ') COUNT=**3,042** Unique easement-habitat combinations within the intersection (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*) COPY TO PLANPOL2 #### **USE PLANPOL2** INDEX ON AGREE NUM+ELCODE TO XXX UNIQ COUNT=**1151** unique T&E species/community –WRP monitored-polygon intersects (*including only those FISH range records that overlap with* "*POWZ*" palustrine open water habitat records) INDEX ON ELCODE+FOURCHACOD TO XXX UNIQ COUNT=**844** Unique range-habitat combination "polygons" within the intersection (*including only those FISH range records that overlap with* "*POWZ*" palustrine open water habitat records) INDEX ON AGREE_NUM+FOURCHACOD TO XXX UNIQ COUNT=**826** Unique easement-habitat combinations "polygons" within the intersection (*including only those FISH range records that overlap with* "POWZ" palustrine open water habitat records) INDEX ON AGREE_NUM TO XXX UNIQ COUNT=**307** Unique easements within the intersection (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*) INDEX ON ELCODE TO XXX UNIQ COUNT=**183** Unique T&E species/community ranges (including only those FISH range records that overlap with "POWZ" palustrine open water habitat records) #### USE **PLANPOL1** INDEX ON AGREE_NUM+ELCODE+FOURCHACOD TO XXX UNIQ SET FILTER TO ELCODE="AF" AND FOURCHACOD= "POWZ" COUNT=**68** T&E Fish ranges in palustrine open water habitats ("POWZ") of easements within the intersection COPY TO WRPTFSH1.DBF USE WRPTFSH1.DBF INDEX ON AGREE NUM TO XXX UNIQ COUNT=23 Unique Easements with T&E Fish ranges in palustrine open water habitats ("POWZ") within the intersection INDEX ON ELCODE TO XXX UNIQ COUNT=14 UNIQUE T&E Fish ranges in palustrine open water habitats ("POWZ") of easements within the intersection **Results:** 322 WRP easement sites intersect 193 distinct MONHP T&E species/community ranges *OR* 316 easements/186 species ranges **307** WRP easement sites intersect **183** distinct MONHP T&E species/community ranges (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*) EOs are rated by EORANK and within this dataset, 86.3% of these records have an EORANK of "H" or "H?" = "historical." ## WRP Site Proximity to T&E Species/(Community Ranges) **ANALYSIS 4** - T&E Species/community Element Observations (points) inside WRP easements (polygons) Parent Map: MONHP_points&WRP.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique easement records) And \MDC_MONHP\herallpt.shp (25,028 EO records) **Technique:** Geoprocessing - Intersect Step Sequence: Open MONHP_points&WRP.mxd **Tools** Geoprocessing Intersect Open tool <u>Input features</u>: wrp_a_mo herallpt Output feature class: C:\WRPDB\WorkCopy**WRP_intersect_EO_points.shp** R/C on WRP_intersect_EO_points Open attribute table 105 species/community EOs inside WRP easements #### Preliminary Result: This means that 105 species/community EO-point records from herallpt.shp have intersected some number of 930 easement polygon records from the WRP dataset wrp a mo.shp. These results are preliminary for the following reasons. 1). We do not yet know the number of easement polygon records/sites which intersect (contain them), only the gross number of MONHP EO records which intersect (are contained by) them. 2). We are interested in Threatened and Endangered species (as defined in **Analysis 1**), not all species. ``` [For T&E species] ``` Selection Select by attributes Layer: WRP_intersect_EO_points Method: Create a new selection SELECT * FROM **WRP_intersect_EO_points** WHERE: "SRANK" = 'S1' OR "SRANK" = 'S1?' OR "SRANK" = 'S1S2' OR "SRANK" = 'S1S3' OR "SRANK" = 'S2' OR "SRANK" = 'S2?' OR "SRANK" = 'S2S3' OR "SRANK" = 'S3' OR "SRANK" = 'S3?' OR "SRANK" = 'S3S4' Verify OK Apply Close R/C on WRP_intersect_EO_points Open attribute table Records (91 out of 105 Selected) R/C on **WRP_intersect_EO_points** Data Export data Selected features [accept default coordinate system: "this layer's source data"] Output shapefile or feature class C:\WRPDB\WorkCopy\ WRP_intersect_EO_points1.shp OK Do you want to add the exported data to the map as a layer? Yes R/C on **WRP_intersect_EO_points1** Open attribute table 91 T&E Species/(Community) EO points [For easements with T&E species/communities EOs] COPY WRP_intersect_EO_points1.dbf to WRPoint1.dbf USE WRPoint1.dbf INDEX ON AGREE_NUM+LEFT(SNAME,45) TO XXX UNIQ -OR- INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT **Preliminary Result**: 73 unique T&E species/community EO -WRP polygons intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT = 41 We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT = 48 **Results:** 41 WRP easement sites intersect 48 distinct MONHP T&E species/community ranges; 73 unique easement-range intersections *OR* 38 easements/43 *species ranges* EOs are rated by EORANK and within this dataset, 51.6% of these records have an EORANK of "E" = "extant." ## WRP Site Proximity to T&E Species/(Community Ranges) #### NRCS RENDERING OF HERITAGE "MONHP" POINTS These MDC Heritage data relate to the *Missouri Species and Communities of Conservation Concern Checklist*. The individual shapefiles correspond to the columns of the Missouri T&E Species Planning Matrix. They have been buffered to diameters which are based on the particular group represented. These NRCS datasets are coarse, using buffered polygons NOT points. ``` bats_a_mo.shp birds_a_mo.shp fishdb_a_mo.shp (used to make this generalization mentioned below) fish-crustaceans-mollusks_a_mo.shp (spatially generalized to the watershed of the immediate stream segment where they were collected) mammals_a_mo.shp plants_a_mo.shp reptiles-amphibians-insects_a_mo.shp And communities_a_mo.shp ``` **Go to** WRP Site Proximity to T&E Species Ranges2.doc for analyses using these datasets. ## WRP Site Proximity to T&E Species/(Community Ranges) By Taxonomic Group **ANALYSIS 5A** - Intersection of MO WRP easements (polygons) and buffered MO T&E **BAT** species ranges (polygons) Parent Map: MONHP_NRCS_BATS&WRP.mxd <u>Datasets</u>: \WorkCopy\20070413**plan_3yrall.shp** (3728 monitored WRP polygon records) And \NRCS-MONHP\bats_a_mo.shp (294 EO buffered polygon records for two T&E species: *Myotis grisescens* and *Myotis sodalis*) -OR- <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And \NRCS-MONHP\bats_a_mo.shp (294 EO buffered polygon records for two T&E species:
Myotis grisescens and *Myotis sodalis*) (Since all/both bat species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Select by location - Intersection Step Sequence A: Open: MONHP_NRCS_BATS&WRP.mxd Selection Select by location Select features from bats a mo That intersect plan_3yrall OK R/C bats_a_mo Open attribute table Records: 29 out of 294 selected R/C bats_a_mo Data Export data Export selected features Use the same coordinate system as: • this layer's source data Output shapefile or feature class: C:\WRPDB\WorkCopy\bats_intersect_plan.shp (copy this to **BTINPLN.DBF** for future reference) R/C on **bats_intersect_plan** Open attribute table <u>Results</u>: 29 buffered observation records of 2 bat species (as listed above) intersect with some number of monitored easements. A buffered observation record may include more than one easement. Given these qualifications, this method for analysis is not very useful. Step Sequence B: Open: MONHP_NRCS_BATS&WRP.mxd Selection Select by location Select features from bats_a_mo That intersect wrp_a_mo OK R/C bats a mo Open attribute table Records: 33 out of 294 selected R/C bats_a_mo Data Export data Export selected features Use the same coordinate system as: • this layer's source data Output shapefile or feature class: C:\WRPDB\WorkCopy\bats_intersect_wrp.shp (copy this to **BTINTWRP.DBF** for future reference) R/C on bats_intersect_wrp Open attribute table <u>Results</u>: 33 buffered observation records of 2 bat species (as listed above) intersect with some number of easements. A buffered observation record may include more than one easement. Given these qualifications, this method for analysis is not very useful. Step Sequence C: Open: MONHP NRCS BATS&WRP.mxd Selection Select by location Select features from wrp_a_mo That intersect bats_a_mo OK R/C wrp_a_mo Open attribute table Records: 149 out of 930 selected R/C wrp_a_mo Data Export data Export selected features Use the same coordinate system as: • this layer's source data Output shapefile or feature class: C:\WRPDB\WorkCopy\wrp_intersect_bats.shp (copy this to **WRPINBAT.DBF**) R/C on wrp_intersect_bats Open attribute table **149** gross intersections ~~~~ **USE WRPINBAT.DBF** INDEX ON AGREE_NUM TO XXX UNIQ COUNT **Results: 128** unique easements intersect buffered ranges of at least **one** of **two** SRANK123 bat species. Step Sequence D: Open: MONHP_NRCS_BATS&WRP.mxd Selection Select by location Select features from plan_3yrall That intersect bats a mo OK R/C plan_3yrall Open attribute table Records: 667 out of 3728 selected R/C plan_3yrall Data Export data Export selected features Use the same coordinate system as: • this layer's source data Output shapefile or feature class: C:\WRPDB\WorkCopy\plan_intersect_bats.shp (copy this to **PLINTBAT.DBF**) R/C on **plan_intersect_bats** Open attribute table **667** *gross intersections* ~~~~ USE **PLINTBAT.DBF** INDEX ON AGREE_NUM TO XXX UNIQ COUNT **Results:** 104 unique monitored easements intersect buffered ranges of at least one of two SRANK123 bat species. **ANALYSIS 5B** - Intersection of MO WRP easements (polygons) and buffered MO T&E **BAT** species ranges (polygons) <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And \NRCS-MONHP\bats_a_mo.shp (294 EO buffered polygon records for two T&E species: *Myotis grisescens* and *Myotis sodalis*) **Technique:** Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_BATS&WRP.mxd **Tools** Geoprocessing Intersect Open tool #### **Input features**: wrp_a_mo bats_a_mo Output feature class: $C: \label{lem:copy} $$ C: \WRPDB \Work Copy \wrp_a_mo_Intersect_bats_a_mo.shp $$$ (copy this to **WRPIBATS.DBF**) R/C on wrp_a_mo_Intersect_bats_a_mo Open attribute table **436** *gross intersections* ~~~~ USE **WRPIBATS.DBF** INDEX ON AGREE_NUM TO XXX UNIQ COUNT **Results:** 128 unique easements intersect ranges of at least **one** of **two** SRANK123 bat species. [See also results of ANALYSIS 5A Step sequence C]. EOs are rated by EORANK and within the parent intersection dataset 12.4% of the records have an EORANK of "D" = "poor" while 49.3% of the records have an EORANK of "E" = "extant." ANALYSIS 5C - Intersection of MO Monitored WRP easements (polygons) and buffered MO T&E **BAT** species ranges (polygons) <u>Datasets</u>: \WorkCopy\20070413**plan_3yrall.shp** (3728 monitored WRP polygon records) And \NRCS-MONHP\bats_a_mo.shp (294 EO buffered polygon records for two T&E species: *Myotis grisescens* and *Myotis sodalis*) ``` Technique: Geoprocessing - Intersect ``` ``` Step Sequence: Open: MONHP_NRCS_BATS&WRP.mxd Tools Geoprocessing Intersect Open tool Input features: plan_3yrall bats a mo Output feature class: C:\WRPDB\WorkCopy\plan Intersect bats a mo.shp (copy this to PLNIBATS.DBF) R/C on plan Intersect bats a mo Open attribute table 4048 gross intersections USE PLNIBATS.DBF INDEX ON AGREE NUM+ELCODE TO XXX UNIQ COUNT=113 unique WRP-T&E Bat species polygon intersects INDEX ON AGREE NUM TO XXX UNIQ COUNT=104 unique easement-range intersects INDEX ON AGREE NUM TO XXX SET FILTER TO FOURCHACOD="ORP3" OR FOURCHACOD="PFO1"; OR FOURCHACOD="PFO2" OR FOURCHACOD="PFO3"; OR FOURCHACOD="PFO4" OR FOURCHACOD="PFO5"; OR FOURCHACOD="PFP3" OR FOURCHACOD="UWO1"; OR FOURCHACOD="UWO2" COUNT=2247 gross wooded easement-range intersects ``` ## Alternatively under ArcMap R/C on plan_Intersect_bats_a_mo Open attribute table 4048 gross intersections Selection Select by attributes <u>Layer</u>: **plan_Intersect_bats_a_mo** Method: Create a new selection SELECT * FROM plan_Intersect_bats_a_mo WHERE: "FOURCHACOD"='ORP3' OR "FOURCHACOD"='PFO1' OR "FOURCHACOD"='PFO2' OR "FOURCHACOD"='PFO3' OR "FOURCHACOD"='PFO4' OR "FOURCHACOD"='PFO5' OR "FOURCHACOD"='PFP3' OR "FOURCHACOD"='UWO1' OR "FOURCHACOD"='UWO2' Verify OK Apply Close R/C on plan_Intersect_bats_a_mo Open attribute table Records (2247 out of 4048 Selected) areas wooded easement-range intersects # INDEX ON AGREE_NUM TO XXX UNIQ COUNT=93 unique wooded easement-range intersects <u>Results</u>: **104** unique monitored easements intersect ranges of at least **one** of **two** SRANK123 bat species. [See also results of ANALYSIS 5A Step sequence D]. If only wooded habitats are considered, then **93** unique monitored wooded easements intersect ranges of at least **one** of **two** SRANK123 bat species. EOs are rated by EORANK and within the parent intersection dataset 14.6% of the records have an EORANK of "D" = "poor" while 48.9% of the records have an EORANK of "E" = "extant." ANALYSIS 6A - Intersection of MO WRP easements (polygons) and buffered MO T&E **BIRD** species ranges (polygons) Parent Map: MONHP_NRCS_BIRDS&WRP.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And \NRCS-MONHP\birds_a_mo.shp (813 EO buffered polygon records for 31 T&E bird species) (Since all birds species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_BIRDS&WRP.mxd Tools Geoprocessing Intersect Open tool <u>Input features</u>: wrp_a_mo birds_a_mo Output feature class: C:\WRPDB\WorkCopy\wrp_a_mo_Intersect_birds_a_mo.shp (copy this to WRPIBIRD.DBF) R/C on wrp_a_mo_Intersect_birds_a_mo Open attribute table **3091** gross intersections ~~~~ #### USE **WRPIBIRD.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=935 unique WRP-T&E bird species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=467 unique easements We can also determine the unique number of T&E species/communities involved by using this command: # INDEX ON ELCODE TO XXX UNIQ COUNT=24 unique BIRD species **Results:** 467 unique WRP easements intersect 24 T&E bird species ranges. EOs are rated by EORANK and within the parent intersection dataset 44.5% of the records have an EORANK of "E" = "extant." #### ANALYSIS 6B - Intersection of MO Monitored WRP easements (polygons) and buffered MO T&E **BIRD** species ranges (polygons) Parent Map: MONHP_NRCS_BIRDS&WRP.mxd <u>Datasets</u>: \WorkCopy\20070413**plan_3yrall.shp** (~3728 monitored WRP polygon easement records) And \NRCS-MONHP\birds_a_mo.shp (813 EO buffered polygon records for 31 T&E bird species) (Since all birds species in the dataset are SRANK123, filtering for SRANK was not necessary). **<u>Technique</u>**: Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_BIRDS&WRP.mxd **Tools** Geoprocessing Intersect Open tool **Input features**: plan_3yrall birds_a_mo Output feature class: C:\WRPDB\WorkCopy\plan_Intersect_birds_a_mo.shp (copy this to PLNIBIRD.DBF) #### R/C on plan_Intersect_birds_a_mo Open attribute table **10,098** gross intersections ~~~~ #### **USE PLNIBIRD.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=606 unique WRP-T&E bird species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=322 unique monitored easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=24 unique T&E Bird species **Results:** 322 unique monitored WRP easements intersect 24 T&E bird species ranges. EOs are rated by EORANK and within the parent intersection dataset 38.4% of the records have an EORANK of "E" = "extant" while 10.9% of the records have an EORANK of "U" = "unranked." ## *Related finding:* 7 of 31 (NRCS-MONHP) Missouri T&E bird species **NOT** observed in Missouri WRP sites: [&]quot;Black Vulture" [&]quot;Black Rail" [&]quot;Greater Roadrunner" [&]quot;Chestnut-sided Warbler" [&]quot;Swainson's Warbler" [&]quot;Painted
Bunting" [&]quot;Bachman's Sparrow" ## ANALYSIS 7A - Intersection of MO WRP easements (polygons) and buffered MO T&E **MAMMAL** species ranges (polygons) Parent Map: MONHP_NRCS_MAMMALS&WRP.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And \NRCS-MONHP\mammals_a_mo.shp (243 EO buffered polygon records for 8 T&E mammal species) (Since all mammal species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_MAMMALS&WRP.mxd Tools Geoprocessing Intersect Open tool #### Input features: wrp_a_mo mammals_a_mo Output feature class: $\label{lem:copy} $$C:\WRPDB\WorkCopy\wrp_a_mo_Intersect_mammals_a_mo.shp (copy this to $WRPINMAM.DBF)$$ R/C on wrp_a_mo_ Intersect_mammals_a_mo Open attribute table 72 gross intersections ~~~~ #### **USE WRPINMAM.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=44 unique WRP-T&E mammal species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=43 unique easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=6 unique Mammal species **Results:** 43 unique WRP easements intersect 6 T&E mammal species ranges. EOs are rated by EORANK and within the parent intersection dataset 50% of the records have an EORANK of "U" = "unranked" while 37.5% of the records have an EORANK of "E" = "extant" ANALYSIS 7B - Intersection of MO Monitored WRP easements (polygons) and buffered MO T&E **MAMMAL** species ranges (polygons) Parent Map: MONHP_NRCS_MAMMALS&WRP.mxd <u>Datasets</u>: \WorkCopy\20070413**plan_3yrall.shp** (~3728 monitored WRP polygon easement records) And \NRCS-MONHP\mammals_a_mo.shp (243 EO buffered polygon records for 8 T&E mammal species) (Since all mammal species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_MAMMALS&WRP.mxd **Tools** Geoprocessing Intersect Open tool **Input features**: plan_3yrall mammals_a_mo Output feature class: $C: \label{lem:copy} $$ C: \WRPDB \Work Copy \plan_Intersect_mammals_a_mo.shp $$$ (copy this to **PLNINMAM.DBF**) R/C on plan_Intersect_mammals_a_mo Open attribute table **518** gross intersections ~~~~ #### **USE PLNINMAM.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=30 unique WRP-T&E mammal species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=29 unique monitored easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=4 unique T&E Mammal species **Results:** 29 unique monitored WRP easements intersect 4 unique T&E mammal species ranges. EOs are rated by EORANK and within the parent intersection dataset 77% of the records have an EORANK of "U" = "unranked" while 23% of the records have an EORANK of "E" = "extant" ## Related finding: # 2 of 8 (NRCS-MONHP) Missouri T&E mammal species **NOT** observed in Missouri WRP sites: "Long-tailed Weasel" #### ANALYSIS 8A - Intersection of MO WRP easements (polygons) and buffered MO T&E **HERP et al** species ranges (polygons) #### Parent Map: #### MONHP NRCS REPTILES AMPHIBIANS INSECTS&WRP.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) \NRCS-MONHP\reptiles-amphibians-insects_a_mo.shp (849 EO buffered polygon records for 68 T&E herp et al species) (Since all reptile, amphibian & insect species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: ## MONHP_NRCS_REPTILES_AMPHIBIANS_INSECTS&WRP.mxd **Tools** Geoprocessing Intersect Open tool **Input features**: wrp_a_mo reptiles-amphibians-insects_a_mo Output feature class: C:\WRPDB\WorkCopy\wrp_a_mo_Intersect_herps.shp [&]quot;Plains Spotted Skunk" (copy this to **WRPIHERP.DBF**) R/C on wrp_a_mo_ Intersect_herps Open attribute table **326** gross intersections ~~~~ #### USE WRPIHERP.DBF INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=142 unique WRP-T&E herp et al species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=108 unique easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=22 unique Herp et al species **Results:** 108 unique WRP easements intersect 22 T&E Reptile and/or Amphibian and/or Insect species ranges. EOs are rated by EORANK and within the parent intersection dataset 59.8% of the records have an EORANK of "E" = "extant" while 17.5% of the records have an EORANK of "U" = "unranked." ANALYSIS 8B - Intersection of MO monitored WRP easements (polygons) and buffered MO T&E **HERP et al** species ranges (polygons) #### Parent Map: MONHP_NRCS_REPTILES_AMPHIBIANS_INSECTS&WRP.mxd <u>Datasets</u>: \WorkCopy\20070413**plan_3yrall.shp** (~3728 monitored WRP polygon easement records) And # \NRCS-MONHP\reptiles-amphibians-insects_a_mo.shp (849 EO buffered polygon records for 68 T&E herp et al species) (Since all reptile, amphibian & insect species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: #### MONHP_NRCS_REPTILES_AMPHIBIANS_INSECTS&WRP.mxd Tools Geoprocessing Intersect Open tool **Input features**: plan_3yrall reptiles-amphibians-insects_a_mo Output feature class: C:\WRPDB\WorkCopy\plan_Intersect_herps.shp (copy this to **PLNIHERP.DBF**) R/C on plan_ Intersect_herps Open attribute table **867** *gross intersections* ~~~~ #### USE **PLNIHERP.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=88 unique monitored WRP-T&E herp et al species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=75 unique monitored easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=16 unique Herp et al species **Results: 75** unique monitored WRP easements intersect **16** T&E Reptile and/or Amphibian and/or Insect species ranges. EOs are rated by EORANK and within the parent intersection dataset 60.8% of the records have an EORANK of "E" = "extant" while 24.2% of the records have an EORANK of "U" = "unranked." "The fish, crustacean and mollusk data have been **spatially generalized** to the watershed of the immediate stream segment where they were collected. An additional file of data, called fishdb_a_mo.shp is used to make this generalization... It is important to remember that the fish-crustaceans-mollusks_a_mo.shp is the spatial extent of the fish, crustacean and mollusk records, while the fishdb_a_mo.shp contains the tabular information (heritage record or fish sampling data) about these locations." (Revisions to Heritage Data for Field Office Reviews.doc) **ANALYSIS 9** - Intersection of MO WRP easements (polygons) and spatially generalized MO T&E **FISH** et al species records (polygons) #### Parent Map: ### MONHP_NRCS_FISH_AQUATICS&WRP.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And/Or \NRCS-MONHP**fishdb_a_mo.shp** (4473 EO polygon records of 68 T&E herp et al species) And/Or \NRCS-MONHP\fish-crustaceans-mollusks_a_mo.shp (2312 EO buffered polygon records for 68 T&E herp et al species) (Since all fish, crustacean & mollusk species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_FISH_AQUATICS&WRP.mxd **Tools** Geoprocessing Intersect Open tool **Input features**: wrp_a_mo fish-crustaceans-mollusks_a_mo Output feature class: C:\WRPDB\WorkCopy\wrp_a_mo_Intersect_fishetal.shp (copy this to **WRPIFISH.DBF**) R/C on wrp_a_mo_Intersect_fishetal Open attribute table **130** gross intersections ~~~~ [BUILD DATABASE RELATION TO ACQUIRE SPECIES NAME ETC] SELE 1 USE **WRPIFISH.DBF** INDEX ON SEG ID TO XXX SELE 2 USE **FISHDBMO.DBF** INDEX ON SEG_ID TO ZZZ SELE 1 SET RELA TO SEG ID INTO B **COPY FIELDS** AGREE_NUM,B.SEG_ID,B.ELCODE,B.SCINAME,B.SNAME,B.SCOM NAME,B.S_RANK,B.G_RANK TO **ANYLFISH.DBF** CLOSE ALL ~~~~ USE **ANYFISH.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=96 unique WRP-T&E fish et al species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=90 unique easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=**16** unique fish et al species **Results:** 90 unique WRP easements intersect 16 T&E fish and/or crustacean and/or mollusk species spatially generalized ranges. EORANK was not included in this dataset and so could not be analyzed. There were distinct differences to the structures and contents of the datasets representing these aquatic organisms compared to the other taxa. This presumably relates to their specialized ecology. In light of these differences, the relevancy and efficacy of this analysis needs to be evaluated. Any further analysis is pending. **ANALYSIS 10A** - Intersection of MO WRP easements (polygons) and buffered MO T&E **PLANT**
species distributions (polygons) Parent Map: MONHP_NRCS_PLANTS&WRP.mxd <u>Datasets</u>: \WorkCopy\wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And \NRCS-MONHP\plants_a_mo.shp (3087 EO buffered polygon records for 406 T&E plant species) (Since all plant species in the dataset are SRANK123, filtering for SRANK was not necessary). **<u>Technique</u>**: Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_PLANTS&WRP.mxd Tools Geoprocessing Intersect Open tool Input features: wrp_a_mo plants_a_mo Output feature class: C:\WRPDB\WorkCopy\wrp_a_mo_Intersect_plants_a_mo.shp (copy this to WRPIPLNT.DBF) R/C on wrp_a_mo_Intersect_plants_a_mo Open attribute table **499** gross intersections ~~~~ #### USE WRPIPLNT.DBF INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=174 unique WRP-T&E Plant species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=97 unique easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=62 unique Plant species **Results:** 97 unique WRP easements intersect 62 T&E plant distributions. EOs are rated by EORANK and within the parent intersection dataset 38.5% of the records have an EORANK of "E" = "extant." ### **ANALYSIS 10B** - Intersection of MO monitored WRP easements (polygons) and buffered MO T&E **PLANT** species distributions (polygons) Parent Map: MONHP_NRCS_PLANTS&WRP.mxd <u>Datasets</u>: \WorkCopy\20070413**plan_3yrall.shp** (~3728 monitored WRP polygon easement records) And \NRCS-MONHP\plants_a_mo.shp (3087 EO buffered polygon records for 406 T&E plant species) (Since all plant species in the dataset are SRANK123, filtering for SRANK was not necessary). **Technique:** Geoprocessing - Intersect Step Sequence: Open: MONHP_NRCS_PLANTS&WRP.mxd **Tools** Geoprocessing Intersect Open tool Input features: plan_3yrall plants_a_mo Output feature class: C:\WRPDB\WorkCopy\plan_Intersect_plant_a_mo.shp (copy this to **PLNIPLNT.DBF**) R/C on plan_Intersect_plant_a_mo Open attribute table **1106** gross intersections ~~~~ **USE PLNIPLNT.DBF** INDEX ON AGREE_NUM+ELCODE TO XXX UNIQ COUNT=119 unique monitored WRP-T&E plant species polygon intersects We still need to determine the unique number of easements, as opposed to polygon *records*, which intersect. We can obtain this by using the following command: INDEX ON AGREE_NUM TO XXX UNIQ COUNT=71 unique monitored easements We can also determine the unique number of T&E species/communities involved by using this command: INDEX ON ELCODE TO XXX UNIQ COUNT=44 unique Plant species <u>Results</u>: 71 unique monitored WRP easements intersect 44 T&E Plant species distributions. EOs are rated by EORANK and within the parent intersection dataset 38.3% of the records have an EORANK of "E" = "extant." # Alphabetical list of plant 238 species recorded as (co-)dominant in 594 monitored Missouri WRP easements, 2003-2005. (The epithet "spp." has been added to genus-only entries). | Family | Species | Form | |----------------|-------------------------|----------------------------| | Malvaceae | Abutilon theophrasti | annual forb/herb | | Aceraceae | Acer spp. | tree/shrub/vine | | Aceraceae | Acer negundo | tree | | Aceraceae | Acer rubrum | tree | | Aceraceae | Acer rubrum var | tree | | | drummondii | | | Aceraceae | Acer saccharinum | tree | | Rosaceae | Agrimonia spp. | perennial forb/herb | | Rosaceae | Agrimonia parviflora | perennial forb/herb | | Poaceae | Agrostis alba | perennial grass | | Poaceae | Agrostis hyemalis | perennial grass | | Alismataceae | Alisma spp. | perennial forb/herb | | Alismataceae | Alisma subcordatum | perennial forb/herb | | Liliaceae | Allium canadense | perennial forb/herb | | Liliaceae | Allium stellatum | perennial forb/herb | | Liliaceae | Allium vineale | perennial forb/herb | | Poaceae | Alopecurus carolinianus | annual grass | | Amaranthaceae | Amaranthus spp. | annual forb/herb | | Asteraceae | Ambrosia artemisiifolia | annual forb/herb | | Asteraceae | Ambrosia bidentata | annual forb/herb | | Asteraceae | Ambrosia trifida | annual forb/herb | | Lythraceae | Ammannia spp. | annual forb/herb | | Lythraceae | Ammannia coccinea | annual forb/herb | | Fabaceae | Amorpha spp. | shrub | | Fabaceae | Amorpha croceolanata | shrub | | Apocynaceae | Amsonia spp. | perennial forb/herb | | Poaceae | Andropogon gerardii | perennial grass | | Poaceae | Andropogon scoparius | perennial grass | | Poaceae | Andropogon virginicus | perennial grass | | Apocynaceae | Apocynum cannabinum | perennial forb/herb | | Asclepiadaceae | Asclepias incarnata | perennial forb/herb | | Asteraceae | Aster spp. | perennial forb/herb | | Asteraceae | Aster lateriflorus | perennial forb/herb | | Asteraceae | Aster nemoralis | perennial forb/herb | | Asteraceae | Aster novae-angliae | perennial forb/herb | | Asteraceae | Aster pilosus | perennial forb/herb | | Asteraceae | Aster simplex | perennial forb/herb | | Asteraceae | Aster vimineus | perennial forb/herb | | Azollaceae | Azolla Mexicana | annual/perennial forb/herb | | Betulaceae | Betula nigra | tree | | Asteraceae | Bidens spp. | annual forb/herb | | Asteraceae | Bidens aristosa | annual forb/herb | | Asteraceae | Bidens frondosa | annual forb/herb | | Asteraceae | Boltonia asteroides | perennial forb/herb | | Poaceae | Bromus spp. | perennial grass | | Family | Species | Form | |---------------|-----------------------------|------------------------------| | Poaceae | Bromus inermis | perennial grass | | Poaceae | Bromus tectorum | perennial grass | | Campanulaceae | Campanula americana | annual forb/herb | | Bignoniaceae | Campsis radicans | perennial vine | | Cyperaceae | Carex spp. | perennial grass | | Cyperaceae | Carex shortiana | perennial grass | | Cyperaceae | Carex vulpinoidea | perennial grass | | Juglandaceae | Carya cordiformis | tree | | Juglandaceae | Carya illinoinensis | tree | | Juglandaceae | Carya laciniosa | tree | | Juglandaceae | Carya ovata | tree | | Fabaceae | Cassia fasciculata | annual forb/herb | | Ulmaceae | Celtis laevigata | tree/shrub | | Ulmaceae | Celtis occidentalis | tree/shrub | | Poaceae | Cenchrus spp. | annual grass | | Poaceae | Cenchrus longispinus | annual grass | | Rubiaceae | Cephalanthus occidentalis | tree/shrub | | Asteraceae | Conyza canadensis | annual/biennial forb/herb | | Cornaceae | Cornus spp. | tree/shrub | | Cyperaceae | Cyperus spp. | annual/perennial grass | | Cyperaceae | Cyperus erythrorhizos | annual/perennial grass | | Cyperaceae | Cyperus esculentus | perennial grass | | Cyperaceae | Cyperus strigosus | perennial grass | | Poaceae | Dactylis glomerata | perennial grass | | Poaceae | Danthonia spicata | perennial grass | | Apiaceae | Daucus carota | biennial forb/herb | | Fabaceae | Desmanthus illinoensis | perennial subshrub/forb/herb | | Fabaceae | Desmodium spp. | perennial forb/herb | | Poaceae | Digitaria spp. | annual grass | | Poaceae | Digitaria ischaemum | annual grass | | Poaceae | Digitaria sanguinalis | annual grass | | Ebenaceae | Diospyros virginiana | tree | | Poaceae | Echinochloa spp. | annual grass | | Poaceae | Echinochloa crus-galli | annual grass | | Poaceae | Echinochloa muricata | annual grass | | Poaceae | Echinochloa walteri | annual grass | | Cyperaceae | Eleocharis spp. | perennial grass | | Cyperaceae | Eleocharis compressa | perennial grass | | Cyperaceae | Eleocharis obtuse | perennial grass | | Cyperaceae | Eleocharis palustris | perennial grass | | Cyperaceae | Eleocharis quadrangulata | perennial grass | | Poaceae | Elymus spp. | perennial grass | | Poaceae | Elymus virginicus | perennial grass | | Poaceae | Eragrostis hypnoides | annual grass | | Asteraceae | Erigeron Canadensis | annual/biennial forb/herb | | Asteraceae | Eupatoriadelphus fistulosus | perennial forb/herb | | Asteraceae | Eupatorium altissimum | perennial forb/herb | | Family | Species | Form | |------------------|----------------------------|-------------------------------------| | Asteraceae | Eupatorium fistulosum | perennial forb/herb | | Asteraceae | Eupatorium perfoliatum | perennial forb/herb | | Poaceae | Festuca spp. | perennial grass | | Poaceae | Festuca arundinacea | perennial grass | | Poaceae | Festuca rubra | perennial grass | | Oleaceae | Fraxinus pennsylvanica | tree | | Fabaceae | Gleditsia spp. | tree/shrub | | Fabaceae | Gleditsia triacanthos | tree/shrub | | Poaceae | Glyceria striata | perennial grass | | Fabaceae | Glycine max | annual forb/herb | | Scrophulariaceae | Gratiola neglecta | annual forb/herb | | Asteraceae | Helianthus annuus | annual forb/herb | | Asteraceae | Helianthus grosseserratus | perennial forb/herb | | Malvaceae | Hibiscus spp. | perennial forb/herb | | Malvaceae | Hibiscus militaris | perennial forb/herb | | Hippuridaceae | Hippuris vulgaris | perennial forb/herb | | Aquifoliaceae | Ilex decidua | tree/shrub | | Asteraceae | Iva annua | annual forb/herb | | Asteraceae | Iva ciliata | annual forb/herb | | Juglandaceae | Juglans nigra | tree | | Cupressaceae | Juniperus virginiana | perennial subshrub | | Onagraceae | Jussiaea repens | perennial forb/herb | | Fabaceae | Kummerowia stipulacea | annual forb/herb | | Poaceae | Leersia oryzoides | perennial grass | | Lemnaceae | Lemna spp. | perennial forb/herb | | Lemnaceae | Lemna/Spirodela polyrrhiza | perennial forb/herb | | Poaceae | Leptochloa spp. | annual/perennial grass | | Poaceae | Leptochloa filiformis | annual/perennial grass | | Fabaceae | Lespedeza cuneata | perennial subshrub forb/herb | | Fabaceae | Lespedeza sericea | perennial subshrub forb/herb | | Hamamelidaceae | Liquidambar styraciflua | tree | | Onagraceae | Ludwigia spp. | perennial forb/herb | | Onagraceae | Ludwigia palustris | perennial forb/herb | | Onagraceae | Ludwigia
peploides | perennial forb/herb | | Moraceae | Maclura pomifera | tree/shrub | | Fabaceae | Medicago sativa | annual perennial forb/herb | | Fabaceae | Melilotus spp. | aimaa pereiimai 1010/11010 | | Fabaceae | Melilotus officinalis | annual biennial perennial forb/herb | | Lamiaceae | Monarda fistulosa | perennial subshrub forb/herb | | Moraceae | Morus spp. | perennal substituti foro/nero | | Moraceae | Morus rubra | tree | | Nelumboaceae | Nelumbo lutea | perennial forb/herb | | Cornaceae | | | | | Nyssa aquatica | tree biennial forb/herb | | Onagraceae | Oenothera biennis | oreminar roro/nero | | Poaceae | Panicum spp. | onnual areas | | Poaceae | Panicum dichotomiflorum | annual grass | | Poaceae | Panicum rigidulum | perennial grass | | Family | Species | Form | |------------------|---------------------------|----------------------------| | Poaceae | Panicum virgatum | perennial grass | | Poaceae | Paspalum fluitans | annual grass | | Poaceae | Pennisetum glaucum | annual perennial grass | | Poaceae | Phalaris arundinacea | perennial grass | | Poaceae | Phleum pratense | perennial grass | | Verbenaceae | Phyla lanceolata | perennial forb/herb | | Plantaginaceae | Plantago cordata | perennial forb/herb | | Plantanaceae | Platanus occidentalis | tree | | Poaceae | Poa pratensis | perennial grass | | Polygonaceae | Polygonum spp. | | | Polygonaceae | Polygonum amphibium | perennial forb/herb | | Polygonaceae | Polygonum coccineum | perennial forb/herb | | Polygonaceae | Polygonum hydropiperoides | perennial forb/herb | | Polygonaceae | Polygonum lapathifolium | annual forb/herb | | Polygonaceae | Polygonum pensylvanicum | annual forb/herb | | Polygonaceae | Polygonum punctatum | annual perennial forb/herb | | Salicaceae | Populus deltoides | tree | | Salicaceae | Populus heterophylla | tree | | Potamogetonaceae | Potamogeton spp. | perennial forb/herb | | Rosaceae | Prunus serotina | tree | | Fagaceae | Quercus spp. | tree | | Fagaceae | Quercus alba | tree | | Fagaceae | Quercus bicolor | tree | | Fagaceae | Quercus falcata | tree | | Fagaceae | Quercus imbricaria | tree | | Fagaceae | Quercus lyrata | tree | | Fagaceae | Quercus macrocarpa | tree | | Fagaceae | Quercus palustris | tree | | Fagaceae | Quercus phellos | tree | | Fagaceae | Quercus rubra | tree | | Fagaceae | Quercus stellata | tree | | Fagaceae | Quercus velutina | tree | | Anacardiaceae | Rhus spp. | | | Anacardiaceae | Rhus glabra | tree/shrub | | Anacardiaceae | Rhus trilobata | shrub | | Fabaceae | Robinia pseudoacacia | tree | | Rosaceae | Rosa multiflora | perennial vine/subshrub | | Rosaceae | Rosa palustris | perennial subshrub | | Rosaceae | Rubus spp. | | | Rosaceae | Rubus flagellaris | perennial subshrub | | Asteraceae | Rudbeckia subtomentosa | perennial forb/herb | | Polygonaceae | Rumex spp. | | | Polygonaceae | Rumex crispus | perennial forb/herb | | Polygonaceae | Rumex verticillatus | perennial forb/herb | | Alismataceae | Sagittaria spp. | | | Alismataceae | Sagittaria engelmanniana | perennial forb/herb | | Alismataceae | Sagittaria latifolia | perennial forb/herb | | Family | Species | Form | |----------------|----------------------------|--| | Salicaceae | Salix amygdaloides | tree/shrub | | Salicaceae | Salix discolor | tree/shrub | | Salicaceae | Salix exigua | tree/shrub | | Salicaceae | Salix interior | tree/shrub | | Salicaceae | Salix nigra | tree/shrub | | Poaceae | Schizachyrium scoparium | perennial grass | | Cyperaceae | Scirpus spp. | The state of s | | Cyperaceae | Scirpus americanus | perennial grass | | Cyperaceae | Scirpus fluviatilis | perennial grass | | Cyperaceae | Scirpus heterochaetus | perennial grass | | Cyperaceae | Scirpus validus | perennial grass | | Poaceae | Secale cereale | annual grass | | Fabaceae | Sesbania spp. | | | Fabaceae | Sesbania exalta | annual perennial subshrub forb/herb | | Poaceae | Setaria spp. | dimidul pereimidi succindo loro/nero | | Poaceae | Setaria faberi | annual grass | | Poaceae | Setaria glauca | annual grass | | Asteraceae | Silphium integrifolium | perennial forb/herb | | Asteraceae | Silphium perfoliatum | perennial forb/herb | | Asteraceae | Solidago spp. | perennar foro/nero | | Asteraceae | Solidago altissima | perennial forb/herb | | Asteraceae | Solidago flexicaulis | perennial forb/herb | | Asteraceae | Solidago nemoralis | perennial forb/herb | | Poaceae | Sorghastrum nutans | perennial grass | | Poaceae | Sorghum bicolor | annual grass | | Poaceae | Sorghum halepense | perennial grass | | Sparganiaceae | Sparganium eurycarpum | perennial forb/herb | | Poaceae | Spartina pectinata | perennial grass | | Poaceae | Sporobolus cryptandrus | perennial grass | | Caprifoliaceae | Symphoricarpos orbiculatus | shrub | | Cupressaceae | Taxodium distichum | tree | | Anacardiaceae | Toxicodendron radicans | perennial shrub forb/herb subshrub | | Poaceae | Tridens flavus | perennial grass | | Fabaceae | Trifolium agrarium | annual perennial forb/herb | | Fabaceae | Trifolium hybridum | annual perennial forb/herb | | Fabaceae | Trifolium pratense | biennial perennial forb/herb | | Fabaceae | Trifolium repens | perennial forb/herb | | Poaceae | Triplasis purpurea | annual grass | | Poaceae | Tripsacum dactyloides | perennial grass | | Poaceae | Triticum spp. | pereimiai grass | | Poaceae | Triticum aestivum | annual grass | | Typhaceae | Typha spp. | minum Brass | | Typhaceae | Typha angustifolia | perennial forb/herb | | Typhaceae | Typha latifolia | perennial forb/herb | | Ulmaceae | Ulmus spp. | pereimiai 1010/11010 | | Ulmaceae | Ulmus alata | tree | | Ulmaceae | Ulmus americana | tree | | Ulliaceae | omus americana | ucc | **Annex 3** – WRP Analysis Project Final Report – Results: List of Dominant Plants Recorded – page 138 | Family | Species | Form | |-------------|---------------------|------------------------------| | Ulmaceae | Ulmus rubra | tree | | Verbenaceae | Verbena hastata | biennial perennial forb/herb | | Asteraceae | Vernonia missurica | perennial forb/herb | | Asteraceae | Xanthium spp. | | | Asteraceae | Xanthium strumarium | annual forb/herb | | Poaceae | Zea mays | annual grass | ## **Summary of Proximity Analyses Results** Research Topic: To what extent do Missouri's WRP easements provide an implied POTENTIAL contribution to the maintenance and protection of threatened and endangered species/communities by virtue of their proximity to T&E species/community ranges? <u>NOTE</u>: For the purposes of the WRP project analyses, **Threatened and Endangered** (T&E) "elements" are the **S1**, **S2** or **S3** State-ranked elements (including those assigned a range of SRANKs that includes at least one of these values). Element Observations (EO) have not been excluded on the basis of EORANK, however high percentages of "historical" and other perhaps suboptimal ranks are noted as a qualifier under the results. ## Analysis 1 Spatial intersection of Missouri WRP easement polygons and Missouri Natural Heritage Program (MONHP) T&E species/community ranges (polygons). ### **Datasets**: wrp_a_mo.shp (825 easements in 930 polygons) And hertpoly.shp (20,768 MONHP EO polygons) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 439 easements intersected 217 T&E species/community ranges *OR* 431 easements/208 *species ranges* ## **Additional qualifiers:** - The initial spatial analysis above resulted in 6727 gross (non-unique) easement-range *intersections* (See ALSO Analysis 2, datasets). - There are no habitat data in the WRP dataset used in this <u>or similar analyses</u> (wrp_a_mo.shp does not include habitat information). - EOs are rated by EORANK and within the parent intersection dataset 76.3% of the records have an EORANK of "H" or "H?" = "historical" while 17.6 % of these records have an EORANK of "E" = "extant." Furthermore, since fish obviously require water, and since riverine and
lacustrine habitat categories have not been recorded in practice for monitored Missouri WRP easements (—there are just 3 freshwater openwater four-character Cowardin habitat codes that can be derived from the *monitoring* dataset), the above analysis could be modified to **exclude** (filter out) *all* **fish records** (26 species). This coarse action would avoid inadvertently attributing some fish records to a non-aquatic (non open water) habitat. In this case, the gross result would be: **Results:** 417 easements intersected 191 T&E species/community ranges *OR* 396 easements/182 *species ranges* However, Analysis 1 results could be intersected with the smaller monitoring (habitat) dataset... See Analysis 2. ## Analysis 2 Spatial *intersection* of the intersection between (MONHP) T&E species/community ranges and Missouri WRP sites (*the resulting polygon product of Analysis 1*), *and* monitored Missouri WRP polygons. ### **Datasets**: wrp_Intersect2_hertpoly.shp (6727 polygon records resulting from Analysis 1 above) And plan 3yrall.shp (~3730 monitored WRP habitat polygons) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 320 WRP easement sites intersect 193 distinct MONHP T&E species/community ranges. **305** WRP easements intersected **183** T&E species/community ranges (including only those FISH range records that overlap with "POWZ" palustrine open water habitat records—68 unique FISH range-easement intersections which contain 14 species and 23 easements). See Analysis 3. ### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 85.6% of the records have an EORANK of "H" or "H?" = "historical." ## Analysis 3 Intersection of monitored Missouri WRP polygons and (MONHP) T&E species/community polygon ranges. ## **Datasets**: plan_3yrall.shp (~3730 monitored habitat polygons from 594 easements) And hertpoly.shp (20,768 EO polygon records) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 322 WRP easement sites intersect 193 distinct MONHP T&E species/community ranges *OR* 316 easements/186 *species ranges* **307** WRP easement sites intersect **183** distinct MONHP T&E species/ community ranges (*including only those FISH range records that overlap with "POWZ" palustrine open water habitat records*–68 unique FISH range-easement intersections which contain 14 species and 23 easements). See Analysis 2. #### Additional qualifier: EOs are rated by EORANK and within the parent intersection dataset 86.3% of the records have an EORANK of "H" or "H?" = "historical." Analysis 2 and Analysis 3 yield, for all practical purposes, identical results. Therefore Analysis 2 is redundant. # Analysis 4 (MONHP) T&E species/community Element Observations (points) located inside Missouri WRP easements (polygons). #### **Datasets:** wrp_a_mo.shp (825 easements in 930 polygons) And herallpt.shp (MDC Heritage "MONHP" points) **Technique:** Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 73 collective observations of 48 T&E species/communities occurred within 41 WRP easements *OR* 38 easements/43 species ranges ### **Additional qualifier:** EOs are rated by EORANK and within this dataset, 51.6% of the parent intersection records have an EORANK of "E" = "extant." [5A disregarded] Intersection of Missouri WRP easements (polygons) and NRCS buffered MONHP T&E **BAT** species ranges (polygons). #### **Datasets:** wrp_a_mo.shp (930 non-unique polygon records covering 825 easements) And bats_a_mo.shp (294 EO buffered polygon records for two T&E species: *Myotis grisescens* and *Myotis sodalis*) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 128 unique easements intersect ranges of at least 1 of 2 SRANK123 bat species. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 49.3% of the records have an EORANK of "E" = "extant" while 12.4% of these records have an EORANK of "D" = "poor." # Analysis 5C Intersection of Missouri monitored WRP easements (polygons) and NRCS buffered MONHP T&E **BAT** species ranges (polygons). #### **Datasets:** plan_3yrall.shp (~3730 monitored WRP polygon records) And bats_a_mo.shp (294 EO buffered polygon records for two T&E species: *Myotis grisescens* and *Myotis sodalis*) **Technique:** Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 104 unique monitored easements intersect ranges of at least 1 of 2 SRANK123 bat species. If <u>only</u> wooded habitats are considered, then **93** unique monitored **wooded** easements intersect ranges of at least **1 of 2** SRANK123 **bat species**. #### Additional qualifier: EOs are rated by EORANK and within the parent intersection dataset 48.9% of the records have an EORANK of "E" = "extant" while 14.6 % of these records have an EORANK of "D" = "poor." # Analysis 6A Intersection of Missouri WRP easements (polygons) and NRCS buffered MONHP T&E **BIRD** species ranges (polygons). #### **Datasets**: wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And birds_a_mo.shp (813 EO buffered polygon records for 31 T&E bird species) **Technique:** Geoprocessing - Intersect (with additional database filtering and indexing) **Results: 467** unique WRP easements intersect **24** T&E bird species ranges. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 44.5% of the records have an EORANK of "E" = "extant." # Analysis 6B Intersection of Missouri monitored WRP easements (polygons) and NRCS buffered MONHP T&E **BIRD** species ranges (polygons). #### **Datasets:** plan_3yrall.shp (~3730 monitored WRP polygon records) And birds_a_mo.shp (813 EO buffered polygon records for 31 T&E bird species) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 322 unique monitored WRP easements intersect 24 T&E bird species ranges. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 38.4% of the records have an EORANK of "E" = "extant" while 10.9% of the records have an EORANK of "U" = "unranked" ## Analysis 7A Intersection of Missouri WRP easements (polygons) and NRCS buffered MONHP T&E **MAMMAL** species ranges (polygons). #### **Datasets**: wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And mammals_a_mo.shp (243 EO buffered polygon records for 8 T&E mammal species) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 43 unique WRP easements intersect 6 T&E mammal species ranges. #### Additional qualifier: EOs are rated by EORANK and within the parent intersection dataset 50% of the records have an EORANK of "U" = "unranked" while 37.5% of the records have an EORANK of "E" = "extant." # Analysis 7B Intersection of MO Monitored WRP easements (polygons) and buffered MO T&E **MAMMAL** species ranges (polygons). #### **Datasets**: plan_3yrall.shp (~3730 monitored WRP polygon records) And mammals_a_mo.shp (243 EO buffered polygon records for 8 T&E mammal species) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 29 unique monitored WRP easements intersect 4 unique T&E mammal species ranges. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 77% of the records have an EORANK of "U" = "unranked" while 23% of the records have an EORANK of "E" = "extant" # Analysis 8A Intersection of Missouri WRP easements (polygons) and NRCS buffered MONHP T&E **REPTILE**, **AMPHIBIANS** and **INSECT** species ranges (polygons). #### **Datasets:** wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And reptiles-amphibians-insects_a_mo.shp (849 EO buffered polygon records for 68 T&E herp et al species) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 108 unique WRP easements intersect 22 T&E Reptile and/or Amphibian and/or Insect species ranges. #### Additional qualifier: EOs are rated by EORANK and within the parent intersection dataset 59.8% of the records have an EORANK of "E" = "extant" while 17.5% of the records have an EORANK of "U" = "unranked." # Analysis 8B Intersection of Missouri monitored WRP easements (polygons) and NRCS buffered MONHP T&E REPTILE, AMPHIBIANS and INSECT species ranges (polygons). #### **Datasets**: plan_3yrall.shp (~3730 monitored WRP polygon records) And reptiles-amphibians-insects_a_mo.shp (849 EO buffered polygon records for 68 T&E herp et al species) **Technique:** Geoprocessing - Intersect (with additional database filtering and indexing) **Results: 75** unique monitored WRP easements intersect **16** T&E Reptile and/or Amphibian and/or Insect species ranges. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 60.8% of the records have an EORANK of "E" = "extant" while 24.2% of the records have an EORANK of "U" = "unranked." # Analysis 9 Intersection of MO WRP easements (polygons) and spatially generalized MO T&E **FISH et al** species records (polygons). #### **Datasets:** wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And/Or fishdb_a_mo.shp (4473 EO polygon records of 68 T&E herp et al species) And/Or fish-crustaceans-mollusks_a_mo.shp (2312 EO buffered polygon records for 68 T&E herp et al species) **Technique:** Geoprocessing - Intersect **Database Relation** (with additional database filtering and indexing) **Results:** 90 unique WRP easements intersect 16 T&E fish and/or crustacean and/or mollusk species spatially generalized ranges.
Additional qualifier: EORANK was not included in this dataset and so could not be analyzed. There were distinct differences to the structures and contents of the datasets representing these aquatic organisms compared to the other taxa. This presumably relates to their specialized ecology. In light of these differences, the relevancy and efficacy of this analysis needs to be evaluated. Further analysis is pending. # Analysis 10A Intersection of MO WRP easements (polygons) and buffered MO T&E **PLANT** species distributions (polygons). #### **Datasets:** wrp_a_mo.shp (930 non-unique polygon records covering 825 easements recorded through January 2007) And plants_a_mo.shp (3087 EO buffered polygon records for 406 T&E plant species) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 97 unique WRP easements intersect 62 T&E plant distributions. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 38.5% of the records have an EORANK of "E" = "extant." # Analysis 10B Intersection of Missouri monitored WRP easements (polygons) and buffered MO T&E **PLANT** species distributions (polygons). #### **Datasets**: plan_3yrall.shp (~3730 monitored WRP polygon records) And plants_a_mo.shp (3087 EO buffered polygon records for 406 T&E plant species) <u>**Technique:**</u> Geoprocessing - Intersect (with additional database filtering and indexing) **Results:** 71 unique monitored WRP easements intersect 44 T&E Plant species distributions. #### **Additional qualifier:** EOs are rated by EORANK and within the parent intersection dataset 38.3% of the records have an EORANK of "E" = "extant." #### **ANNEX 4** #### SUPPLEMENTARY PROJECT DOCUMENTATION # Missouri WRP Analysis Project #### MISSOURI WRP RESTORATION STATUS #### Table of Contents - 1. Modified Cowardin Wetland Classification used in WRP (separate: *ModifiedCowardin.xls*) - 2. Derivation, definition and rationale for Cowardin "four character codes" (separate: Cowardin four character codes.doc) - 3. Four Character Codes arranged by Vegetative "Families" (separate: *ModifiedCowardinFamilies.xls*) - 4. WRP Procedure: Looking at (Cowardin) Habitat Succession over time (separate: *Habitat polygon succession analysis procedure 1.doc*) - 5. WRP Procedure: Looking at (Cowardin) Habitat Succession over time (on lands that were agricultural at commencement of restoration) (separate: *Habitat polygon succession analysis procedure 2.doc*) - 6. A Graphically Illustrated Example of WRP Easement Habitat Succession (separate: *WRP easement illustrated restoration example.doc*) #### MODIFIED COWARDIN CLASSIFICATION USED IN WRP Original Source File: CowardianWETTeamREVMon072205.XLS (NRCS) | STATUS | LAND TYPE | Sys_code | System | Class_code | Class | Sbclas_cod | Subclass | Water Regime Modifiers | Special Modifiers (1) | |-----------|------------|----------|----------------|------------|--|------------|--------------------------|----------------------------|------------------------| | EX | W | Р | Palustrine | AB | Aquatic Bed | 1 | Algal | A Temporarily Flooded | b Beaver | | EXISTING | WETLAND | Р | Palustrine | AB | Aquatic Bed | 2 | Aquatic Moss | B Saturated | d Partially drained | | | | Р | Palustrine | AB | Aquatic Bed | 3 | Rooted Vascular | C Seasonally Flooded | f Farmed | | PR | RP | Р | Palustrine | AB | Aquatic Bed | 4 | Floating Vascular | F Semi-permanently Exposed | h Dike/Impoundment | | PROTECTED | RIPARIAN | Р | Palustrine | AB | Aquatic Bed | 5 | Unknown Submergent | G Intermittently Exposed | k Sand/Rock | | | | Р | Palustrine | AB | Aquatic Bed | 6 | Unknown Surface | H Permanently Flooded | n Natural regeneration | | PL | UP | Р | Palustrine | EM | Emergent | 1 | Persistent | J Intermittently Flooded | p Planted | | PLANNED | UPLAND | Р | Palustrine | EM | Emergent | 2 | Non-persistent | K Artificially Flooded | r Artificial substrate | | | | Р | Palustrine | SA | Substantially Altered | 1 | Persistent | N Tidal | s Spoil | | RE | FP | Р | Palustrine | SA | Substantially Altered | 2 | Non-persistent | U Unknown | x Excavated | | RESTORED | FLOODPLAIN | Р | Palustrine | SS | Scrub Shrub | 1 | Broad-leaved deciduous | Z None | z None | | | | Р | Palustrine | SS | Scrub Shrub | 2 | Needle-leaved deciduous | | | | | OT | Р | Palustrine | SS | Scrub Shrub | 3 | Broad-leaved evergreen | | | | | OTHER | Р | Palustrine | SS | Scrub Shrub | 4 | Needle-leaved evergreen | | | | | | P | Palustrine | SS | Scrub Shrub | 5 | Dead | | | | 1 | | P | Palustrine | FO | Forested | 1 | Broad-leaved deciduous | | | | 1 | | P | Palustrine | FO | Forested | 2 | Needle-leaved deciduous | | | | | | P | Palustrine | FO | Forested | 3 | Broad-leaved evergreen | | | | | | P | Palustrine | FO | Forested | 4 | Needle-leaved evergreen | | | | | | P | Palustrine | FO | Forested | 5 | Dead | | | | | | Р | Dalmatria | ED. | Floodplain - non hydric | | Cd | | | | | | Р | Palustrine | FP | soils | 1 | Cropped | | | | | | P | Palustrine | FP | Floodplain - non hydric soils | 2 | Herbaceous | | | | | | | Faiustille | IF | Floodplain - non hydric | | Helbaceous | | | | | | Р | Palustrine | FP | soils | 3 | Woody | | | | | | P | Palustrine | OW | Open Water | Z | None | | | | | | U | Upland | HE | Herbaceous | 1 | Native | | | | | | U | Upland | HE | Herbaceous | 2 | Introduced | | | | | | U | Upland | WO | Wooded | 1 | Deciduous | | | | | | U | Upland | WO | Wooded | 2 | Evergreen | | | | | | U | Upland | SH | Shrubs | 1 | Deciduous | | | | | | U | Upland | SH | Shrubs | 2 | Evergreen | | | | | | U | Upland | CR | Cropland | Z | None | | | | | | | | | | | | | | | | | 0 | Other | PC | Prior Converted Cropland | 1 | Cropped | | | | | | | | | | | Herbaceous vegetation | | | | | | 0 | Other | PC | Prior Converted Cropland | 2 | dominant | | | | | | 0 | Other | RP | Riparian | 1 | Cropped | | | | | | 0 | Other | RP | Riparian | 2 | Herbaceous | | | | | | 0 | Other | RP | Riparian | 3 | Woody | | | | | | 0 | Other | FW | = | 1 | Cropped | | | | | | 0 | Other | FW | Farmed Wetland and | 2 | Native Grass | | | | | | 0 | Other
Other | FW
SA | Farmed Wetland Pasture Substantially Altered | 3
1 | Introduced Grass Cropped | | | | | | 0 | Other | SA | Substantially Altered | 2 | Herbaceous | | | | | | 0 | Other | SA | Substantially Altered | 3 | Open Water | | | | | | 0 | Other | TD | Tidal | 1 | Cropped | | | | | | 0 | Other | TD | Tidal | 2 | Herbaceous | | | | | | 0 | Other | TD | Tidal | 3 | Open Water | | | | | | 0 | Other | OC | Other Hydric Cropland | 1 | Cropped | | | | | | 0 | Other | OC | Other Hydric Cropland | 2 | Herbaceous | | | | | | 0 | Other | OC | Other Hydric Cropland | 3 | Open Water | | | | | | | | | 7 | | | | | (1) Always use two Special Modifiers (i.e. PLWPF01Chp or PLWPEM2Chz or PLWPOWZZzz). The special modifier z should always be last. | STATUS | LAND TYPE | Sys_code | System | Class_code | Class | Sbclas_cod | Subclass | Water Regime Modifier | Special Modifier | |----------|-----------|----------|----------|------------|-------------------------|------------|--------------------------|-----------------------|------------------| | | | R | Riverine | RB | Rock Bottom | Α | Temporaily Flooded | | | | | | R | Riverine | RB | Rock Bottom | С | Seasonally Flooded | z NONE | z NONE | | | | R | Riverine | RB | Rock Bottom | E | Semi-permanently flooded | | | | | | R | Riverine | RB | Rock Bottom | G | Intermittently Exposed | | | | | | R | Riverine | RB | Rock Bottom | Н | Permanently Flooded | | | | EX | IN | R | Riverine | UB | Unconsolidated Bottom | Α | Temporaily Flooded | | | | EXISTING | IN-STREAM | R | Riverine | UB | Unconsolidated Bottom | С | Seasonally Flooded | | | | | | R | Riverine | UB | Unconsolidated Bottom | E | Semi-permanently flooded | | | | PL | | R | Riverine | UB | Unconsolidated Bottom | G | Intermittently Exposed | | | | PLANNED | | R | Riverine | UB | Unconsolidated Bottom | Н | Permanently Flooded | | | | | | R | Riverine | AB | Aquatic Bed | Α | Temporally Flooded | | | | RE | | R | Riverine | AB | Aquatic Bed | С | Seasonally Flooded | | | | RESTORED | | R | Riverine | AB | Aquatic Bed | E | Semi-permanently flooded | | | | | | R | Riverine | AB | Aquatic Bed | G | Intermittently Exposed | | | | | | R | Riverine | AB | Aquatic Bed | Н | Permanently Flooded | | | | | | R | Riverine | SB | Stream Bed | Α | Temporally Flooded | | | | | | R | Riverine | SB | Stream Bed | С | Seasonally Flooded | | | | | | R | Riverine | SB | Stream Bed | Е | Semi-permanently flooded | | | | | | R | Riverine | SB | Stream Bed | G | Intermittently Exposed | | | | | | R | Riverine | SB | Stream Bed | Н | Permanently Flooded | | | | | | R | Riverine | RS | Rocky Shore | Α | Temporaily Flooded | | | | | | R | Riverine | RS | Rocky Shore | С | Seasonally Flooded | | | | | | R | Riverine | RS | Rocky Shore | E | Semi-permanently flooded | | | | | | R | Riverine | RS | Rocky Shore | G | Intermittently Exposed | | | | | | R | Riverine | RS | Rocky Shore | Н | Permanently Flooded | | | | | | R | Riverine | US | Unconsolidated Shore | Α | Temporaily Flooded | | | | | | R | Riverine | US | Unconsolidated Shore | С | Seasonally Flooded | | | | | | R | Riverine | US | Unconsolidated Shore | E | Semi-permanently flooded | | | | | | R | Riverine | US | Unconsolidated Shore | G | Intermittently Exposed | | | | | | R | Riverine | US | Unconsolidated Shore | Н | Permanently Flooded | | | | 1 | | R | Riverine | EM | | Α | Temporaily Flooded | | | | | | R | Riverine | EM | Non-Persistent Emergent | С | Seasonally Flooded | | | | | | R | Riverine | EM | Wetland | E | Semi-permanently flooded | | | | | | R | Riverine | EM | | G | Intermittently Exposed | | | | | | R | Riverine | EM | | Н | Permanently Flooded | | | | STATUS | Sys_code | System | Sbsys_code | Subsystem | Class_code | Class | Subclass | Modifiers | |----------|----------
------------|------------|-----------|------------|-----------------------|----------------------|-----------| | | L | Lacustrine | 1 | Limnetic | RB | Rock Bottom | 1 Bed rock | | | | L | Lacustrine | 1 | Limnetic | RB | Rock Bottom | 2 Rubble | Z NONE | | | L | Lacustrine | 1 | Limnetic | UB | Unconsolidated Bottom | 1 Cobble Gravel | | | | L | Lacustrine | 1 | Limnetic | UB | Unconsolidated Bottom | 2 Sand | | | | L | Lacustrine | 1 | Limnetic | UB | Unconsolidated Bottom | 3 Mud | | | EX | L | Lacustrine | 1 | Limnetic | UB | Unconsolidated Bottom | 4 Organic | | | EXISTING | L | Lacustrine | 1 | Limnetic | AB | Aquatic Bed | 1 Algal | | | | L | Lacustrine | 1 | Limnetic | AB | Aquatic Bed | 2 Aquatic Moss | | | PL | L | Lacustrine | 1 | Limnetic | AB | Aquatic Bed | 3 Rooted Vascular | | | PLANNED | L | Lacustrine | 1 | Limnetic | AB | Aquatic Bed | 4 Floating Vascular | | | | L | Lacustrine | 1 | Limnetic | AB | Aquatic Bed | 5 Unknown Submergent | | | RE | L | Lacustrine | 1 | Limnetic | AB | Aquatic Bed | 6 Unkown Surface | | | ESTORED | L | Lacustrine | 1 | Limnetic | OW | Open Water | Z None | | | | L | Lacustrine | 2 | Littoral | RB | Rock Bottom | 1 Bedrock | | | | L | Lacustrine | 2 | Littoral | RB | Rock Bottom | 2 Rubble | | | | L | Lacustrine | 2 | Littoral | UB | Unconsolidated Bottom | 1 Cobble Gravel | | | | L | Lacustrine | 2 | Littoral | UB | Unconsolidated Bottom | 2 Sand | | | | L | Lacustrine | 2 | Littoral | UB | Unconsolidated Bottom | 3 Mud | | | | L | Lacustrine | 2 | Littoral | UB | Unconsolidated Bottom | 4 Organic | | | | L | Lacustrine | 2 | Littoral | AB | Aquatic Bed | 1 Algal | | | | L | Lacustrine | 2 | Littoral | AB | Aquatic Bed | 2 Agautic Moss | | | | L | Lacustrine | 2 | Littoral | AB | Aquatic Bed | 3 Rooted Vascular | | | | L | Lacustrine | 2 | Littoral | AB | Aquatic Bed | 4 Floating Vascular | | | | L | Lacustrine | 2 | Littoral | AB | Aquatic Bed | 5 Unkown Submergent | | | | L | Lacustrine | 2 | Littoral | AB | Aquatic Bed | 6 Unkown Surface | | | | L | Lacustrine | 2 | Littoral | RS | Rocky Shore | 1 Bedrock | | | | L | Lacustrine | 2 | Littoral | RS | Rocky Shore | 2 Rubble | | | | L | Lacustrine | 2 | Littoral | US | Unconsolidated Shore | 1 Cobble Gravel | | | | L | Lacustrine | 2 | Littoral | US | Unconsolidated Shore | 2 Sand | | | | L | Lacustrine | 2 | Littoral | US | Unconsolidated Shore | 3 Mud | | | | L | Lacustrine | 2 | Littoral | US | Unconsolidated Shore | 4 Organic | | | | L | Lacustrine | 2 | Littoral | US | Unconsolidated Shore | 5 Vegetated | | | | L | Lacustrine | 2 | Littoral | EM | Emergent | 1 Persistent | | | | L | Lacustrine | 2 | Littoral | EM | Emergent | 2 Non-persistent | | | | L | Lacustrine | 2 | Littoral | OW | Open Water | z None | | #### Derivation, definition and rationale for Cowardin "four character codes" The Missouri WRP monitoring dataset utilizes a habitat data standard based on a modified version of "Classification of wetland and deepwater habitats of the United States" (Cowardin et al, 1979). See the separate documents ModifiedCowardin.xls & ModifiedCowardin-Families.xls for the **modified** classification, in Annex 4. The coarse dataset of monitored WRP easements undergoing analysis was comprised as follows: 3005 records with Cowardin data representing 530 easements. These records included 456 unique modified Cowardin habitat codes. Thus for a meaningful and manageable "global" analysis of Missouri's restored WRP habitats it was necessary to significantly reduce this great variability. A system of "core" Cowardin codes was developed that encompassed the System, Class and Subclass levels of the original system in a **four character code**. This reduced the number of unique habitat categories for analysis from 456 to a manageable 22. The sequential method for deriving this core four character code is illustrated below. | _ | | _ | | | |------|-----|-----|-----|---| | Sami | ole | Exc | erp | t | | → | DERIVATION OF FOL | IR CHARACTER CODES FOR ANALYSIS → | | |----------|--------------------------|-----------------------------------|--------| | | | Removed Water F | Regime | | | | | | | · · | DERIVATION OF TOOK | CHARACTER CODES TO | N ANALISIS | |---------------|-------------------------------|----------------------|---| | | Code characters corrected and | | Removed Water Regime and Special Modifier suffixes. Code distilled | | Original Code | position and order | Status and Landtype | to core 4 characters | | from database | standardized | prefixes removed | to facilitate analyses. | | [ORG_COWARD] | [CUR_COWARD] | [CORECOWARD] | [FOURCHACOD] | | PROTORP3Cz | PROTORP3Cz | ORP3Cz | ORP3 | | PLWPEM1Chn | PL WPEM1Chn | PEM1Chn | PEM1 | | PLWPEM1Fnz | PL WPEM1Fnz | PEM1Fnz | PEM1 | | PLWPEM1Fx | PL WPEM1Fx | PEM1Fx | PEM1 | | PLWPEM2Chn | PL WPEM2Chn | PEM2Chn | PEM2 | | PLWPEM2Ghn | PL WPEM2Ghn | PEM2Ghn | PEM2 | | WPEM2Ah | WPEM2Ah | PEM2Ah | PEM2 | | PF01Anz | PFO1Anz | PFO1Anz | PFO1 | | PLWPF01Anz | PL WPFO1Anz | PFO1Anz | PFO1 | | PRWPFO1Jz | PR WPFO1Jz | PFO1Jz | PFO1 | | WPFO1Cn | WPFO1Cn | PFO1Cn | PFO1 | | PLWPOWZZz | PL WPOWZZz | POWZZZ | POWZ | | WPOWZHz | WPOWZHz | POWZHz | POWZ | | FPPSA1Jk | FPPSA1Jk | PSA1 <mark>Jk</mark> | PSA1 | | FPPSA2Jk | FPPSA2Jk | PSA2J <mark>k</mark> | PSA2 | | PLWPSS1Chn | PL WPSS1Chn | PSS1Chn | PSS1 | | PRUPUHE2Zz | PRUPUHE2Zz | UHE2ZZ | UHE2 | The original complete coding has been retained in the relevant databases so that more indepth analysis of any core type is possible. # Four Character Codes of Modified Cowardin Classification arranged by Vegetative structure/function "Families" #### FOREST TYPES | | | | Class_cod | | | | | |---|----------|------------|-----------|-------------------------------|------------|-------------------------|-------------| | | Sys_code | System | е | Class | Sbclas_cod | Subclass | 4-CHAR CODE | | 1 | Р | Palustrine | FO | Forested | 1 | Broad-leaved deciduous | PFO1 | | 2 | Р | Palustrine | FO | Forested | 2 | Needle-leaved deciduous | PFO2 | | 3 | Р | Palustrine | FO | Forested | 3 | Broad-leaved evergreen | PFO3 | | 4 | Р | Palustrine | FO | Forested | 4 | Needle-leaved evergreen | PFO4 | | 5 | Р | Palustrine | FO | Forested | 5 | Dead | PFO5 | | | | | | | | | | | 6 | Р | Palustrine | FP | Floodplain - non hydric soils | 3 | Woody | PFP3 | | 7 | U | Upland | WO | Wooded | 1 | Deciduous | UWO1 | | 8 | U | Upland | WO | Wooded | 2 | Evergreen | UWO2 | | 9 | 0 | Other | RP | Riparian | 3 | Woody | ORP3 | #### **SCRUB SHRUB TYPES** | | | | Class_cod | | | | | |----|----------|------------|-----------|-------------|------------|-------------------------|--------------------| | | Sys_code | System | е | Class | Sbclas_cod | Subclass | 4-CHAR CODE | | 10 | Р | Palustrine | SS | Scrub Shrub | 1 | Broad-leaved deciduous | PSS1 | | 11 | Р | Palustrine | SS | Scrub Shrub | 2 | Needle-leaved deciduous | PSS2 | | 12 | Р | Palustrine | SS | Scrub Shrub | 3 | Broad-leaved evergreen | PSS3 | | 13 | Р | Palustrine | SS | Scrub Shrub | 4 | Needle-leaved evergreen | PSS4 | | 14 | Р | Palustrine | SS | Scrub Shrub | 5 | Dead | PSS5 | | 15 | U | Upland | SH | Shrubs | 1 | Deciduous | USH1 | | 16 | U | Upland | SH | Shrubs | 2 | Evergreen | USH2 | #### NON-WOODY VEGETATED TYPES | | | | Class_cod | | | | | |----|----------|------------|-----------|-------------------------------|------------|--------------------|-------------| | | Sys_code | System | е | Class | Sbclas_cod | Subclass | 4-CHAR CODE | | 17 | Р | Palustrine | AB | Aquatic Bed | 1 | Algal | PAB1 | | 18 | Р | Palustrine | AB | Aquatic Bed | 2 | Aquatic Moss | PAB2 | | 19 | Р | Palustrine | AB | Aquatic Bed | 3 | Rooted Vascular | PAB3 | | 20 | Р | Palustrine | AB | Aquatic Bed | 4 | Floating Vascular | PAB4 | | 21 | Р | Palustrine | AB | Aquatic Bed | 5 | Unknown Submergent | PAB5 | | 22 | Р | Palustrine | AB | Aquatic Bed | 6 | Unknown Surface | PAB6 | | 23 | Р | Palustrine | EM | Emergent | 1 | Persistent | PEM1 | | 24 | Р | Palustrine | EM | Emergent | 2 | Non-persistent | PEM2 | | 25 | Р | Palustrine | SA | Substantially Altered | 1 | Persistent | PSA1 | | 26 | Р | Palustrine | SA | Substantially Altered | 2 | Non-persistent | PSA2 | | 27 | Р | Palustrine | FP | Floodplain - non hydric soils | 2 | Herbaceous | PFP2 | | 28 | U | Upland | HE | Herbaceous | 1 | Native | UHE1 | | 29 | U | Upland | HE | Herbaceous | 2 | Introduced | UHE2 | | 30 | 0 | Other | RP | Riparian | 2 | Herbaceous | ORP2 | | 31 | 0 | Other | SA | Substantially Altered | 2 | Herbaceous | OSA2 | | 32 | 0 | Other | TD | Tidal | 2 | Herbaceous | OTD2 | #### AGRICULTURAL TYPES | | AGRICULIU | NAL III L | , | | | | | |----|-----------|------------|-----------|-------------------------------|------------|-----------------------|-------------| | | _ | | Class_cod | | | | | | | Sys_code | System | е | Class | Sbclas_cod | Subclass | 4-CHAR CODE | | | | | | | | | | | 33 | Р | Palustrine | FP | Floodplain - non hydric soils | 1 | Cropped | PFP1 | | 34 | U | Upland | CR | Cropland | Z | None | UCRZ | | 35 | 0 | Other | PC | Prior Converted Cropland | 1 | Cropped | OPC1 | | | | | | Prior Converted Cropland | | Herbaceous vegetation | | | 36 | 0 | Other | PC | Prior Converted Cropiand | 2 | dominant | OPC2 | | 37 | 0 | Other | RP | Riparian | 1 | Cropped | ORP1 | | 38 | 0 | Other | FW | Farmed Wetland and Farmed | 1 | Cropped | OFW1 | | 39 | 0 | Other | FW | Wetland Pasture | 2 | Native Grass | OFW2 | | 40 | 0 | Other | FW | vveilaria i astare | 3 | Introduced Grass | OFW3 | | 41 | 0 | Other | SA | Substantially Altered | 1 | Cropped | OSA1 | | 42 | 0 | Other | TD | Tidal | 1 | Cropped | OTD1 | | 43 | 0 | Other | OC | Other Hydric Cropland | 1 | Cropped | OOC1 | | 44 | 0 | Other | OC | Other Hydric Cropland | 2 | Herbaceous | OOC2 | | 45 | 0 | Other | OC | Other Hydric Cropland | 3 | Open Water | OOC3 | #### OTHER | | | | Class_cod | | | | | |----
----------|------------|-----------|-----------------------|------------|------------|-------------| | | Sys_code | System | е | Class | Sbclas_cod | Subclass | 4-CHAR CODE | | 46 | Р | Palustrine | OW | Open Water | Z | None | POWZ | | 47 | 0 | Other | SA | Substantially Altered | 3 | Open Water | OSA3 | | 48 | 0 | Other | TD | Tidal | 3 | Open Water | OTD3 | # WRP Procedure: Looking at (Cowardin) Habitat Succession over time #### **Datasets involved:** - **29_wrp_existing_Merger.shp** "Existing dataset" or initial state (**2376** records; **87,123** acres) - **plan_3yrall.shp** "Monitored dataset" or subsequent state (3728 records; 66,704 acres) Name of map file: Cowardin_intersect.mxd #### **STEP 1**: Find the common easements between the temporal datasets Using database methods, WRPEFILT.DBF was created to hold the common agreement numbers (easement records) shared between a dataset of initially recorded Cowardin habitats (original **29_wrp_existing.shp** was corrected to **29_wrp_existing_Merger.shp**¹⁵) and the Cowardin habitats which were recorded during a subsequent site visit (**plan_3yrall.shp**). It seems convenient to use this database to select those same records in the sister spatial datasets. #### **A.** "Existing" Right Click (hereafter R/C) on layer (29_wrp_existing_Merger) Joins and Relates #### Relate - 1. AGREE NUM - 2. WRPEFILT - 3. AGREE NUM - 4. Relate1 - 5. OK R/C on layer (29 wrp existing Merger) Open Attribute Table Options (at bottom of "Attributes of 29 wrp existing Merger" table) Related Tables Relate1: WRPEFILT Options (at bottom of "WRPEFILT" table) Select All Options (at bottom of "WRPEFILT" table) **Related Tables** ¹⁵ SEE Corrections to Errors in GIS layers20070522.doc in Project Archive WRP Procedure: Looking at (Cowardin) Habitat Succession over time Relate1: 29 wrp existing Merger R/C on layer (29 wrp existing Merger) Data Export Data Export: Selected features • this layer's source data Output shapefile or feature class: Existing in common.shp Add exported data to map as layer? Yes 2089 records; 62,057.acres #### **B.** "Monitored" Right Click on layer (plan 3yrall) Joins and Relates Relate - 6. AGREE NUM - 7. WRPEFILT - 8. AGREE NUM - 9. Relate2 OK R/C on layer (plan 3yrall) Open Attribute Table Options (at bottom of "Attributes of plan 3yrall" table) Related Tables Relate2: WRPEFILT Options (at bottom of "WRPEFILT" table) Select All Options (at bottom of "WRPEFILT" table) Related Tables Relate2: plan 3yrall R/C on layer (plan 3yrall) Data Export Data **Export: Selected features** • this layer's source data Output shapefile or feature class: Monitored in common.shp Add exported data to map as layer? Yes 3274 records #### STEP 2: Eliminate the polygons which do not contain Cowardin data #### **A.** "Existing" R/C on layer (Existing in common) Open Attribute Table ``` WRP Procedure: Looking at (Cowardin) Habitat Succession over time Options (at bottom of "Attributes of Existing in common" table) Select by Attributes "COWARDIN" <> ' ' [= !EMPTY(COWARDIN)] Verify: OK Apply R/C on layer (Existing in common) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: Existing in common with habitat.shp OK Add exported data as layer to map? Yes [Make sure the Existing in common with habitat.shp layer is active] Tools Calculate Acreage Yes 2041 records B. "Monitored" R/C on layer (Monitored in common) Open Attribute Table Options (at bottom of "Attributes of Monitored in common" table) Select by Attributes "CUR COWARD" <> ' ' [= !EMPTY(COWARDIN)] Verify: OK Apply R/C on layer (Monitored in common) Export data Export: Selected features • this layer's source data Output shapefile or feature class: Monitored in common with habitat.shp Add exported data as layer to map? Yes [Make sure the Monitored in common with habitat.shp layer is active] Tools Calculate Acreage Yes 3012 Records ``` # **STEP 3**: Establish the intersection of polygons with Cowardin data between the "Existing" and "Monitored" datasets Tools Geoprocessing WRP Procedure: Looking at (Cowardin) Habitat Succession over time Intersect Open Tool Input Features #### Features: • Existing in common with habitat.shp • Monitored in common with habitat.shp Output feature class: C:\WRPDB\WorkCopy\Cowardin Intersect1.shp JoinAttributes (optional): All [Make sure the Cowardin_Intersect1.shp layer is active] Tools Calculate Acreage Yes 9818 records NOTE: When executed with above input features listed in reverse order, the number of total records is the same (9815) but (after disregarding "slivers") the resulting breakdowns/ lumping of polygon records differ...thus order of listing layers in the Input Features window appears to lump/sum polygons for the last-listed feature. So listing order in this ArcGIS window seems analogous to the listing order in a database relation module... #### **STEP 4**: Limit the influence of "slivers" R/C on layer (Cowardin Intersect1.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin Intersect1" table) Select by Attributes "ACRES" >=0.4 Verify OK Apply R/C on layer (Cowardin Intersect1.shp) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: Common_appreciable_intersect.shp Add exported data as layer to map? Yes [Make sure the Common appreciable intersect.shp layer is active] Tools Calculate Acreage Yes 488 easements; 4569 records; 52,208 acres #### **Datasets involved:** - 29_wrp_existing_Merger.shp "Existing dataset" or initial state [replaces 29_wrp_existing.shp] (2376 records; 87,123 acres) - **plan_3yrall.shp** "Monitored dataset" or subsequent state (3728 records; 66,704 acres) Name of map file: Cowardin_intersect.mxd **STEP 1**: Modify the structure of the datasets to enable meaningful Cowardin habitat code analysis. #### **Existing dataset** Right Click ("R/C") on layer (29_wrp_existing_Merger) Open Attribute Table Options (at bottom of "Attributes of 29 wrp existing Merger" table) Add field Name: FOURCHACOD Type: text Length: 4 Deselect/Close the layer Open database application USE C:\WRPDB\WORKCOPY\29_WRP~1 REPLACE ALL FOURCHACOD WITH RIGHT(COWARDIN,6) Close database application #### Monitored Dataset R/C on layer (plan 3yrall) Open Attribute Table Options (at bottom of "Attributes of plan 3yrall" table) Add field Name: FIXCOWARD Type: text Length: 11 Name: CORECOWARD Type: text Length: 8 Name: FOURCHACOD Type: text Length: 4 Deselect/Close the layer **Note:** "Existing" dataset Cowardin Codes were nearly uniform and did not need to be standardized en masse prior to deriving and entering the "Four character codes" that facilitate analysis (previous page). However, due to the varied state of data in the "Monitored" dataset, it was first necessary to standardize the Cowardin Codes prior to deriving and entering the "Four character codes". This was accomplished using a custom procedure CHGCWRD4.PRO. (This is abbreviated/excerpted below; only the main commands have been listed). #### Open database application ``` USE C:\WRPDB\WORKCOPY\20070413\PLAN_3~1 INDEX ON CUR_COWARD TO XXX SET FILTER TO FIXCOWARD="WP" REPLACE FIXCOWARD WITH STRTRAN(FIXCOWARD, "WP", "WP") SET FILTER TO FIXCOWARD="FPPFP" REPLACE ALL FIXCOWARD WITH STRTRAN(FIXCOWARD, "FPPFP"," FPPFP") SET FILTER TO FIXCOWARD="PE" REPLACE FIXCOWARD WITH STRTRAN(FIXCOWARD, "PE", " PE") SET FILTER TO FIXCOWARD="PF" REPLACE FIXCOWARD WITH STRTRAN(FIXCOWARD, "PF", " SET FILTER TO FIXCOWARD="PLW" REPLACE ALL FIXCOWARD WITH STRTRAN(FIXCOWARD, "PLW", "PL W") SET FILTER TO FIXCOWARD="PRW" REPLACE ALL FIXCOWARD WITH STRTRAN(FIXCOWARD, "PRW", "PR W") SET FILTER TO FIXCOWARD="UP" REPLACE ALL FIXCOWARD WITH STRTRAN(FIXCOWARD, "UP", " UP") SET FILTER TO FIXCOWARD="OTO" REPLACE ALL FIXCOWARD WITH STRTRAN(FIXCOWARD, "OTO", "OTO") SET FILTER TO !ISDIGIT(RIGHT(FIXCOWARD,4)) AND (RIGHT(FIXCOWARD,4))#'Z' AND !EMPTY(FIXCOWARD) {perform manual editing for extraneous problematic codes} SET FILTER TO ISLOWER(RIGHT(FIXCOWARD,3)) {perform manual editing for extraneous problematic codes} SET FILTER TO !EMPTY(FIXCOWARD) AND ISLOWER(RIGHT(FIXCOWARD,1)) {perform manual editing for extraneous problematic codes} SET FILTER TO !EMPTY(FIXCOWARD) REPLACE ALL CORECOWARD WITH RIGHT(FIXCOWARD,7) SET FILTER TO !EMPTY(FIXCOWARD) AND EMPTY(FOURCHACOD) REPLACE FOURCHACOD with LEFT(CORECOWARD,4) ``` #### Close database application #### **STEP 2**: Select easements which were agricultural at the start of restoration. ``` Existing dataset R/C on layer (29 wrp existing Merger) Open Attribute Table Options (at bottom of "Attributes of 29 wrp existing Merger" table) Select by Attributes (some theoretically relevant codes my have been excluded if not present in dataset} "FOURCHACOD" = 'OFW1' OR "FOURCHACOD" = 'OFW2' OR "FOURCHACOD" = 'OFW3' OR "FOURCHACOD" = 'OOC1' OR "FOURCHACOD" = 'OPC1' OR "FOURCHACOD" = 'OPC2' OR "FOURCHACOD" = 'ORP1' OR "FOURCHACOD" = 'OSA1' OR "FOURCHACOD" = 'PFP1' OR "FOURCHACOD" = 'UCRZ' Verify: OK Apply R/C on layer (29 wrp existing Merger) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: Existing with AG origin habitat.shp Add exported data to map as layer? Yes {Make sure the Existing with AG origin habitat.shp layer is active} Tools Calculate Acreage Yes 1161 records; 54,609 acres ``` #### **STEP 3**: Find the common easements between the temporal datasets Using database methods, WRPEFILT.DBF was created to hold the common agreement numbers (easement records) shared between a dataset of initially recorded Cowardin habitats (29_wrp_existing_Merger) and the Cowardin habitats which were recorded during a subsequent site visit (plan_3yrall). It seems convenient to use this database to select those same records in the sister spatial datasets. ``` A. Existing dataset R/C on layer (Existing_with_AG_origin_habitat.shp) Joins and Relates Relate 10. AGREE NUM ``` 10. AGREE_NUM 11 WRPEFILT 12. AGREE NUM
13. Relate1 14. OK R/C on layer (Existing with AG origin habitat.shp) Open Attribute Table Options (at bottom of "Attributes of Existing with AG origin habitat.shp" table) Related Tables Relate1: WRPEFILT Options (at bottom of "WRPEFILT" table) Select All Options (at bottom of "WRPEFILT" table) Related Tables Relate1: Existing with AG origin habitat R/C on layer (Existing with AG origin habitat.shp) Data Export Data Export: Selected features • this layer's source data Output shapefile or feature class: Existing_with_AG_origin_habitat_in_common.shp Add exported data to map as layer? Yes {Make sure the Existing_with_AG_origin_habitat_in_common.shp layer is active} Tools Calculate Acreage Yes 1026 records; 42,495 acres #### **B.** Monitored dataset Right Click on layer (plan 3yrall) Joins and Relates Relate 15. AGREE NUM 16. WRPEFILT 17. AGREE NUM 18. Relate2 OK R/C on layer (plan 3yrall) Open Attribute Table Options (at bottom of "Attributes of plan 3yrall" table) Related Tables Relate2: WRPEFILT Options (at bottom of "WRPEFILT" table) Select All Options (at bottom of "WRPEFILT" table) Related Tables Relate2: plan_3yrall R/C on layer (plan_3yrall) Data Export Data Export: Selected features • this layer's source data Output shapefile or feature class: Monitored in common.shp Add exported data to map as layer? Yes {Make sure the Monitored in common.shp layer is active} Tools Calculate Acreage Yes **3728** records; **66,704**.acres #### **STEP 4**: Eliminate the polygons which do not contain Cowardin data #### A. Existing dataset # Elimination of polygons was accomplished as a byproduct of Step 2. #### **B.** Monitored dataset R/C on layer (Monitored in common) Open Attribute Table Options (at bottom of "Attributes of Monitored in common" table) Select by Attributes "CUR COWARD" <> ' ' {equivalent to DB command "!EMPTY(CUR COWARD)"} Verify: OK Apply R/C on layer (Monitored in common) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: Monitored in common with habitat.shp Add exported data as layer to map? Yes {Make sure the Monitored in common with habitat.shp layer is active} Tools Calculate Acreage Yes **3408** Records; 62,739 acres # **STEP 5**: Establish the intersection of polygons with Cowardin data between the "Existing" (i.e. the subset of existing with Agricultural origin) and "Monitored" datasets Tools Geoprocessing Intersect Open Tool Input Features #### Features: - Existing with AG origin habitat in common.shp - Monitored in common with habitat.shp Output feature class: C:\WRPDB\WorkCopy\Cowardin AG origin Intersect.shp JoinAttributes (optional): All {Make sure the Cowardin AG origin Intersect.shp layer is active} Tools Calculate Acreage Yes 5800 records; 39,810.acres **Note:** From a previous test, the order of listing layers in the Input Features window appears to lump/sum polygons for the last-listed feature. So the effect of listing order in this ArcGIS window seems analogous to effect of listing order in a database relation module... #### **STEP 6**: Discard/alleviate the influence of "slivers" R/C on layer (Cowardin_AG_origin_Intersect.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin_AG_origin_Intersect" table) Select by Attributes "ACRES" >= 0.4 Verify OK Apply R/C on layer (Cowardin_AG_origin_Intersect.shp) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: Common_appreciable_intersect_AG_origin.shp Add exported data as layer to map? Yes {Make sure the Common_appreciable_intersect_AG_origin.shp layer is active} Tools Calculate Acreage Yes 2817 records; 39,731 acres NEW AS OF 6 JUNE 2007, TO THIS POINT #### **STEP 7**: Determine the restoration fate of the Agricultural-origin polygons #### FOREST SUCCESSORS R/C on layer (Common appreciable intersect AG origin.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin AG origin Intersect" table) Select by Attributes {some theoretically relevant codes my have been excluded if not present in dataset} "FOURCHAC_1" = 'ORP3' OR "FOURCHAC_1" = 'PFO1' OR "FOURCHAC_1" = 'PFO2' OR "FOURCHAC_1" = 'PFO3' OR "FOURCHAC_1" = 'PFO4' OR "FOURCHAC_1" = 'PFO5' OR "FOURCHAC_1" = 'PFP3' OR "FOURCHAC_1" = 'UWO1' OR "FOURCHAC_1" = 'UWO' Verify: OK Apply R/C on layer (Common_appreciable_intersect_AG_origin.shp) Data Export data **Export: Selected features** • this layer's source data Output shapefile or feature class: AG intersect forest.shp Add exported data to map as layer? Yes {Make sure the AG intersect forest.shp layer is active} Tools Calculate Acreage Yes **1317** records, 18,868 acres (11 June) #### SCRUB SHRUB SUCCESSORS R/C on layer (Common_appreciable_intersect_AG_origin.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin_AG_origin_Intersect" table) Select by Attributes "FOURCHAC_1" = 'PSS1' OR "FOURCHAC_1" = 'PSS2' OR "FOURCHAC_1" = 'PSS3' OR "FOURCHAC_1" = 'PSS4' OR "FOURCHAC_1" = 'PSS5' OR "FOURCHAC_1" = 'USH1' OR "FOURCHAC_1" = 'USH2' Verify: OK Apply R/C on layer (Common appreciable intersect AG origin.shp) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: AG intersect scrub&shrub.shp Add exported data to map as layer? Yes {Make sure the AG intersect scrub&shrub.shp layer is active} Tools Calculate Acreage Yes 20 records #### NON-WOODY VEGETATED SUCCESSORS R/C on layer (Common appreciable intersect AG origin.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin AG origin Intersect" table) Select by Attributes {some theoretically relevant codes my have been excluded if not present in dataset} "FOURCHAC_1" = 'ORP2' OR "FOURCHAC_1" = 'OSA2' OR "FOURCHAC_1" = 'PEM1' OR "FOURCHAC 1" = 'PEM2' OR "FOURCHAC 1" = 'PFP2' OR "FOURCHAC 1" = 'PSA1' OR "FOURCHAC 1" = 'PSA2' OR "FOURCHAC 1" = 'UHE1' OR "FOURCHAC 1" = 'UHE2' Verify: OK Apply R/C on layer (Common appreciable intersect AG origin.shp) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: AG intersect nonwoody veg.shp Add exported data to map as layer? Yes {Make sure the AG intersect nonwoody veg.shp layer is active} Tools Calculate Acreage Yes **1405** records, 20280 acres (11 June) #### AGRICULTURAL SUCCESSORS R/C on layer (Common_appreciable_intersect_AG_origin.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin AG origin Intersect" table) Select by Attributes (some theoretically relevant codes my have been excluded if not present in dataset} "FOURCHAC 1" = 'OFW1' OR "FOURCHAC 1" = 'OFW2' OR "FOURCHAC 1" = 'OFW3' OR "FOURCHAC 1" = 'OOC1' OR "FOURCHAC 1" = 'OOC2' OR "FOURCHAC 1" = 'OOC3' OR "FOURCHAC_1" = 'OPC1' OR "FOURCHAC_1" = 'OPC2' OR "FOURCHAC_1" = 'ORP1' OR "FOURCHAC_1" = 'OSA1' OR "FOURCHAC_1" = 'PFP1' OR "FOURCHAC_1" = 'UCRZ' Verify: OK Apply R/C on layer (Common appreciable intersect AG origin.shp) Data Export data Export: Selected features • this layer's source data Output shapefile or feature class: AG intersect AG.shp Add exported data to map as layer? Yes {Make sure the AG intersect AG.shp layer is active} Tools Calculate Acreage Yes 2 records #### OTHER/OPEN WATER SUCCESSORS 73 records ``` R/C on layer (Common appreciable intersect AG origin.shp) Open Attribute Table Options (at bottom of "Attributes of Cowardin AG origin Intersect" table) Select by Attributes {some theoretically relevant codes my have been excluded if not present in dataset} "FOURCHAC 1" = 'OSA3' OR "FOURCHAC 1" = 'POWZ' Verify: OK Apply R/C on layer (Common appreciable intersect AG origin.shp) Export data Export: Selected features • this layer's source data Output shapefile or feature class: AG intersect otherwater.shp Add exported data to map as layer? Yes {Make sure the AG intersect otherwater.shp layer is active} Tools Calculate Acreage Yes ``` #### Map illustrating successional change on 16 acres of WRP easement. The alphanumeric labels for land parcels ("polygons") used above were those used in the relevant data records. #### **Excel® 2003 Acreage Calculations for above Graphic and Map Illustrations** Intersection between Monitored & Exisiting Datasets of Easement 65-6424-0-0205 | | | MONITOR | E D | | E | XIS | TING | | | |----------------|---------|-----------|------------|-------------|-----------|--------|------------|-------|--| | AGREE_NU_1 | FIELD | MANAGE_UN | FOURCHACOD | ACRES_1 | AGREE_I | NUM | FOURCOWARD | Total | | | 65-6424-0-0205 | 1 | b | PFO1 | 5.157 | 65-6424-0 | 0-0205 | OPC1 | 5.157 | | | | | | | | 65-6424-0 | 0-0205 | Total | 5.157 | | | | | | | 5.157 Total | | | | 5.157 | | | | | | PFO1 Total | | | | | 5.157 | | | | | b Total | | | | | | | | | | 1 Total | | | | | | | 5.157 | | | | 2 | а | PEM2 | 7.671 | 65-6424-0 | 0-0205 | OPC1 | 4.324 | | | | | | | | | | UCRZ | 3.346 | | | | | | | | 65-6424-0 | 0-0205 | Total | 7.67 | | | | | | | 7.671 Total | | | | 7.67 | | | | | | PEM2 Total | | | | | 7.67 | | | | | a Total | | | | | | 7.67 | | | | 2 Total | | | | | | | 7.67 | | | | 4 | а | PFO1 | 2.937 | 65-6424-0 | 0-0205 | OPC1 | 0.894 | | | | | | | | | | UHE1 | 2.042 | | | | | | | | 65-6424-0 | 0-0205 | Total | 2.936 | | | | | | | 2.937 Total | • | • | | 2.936 | | | | | | PFO1 Total | | | | | 2.936 | | | | | a Total | | | | | | 2.936 | | | | 4 Total | • | • | • | | | | 2.936 | | | Existing: Inner Circle | | | Monitored: Outer Circle | | | |------------------------|----------|-------|-------------------------|----------|-------| | field number | Cowardin | acres | field number | Cowardin | acres | | 1 | UHE1 | 2.0 | 1a | PFO1 | 2.9 | | 3 | OPC1 | 0.9 | | | | | 3 | OPC1 | 5.2 | 1b | PFO1 | 5.2 | | 3 | OPC1 | 4.3 | 2a | PEM2 | 7.7 | | 2 | UCRZ | 3.3 | | | | 15.8 15.8 | Cowardin | Description | | | |----------|---|--|--| | OPC1 | Cropped, prior-converted cropland | | | | UCRZ | Upland, cropland | | | | UHE1 | Upland, native herbaceous | | | | PFO1 | Palustrine,
broad-leaf deciduous forest | | | | PEM2 | Palustrine, non-persistent emergent | | | #### **ANNEX 5** #### SUPPLEMENTARY PROJECT DOCUMENTATION # Missouri WRP Analysis Project #### PHOTOGRAPHIC DOCUMENTATION #### **Table of Contents** - 1. <u>List of secondary outputs for the Photographic Documentation</u> Product - 2. <u>Summary of Guidance Provided on Photographic</u> <u>Documentation of WRP Easements</u> - 3. Methods for Inventorying and Assessing Photographic Coverage of Missouri WRP Easements (separate: Photo Documentation Methods.doc) # List of secondary outputs for the Photographic Documentation Product <u>NOTE</u>: Due to format (and/or page dimension/length), these outputs have been provided on the project's systematically organized CD archive. #### 1. DIRLIST_All_Easement_Photos.txt Complete consecutive directory listings of all WRP photographs and ancillary files made available for project analysis. #### 2. ALLPHOTOS.xls COMBINED digital photo dataset records (from the four electronic file storage folders) generated with specific DIR listing software (Photographic documentation method 3). Cleaned and weeded. Sample of 37 photo descriptions added "after the fact" to assess input burden and effectiveness of this kind of effort. #### 3. PhotoCount.xls - Summary Count of Digital Photographs per Storage Folder (easement) - Pivot Table of the photo counts per folder (easement) - Core excerpt of ALLPHOTOS.xls (next output) as basis for Pivot Table counts. - List of 112 files (primarily photographs) excluded because they were not labeled with agreement numbers (not attributable to a specific easement), were misallocated to the monitored dataset, were non-easement photos (i.e. general thematic) or were not photos at all. #### 4. WRP photos.mxd & photos_intersect_plan.shp Map of Missouri plotted with monitored WRP sites and photo points. GIS spatial intersection of WRP photo points (2595 records¹⁶) and the WRP monitoring data file (3728 polygon records) #### 5. FOTOINTS.xls ■ FOTOINTS.xls is a pared-down and cleaned-up spreadsheet version of FOTOINTS.DBF (from photos_intersect_plan.shp) the intersection of GIS WRP photo points and the GIS WRP monitoring data file. This dataset includes 2300 photo point records from 464 easements. (The archived file FOTINTUQ.DBF contains the 1922 unique photo point records that intersect the monitored dataset). #### 6. Photo Datasets Relationships.xls The complete version of this workbook with three worksheets provides tabular and diagrammatic representations of the attributes of, and the relationships between, the WRP easement photographs, GIS photo point and monitoring data records and derived databases of the Missouri WRP photographic dataset. An image of the relationships diagram is provided in Chapter 5. ¹⁶ These records have no overt (attribute table field) connection to easement agreement number, thus a spatial intersection is called for to relate each photo point to a specific easement. # Summary of Guidance Provided on Photographic Documentation of WRP Easements #### Introduction There was some measure of disconnect between the implied aspiration of the project proposal for this product and what was achievable with the dataset. This begged the question: "What references, advice or instructions are there to/for photographing WRP sites in official documents or instruments?" The following allusions to this issue were uncovered in four documents/instruments. #### **Documentation / Instruments** **A.** The MISSOURI 20[07] WRP RANKING FORM (2006PrePlanRev101505_C.doc), labeled on-line as "Missouri WRP Preliminary Planning Checklist," is also available at: http://www.mo.nrcs.usda.gov/programs/wrp/out/2006PrePlanRev012706 A.pdf. The document appears to be an in-house form for use by NRCS staff in evaluating the suitability of a site for the WRP. It makes mo mention of photographic documentation for WRP sites. **B.** The Missouri WRP Bid Pilot Self Assessment Guide is available at: http://www.mo.nrcs.usda.gov/programs/wrp/out/WRP%20Bid%20Pilot_MO_07182006.pdf. As its name implies, this is a form filled out by a landowner for nominating a site for the WRP. It does not mention photographs or request photographic documentation as part of the submission of a nominated site although a map is requested if available. C. The document WRPmonitoringagreementATTACHMENT A 2006-lizedits.doc is comprised of three main sections. The first part, "ATTACHMENT A" entitled "Easement and Ecological Monitoring Functional Requirements [–] Missouri Wetlands Reserve Program," is a blend of instructions and operational elements (i.e., equipment and cost estimates). The second section entitled "MISSOURI WRP EASEMENT MONITORING[.] Revised 10/21/99[.] Version 2002[.] is a site compliance monitoring data form (including a "Practice and Cost Worksheet"). The last part of the document is entitled "Missouri WRP Ecological Monitoring Form." It includes WHAG (Wildlife Habitat Appraisal Guide) worksheets for Bottomland Hardwoods and Nonforest Wetland. The following excerpts from this document include references, advice or instructions about monitoring photography: #### First section - "...GPS will be used to locate digital **photo** documentation stations and violations. The monitoring form and **photos** will be spatially associated with the easement boundary and can be uploaded to the Web database or used in ArcView." - "a) Complete WRP Easement Monitoring Checklist, including **photo** records and identifying locations of violations. The monitoring form and **photos** will be spatially associated with the easement boundary and can be uploaded to the Web database or used in ArcView" "b) Complete WRP Ecological Monitoring Form for ecological monitoring, including delineation of current habitat conditions, **photo** records and identifying ecologically significant locations." (Both of these points found under "Tasks, Equipment and Cost Estimate to Conduct Easement, Landowner Activity, and Ecological Monitoring") "As a minimum, on-site monitoring will be completed every third year. In the years when there is no on-site monitoring the evaluation will be conducted using remote sensing such as satellite imagery and aerial **photography**." ### 2nd section (compliance form) "Take **photograph** from designated **photo** points when doing on-site monitoring[.] Location of **photo** points "Are easement conditions being met (e.g., no encroachment, dumping, cropping, etc.)? Yes No *If no, describe and document with photograph*)" 3rd section (ecological monitoring form) "Take photograph from designated photo points when doing on-site monitoring[.]" ### **D.** "The WRP PROGRAM MANUAL" Natural Resources Conservation Service (NRCS). [2007]. Conservation Programs Manual Title 440, Part 514. Wetland Reserve Program. Accessed 29 November 2007 at www.info.usda.gov/scripts/lpsiis.dll/M/M_440_514.htm. Also available at http://policy.nrcs.usda.gov/ (using the "side menu"). Specific Excerpts: references to photography # 514.19 WRP Restoration Plan "c. Preliminary Restoration Plan Basic Elements At a minimum, the Preliminary Restoration Plan will consist of: an aerial **photo** and/or map which identifies the offered land and the location of practices that will be established;" "d. Final Plan Contents The final restoration plan shall consist of the following: • photographs that document site conditions before, during, and after restoration. Location points of photography will be recorded on a map of the easement or agreement area;" FROM: M.440.514.D - Subpart D - Restoration # http://policy.nrcs.usda.gov/viewDirective.aspx?id=1843 # 514.31 Boundary Description "e. Legal Descriptions The visual description of the easement (i.e., map or aerial **photograph**) that accompanies the description is extremely important to any future need to resolve differences of opinion. When reliance is entirely on a map and legend to provide a boundary description, it is critical that all the necessary information be illustrated. It is this visual, as well as the written, record that will be used in reconstructing the "intent" of the parties at that future date. Such information will also be extremely valuable to field personnel as easement administration, management, and monitoring efforts are carried out." ### 514.34 Perfecting the Easement "d. Follow-up Activity with FSA Advise the local FSA office of the date that the easement was recorded and provide a graphic representation or aerial **photo** detailing the easement location and acreage. This information will be used by FSA to track the 25 percent county cropland acreage cap on WRP and Conservation Reserve Program lands and to reduce production flexibility contract acreage when applicable." ### 514.36 Assembling WRP Files "a. Recommended Folder Arrangement Items to include: • Reference **photography**" FROM: M.440.514.E - Subpart E - Easement Acquisition http://policy.nrcs.usda.gov/viewDirective.aspx?id=1845 ### 514.46 Restoration Agreement Management "c Items to be Reviewed At a minimum, the review process should consider whether: • **photographs** have been taken and maintained in the project file, and" ### 514.47 Easement Management and Monitoring "f Inspecting the Site for Easement Violations In the years when there is no onsite inspection, the evaluation will be by **slides**, satellite **imagery**, aerial **photography**, etc." ### 514.48 Enforcement "b Possible Violations 5 Camera, video equipment, or digital camera to record the condition of the site. **Photographs** should be taken as soon as possible when significant changes occur
such as land use, new drainage facilities, or possible violations of the easement." "c About the Possible Violation Site Visit During the site visit the following activities should occur. - 4 Compile **photographic** documentation of all aspects of the possible violation including: - photographs, slides, videos, or digital photos from various directions that capture the alleged violation, such as haying, mowing, grazing, cultivation, dumping, or encroachment, and the extent. - the most serious aspects of the alleged violation. - potentially controversial areas concerning compliance. Show the general nature of the surrounding easement area so that adequate compliance can be easier to achieve. Mark on a map the points from which **photographic** coverage was taken, and label all pertinent data on the **photographic** coverage." FROM: M.440.514.G - Subpart G - Quality Control http://policy.nrcs.usda.gov/viewDirective.aspx?id=1847 ### PHOTOGRAPHIC DOCUMENTATION: METHODS # Missouri WRP Analysis Project Methods for Inventorying and Assessing Photographic Coverage of Missouri WRP Easements (a.k.a. Meta Data Management and Analysis of Missouri WRP Photos) # Table of Contents - 8. Make a gross count of easements and (their) photographs - 9. Document photographic folder contents - 10.Create and use a meta database from the photographic folder filing system (employing specialized software[preferred method]) - 11. Assess the congruence between easement photographic records and the monitored easement dataset - 12. Examine the easement coverage symmetry between easement photographs and the GIS photo points layer - 13. Create and use a meta database from the photographic folder filing system using conventional methods [auxiliary method] - 14. Compare the GIS attribute table records to the set of digital photograph filenames in terms of their "photo number." CATEGORY: Inventory of the physical stock of digital WRP photographs <u>METHOD 1</u>: Effect a *gross* count of photographed easements and (associated) photographs using Windows® Explorer®. <u>PURPOSE/USE</u>: Provides quick general assessment of easement coverage and volume of photographs available for management. Useful as a "Check sum" for other methods. Technique to make gross counts of folders (to derive a surrogate number of easements) and files (mostly photographs). ### Steps - 1. In Windows Explorer, right click on the target folder name. - 2. Access folder properties: Click on "Properties." - 3. Consult the "General" tab. - 4. Look at "Contains:" Sample tabulated results below. (Actual results are used in these examples): | After some minor adjustments | (mostly) | | |------------------------------|----------|-----------| | | photos | easements | | C:\WRPDB\easement_photos\ | [files] | [folders] | | photos04 | 809 | 152 | | photos05 | 1323 | 205 | | photos06 | 637 | 87 | | photos3Y | 273 | 103 | | Grand Total | 3042 | 547 | **NOTE:** Windows Explorer **counts one extra file per folder** for folders with image files. This is a protected operating system file named **Thumbs.db** which may not be visible in Windows Explorer depending on settings. Therefore it is necessary to adjust the gross count. (Step 5). 5. Subtract 1 x number of folders from the file count. | (mostly) | | |----------|--| | photos | easements | | [files] | [folders] | | 657 | 152 | | 1118 | 205 | | 550 | 87 | | 170 | 103 | | 2495 | 547 | | | photos
[files]
657
1118
550
170 | CATEGORY: Inventory of the physical stock of digital WRP photographs. **METHOD 2:** List (photographic) folder contents to a text file. <u>PURPOSE/USE</u>: Documentation of structure and content (for good practice); provides an auxiliary precursor (if needed) for a meta database on the photographic resource. Technique to make a complete, combined listing of the directory contents of the four photographic folders. (See introduction). ### Steps - 1. Call up the command window and type the command [in bold]: **CD\ <Enter>** to reinstate the simple root directory prompt "C:\>" - 2. Type the following command [in bold]: C:\DIR > C:\WRPDB\easement_photos\ /s > (type without a *manual* break here) C:\WRPDB\easement_photos\META\DirPhotoList.txt <Enter> CATEGORY: Inventory of the physical stock of digital WRP photographs **METHOD 3:** [preferred, alternative method to] Create a meta database from the photographic folder filing system *using specialized software* to access additional/ancillary meta data about stored photographs. <u>PURPOSE/USE</u>: Provides an *expanded* database of conventional and meta information directly from the photographic filing structure and photographs. Facilitates vetting of irrelevant records to enable a precise count of easement photographs. The resulting database can be imported into Excel to take advantage of its "Pivot Table" functionality (for ease of analysis). BACKGROUND: Standard techniques and programs (Microsoft® Windows® and MS-DOS® directory-listing commands) were employed to generate a metadata inventory listing about the stored digital photographs of Missouri WRP easements. Two elements determine the utility of a directory listing. In the first instance, the *structure* of the raw metadata listing must support conversion to a database. The metadata *content* must also be considered. Contemporary digital photo technology enables storage of a number of ancillary photographic parameters ("image information" e.g. image title, creator/photographer, date of photo, etc). Perhaps the most useful additional metadata available (in terms of this Missouri WRP easement analysis project) is the "date of photo." While a surrogate of "date of photo" in the form of "date of file creation" can be got through a rigid DOS DIR-listing command, it issues in a format that cannot be imported into a database. The output first requires excessive manual editing or a special parsing script must first be written and then run on the output. Owing to this surprising technical constraint of standard tools, alternative specialized software was sought. Due to budgetary constraints I downloaded and used a "shareware" program "Print MaestroTM 3." While this limited (i.e. free unregistered) version of the software accomplished the intended task – a workable raw directory listing of WRP digital photographs – it was just **one of a number of potentially suitable file manager programs available** for downloading from the internet. Technique for using the program "Print MaestroTM 3" to create a CSV (comma separated values) from a directory structure for use in creating a database of photofolders and photographs. Steps (repeat for each of the four photo folders) - 1. Start "Print Maestro" program - 2. Select the folder of photographs to output a list - 3. Select "Export" (menu) - 4. Select "Other" - 5. Skip down to and tick "include subfolders" - 6. Under "Print attributes|more" select "Photo|Photo date" - 7. Return to main window and select "Export" (button) - 8. Under the "Export type|formats" tab selection, choose the "CSV file" radio button - 9. Browse to and/or fill in a "Destination file" - 10. Under the "fields" tab, select the following fields (in order): IsFolder Level FileName Photo date 11. Click "Start Export" This will open Excel automatically. - 12. Save the Excel file as it is: a CSV file (i.e. choose to keep the format and exclude any incompatible features) - 13. Exit Excel Technique for preparing *.CSV lists to be appended, creating a database structure, populating the database, then cleaning up the data records. ### <u>Steps</u> 1. Delimited each *.CSV file properly with a text editor to assist importation into a common database structure (*.DBF) as delineated below. This means manage spaces, and position commas in the appropriate places, so that the text will imported into the "target" fields, and not elsewhere! 2. Using FoxPro or other DBMS, create ALLPHOTO.DBF with the following structure: | Field Field Name | Type | Widt | h | |------------------|-----------|------|--| | 1 ISFOLDER | Logical | 1 | {To Be Deleted after checking below completed} | | 2 LEVEL | Numeric | 1 | {To Be Deleted after checking below completed} | | 3 DATASET | Character | 10 | | | 4 FOLDER | Character | 16 | | | 5 FILENAME | Character | 26 | | | 6 FOTODATE | Date | 8 | | | 7 TIME | Character | 10 | {To Be Deleted; not used} | | ** Total ** | | 73 | • | - 3. Populate this database by **APPENDING** from each *.CSV (delimited text) file; begin with the oldest photos (photos04.CSV). - 4. Weed ALLPHOTO.DBF using filters (below) to get rid of irrelevant records. Begin with "misfiled" records such as those labeled "NOT FOUND..." OR "NOT PART..." Copy these records elsewhere and delete them from ALLPHOTO.DBF. ``` SET FILTER TO "NOT"$FOLDER SET FILTER TO ".TXT"$FILENAME OR ".DOC"$FILENAME ``` 5. Identify photo folders which have not been labeled with a specific easement number (e.g. labeled as "Bates Co." only), isolate them (copy them elsewhere), and then delete them from ALLPHOTO.DBF with these DB commands: ``` SET FILTER TO !"-"$FOLDER AND ISALPHA(FOLDER)=.T. COPY TO GENFOT04.DBF DELETE FOR !"-"$FOLDER AND ISALPHA(FOLDER)=.T PACK ``` 6. Then, use the following commands identify superfluous records. For example, the first two commands listed should yield the same total result, and the results of the third-listed command should be equal to the results from the fourth command; the sum of the results of the last two commands should equal the results of each of the first two commands: ``` COUNT FOR ISFOLDER=.T. COUNT FOR LEVEL=0 COUNT FOR !("JPG"$FILENAME) COUNT FOR EMPTY(FOTODATE) ``` Isolate them (copy them elsewhere), and then delete them from ALLPHOTO.DBF. # Technique to add agreement numbers to photo records extracted from the digital photo filing system. Incorporate easement agreement numbers as part of the photo records in ALLPHOTO.DBF
with these DB commands: SELECTION 1 USE ALLPHOTO INDEX ON NUMBER TO XXX SELECTION 2 USE COMPFILL INDEX ON NUMBER TO ZZZ SELECTION 1 SET RELATION TO NUMBER INTO B BROWSE FIELD B.AGREE_NUM,AGREE_NUM,B.NUMBER,NUMBER, FOTODATE,B.REV_DATE REPLACE ALL AGREE_NUM WITH B.AGREE_NUM FOR EMPTY(AGREE_NUM) BROWSE FIELD B.AGREE_NUM,B.NUMBER,AGREE_NUM,NUMBER,FOTODATE, B.REV_DATE # Technique to utilize intermediate product "ALLPHOTO.DBF" in Excel (to take advantage of its flexible counting facility). ### Steps 1. Open ALLPHOTO.DBF in Excel and save as PhotoCount.xls¹⁷. - 2. In PhotoCount.xls, select the ALLPHOTO tab. - 3. From the **Data** menu - 4. Select PivotTable and PivotChart Report - 5. Select Microsoft Excel list or database | PivotTable - 6. Click Next 7. Where is the data that you want to use? Use the automatic selection: database - 8. Click **Next** - 9. Select **New worksheet** - 10. Click **Finish** 11. Use this pivot table to tally the folders (easements) and files (photographs) in each main folder - ¹⁷ The refined PhotoCount.xls is a component output of product 4: Photographic Documentation. <u>CATEGORY</u>: Assessment of the physical stock of digital WRP photographs. <u>METHOD 4</u>: Check the correspondence between monitored easement agreement numbers (from a modified consolidated easement compliance file – COMPFILL.DBF) and easement photographic records (based on the photographic folder filing system), and produce related lists/databases. <u>PURPOSE/USE</u>: To document photo coverage overlaps/matches AND omissions/non-matches with the WRP monitored easements dataset. <u>SYNOPSIS</u>: This is a collection of procedures (originating from FOTO&DAT.PRO¹⁸) that operates on the photographic files storage system (directories of folders and files), using "element presence", i.e. "subfolder" to determine if easements have basic photographic coverage. (Sub)Folders here represent easements, and are labeled with the unique portion of easement numbers. (In many cases however, the name of the *photo* itself is NOT linked to the easement number). The procedure first produces contents (– subfolders) lists in turn of each of four main directories (folders organized by fiscal year, see below) of photographs (organized by easement number); these lists are used to create databases. The four databases are *compared* to the monitoring dataset's easement agreement numbers (as listed in COMPFILL.DBF – 594 easements/records) through database *relations*. These comparisons (relations) are used to derive two lists for each of the four main directories/folders: one list of "subfolder" labels matching easement agreement numbers occurring in the monitoring dataset *and* one list of subfolder labels that do NOT match easement agreement numbers in the monitoring dataset. The four lists which contain agreement number matches (with subfolders) are combined to form a master photo list: MASTFOTO.DBF – 532 folders/530 easements. {The discrepancy seen here between folders and easements arises from the fact that "7-8536" is found in both photos04 & photos05, and "8-8484" is found in both photos04 & photos06}. Technique to create a database of "easements that have photographs" from each of the main folders in the photographic filing system. See table list at right. Commands in bold text. photos04 photos05 photos06 photos3Y Steps (repeat for each of the four folders) ¹⁸ A multi-part FoxPro procedure developed for analyzing the WRP photographic resource within the WRP analysis project. - 3. Select one of the four parent folders of digital easement photographs. (These are differentiated by use of "FYxx," where "xx" is the fiscal year (e.g. 04) or similar descriptor (e.g. 3Y). (This follows the naming convention adopted for photo folders which is to use the unique, rightmost or last digits/characters of the easement agreement number). - 4. Call up the command window and type the following command: **CD**\ **<Enter>** to reinstate the simple root directory prompt "C:\>" - 5. Type the following command: C:\>CD C:\WRPDB\easement_photos\photosxx\ <Enter> - 6. Type the following command: C:\WRPDB\...\photosxx>DIR > C:\WRPDB\WORKSHOP\FOLFOTxx.txt <Enter> - 7. With a text editor, delete header and footer text, and all columns EXCEPT the folder name (again, most photo folder names use last unique part of easement "agreement number"). Be sure to remove any preceding blanks. Save and Exit. - **8.** In FoxPro (or other DBMS) create a database "FOLFOTxx.DBF" with the following structure: **NUMBER** Character 15 - 9. **USE FOLFOTxx.DBF** - 10. APPEND from FOLFOTxx.TXT DELIMITED Technique to establish a common data field between easement folders (containing photographs) and monitored easement data records. Key database commands are in bold; other text that is preceded by "&&" is commentary. **USE COMPFILL** && This is the *consolidated* (i.e., 1 record – 1 easement) version of the compliance monitoring file (COMBCOMP.DBF) && Add a field "NUMBER" and delete superfluous fields **MODIFY STRUCTURE** REPLACE ALL NUMBER WITH AGREE NUM SET FILT TO "65-6424" NUMBER REPLACE ALL NUMBER WITH STRTRAN(NUMBER,"65-6424-","") SET FILT TO "66-6424" \$NUMBER REPLACE ALL NUMBER WITH STRTRAN(NUMBER,"66-6424-","") COMPFILL.DBF can now be used to provide complete agreement numbers for photographic folders through relational linkage (next page). Technique to compare records of digital easement photographs (stored in one of the four folders mentioned above) against easement agreement numbers in the monitored easement dataset (COMPFILL.DBF) and document the results. Key database commands are in bold. Repeat these steps for each of the four folders (denoted by **xx**). SELECTION 1 USE FOLFOTXX INDEX ON NUMBER TO XXX SELECTION 2 USE COMPFILL INDEX ON NUMBER TO ZZZ SELECTION 1 SET RELATION TO NUMBER INTO B BROWSE FIELD B.AGREE_NUM,B.NUMBER,NUMBER SET FILTER TO EMPTY(B.NUMBER) COPY FIELD NUMBER TO PICXXNIM.TXT DELIMIT SET FILTER TO !EMPTY(B.NUMBER) COPY FIELD AGREE_NUM,NUMBER TO PICXXINM.TXT DELIMIT WHERE "PICxxNIM" stands for **PIC**ture in FYxx folder is **N**ot found **I**n the **M**onitoring dataset or in other words, the agreement number label used on the folder of photographs does not match an agreement number in the monitored easement dataset. And WHERE "PICxxINM stands for **PIC**ture in FYxx folder is found **IN** the **M**onitoring dataset or in other words, the agreement number label used on the folder of photographs matches an agreement number in the monitored easement dataset. Technique to create a master list of digital photograph easement sets (=subfolders) with agreement numbers that match agreement numbers of easements in the monitored dataset. Key database commands are in bold; other text that is preceded by "&&" is commentary. CREATE MASTFOTO && Add fields AGREE_NUM, NUMBER, RECNO USE MASTFOTO¹⁹ APPEND FROM PIC04INM.TXT DELIMIT APPEND FROM PIC05INM.TXT DELIMIT APPEND FROM PIC06INM.TXT DELIMIT APPEND FROM PIC3YINM.TXT DELIMIT REPLACE ALL RECNO WITH RECNO() INDEX ON AGREE_NUM TO XXX UNIQ COPY TO TEMP ¹⁹ also saved in Excel as MasterPhotoList.xls #### **CLOSE ALL** Technique to find any duplicate folder names (easements) from among the four parent photo folders. Key database commands are in bold. SELECTION 1 USE MASTFOTO INDEX ON RECNO TO XXX SELECTION 2 USE TEMP INDEX ON RECNO TO ZZZ SELECTON 1 SET RELATION TO RECNO INTO B BROWSE FIELD AGREE_NUM,RECNO,B.RECNO SET FILTER TO EMPTY(B.AGREE_NUM) COUNT BROWSE FIELD AGREE_NUM,RECNO,B.RECNO [COPY TO [FILENAME]] CATEGORY: Assessment of the spatial records of WRP easement photographs. <u>METHOD 5</u>: Assess the easement coverage symmetry between the photographic folder filing system inventory and the GIS photo points layer. <u>PURPOSE/USE</u>: Promotes harmonization (of coverage and content) between easement photographs and spatial records of easement photographs. Technique to effect a spatial intersection ("Geoprocessing – Intersect") of WRP easements (polygons) and WRP easement photo points thereby establishing a connection between agreement number and GIS photo points. Application: ArcMapTM 9.2 (GIS) Parent Map: WRP photos.mxd <u>Datasets</u>: C:\WRPDB\WorkCopy\20070413\plan_3yrall.shp (3728 non-unique polygon records covering 594 easements) And C:\WRPDB_induk\20061107\firstmon-all-field_pt-photos.shp (2,595 point records) <u>Steps</u> open: WRP photos.mxd menu: Tools select: Geoprocessing select: **Intersect** click on: **open tool** <u>Input Features (select)</u>: plan_3yrall firstmon-all-field_pt-photos Output Feature Class (type): photos_intersect_plan.shp click on: OK R/C on layer: **photos_intersect_plan** select: Open Attribute Table ### **Results:** 2282 *gross intersections* 464 unique easements²⁰ NOTE: An alternative technique [listed here in abbreviated syntax]: Selection | Select By Location | select features from | (the following layer(s):) firstmon-all-field_pt-photos.shp | (that:) are completely within | (the features in this layer:) plan_3yrall.shp | OK ... yields a selection dataset of 2276 records (similar to the above results of 2282 records) but does not merge data from the monitored easement dataset into the intersect selection. Furthermore, no linkage to easement agreement numbers is established in the latter technique. Technique to compare digital photographs to GIS photo points of the monitored easements dataset. ### Preparation: Copy Photos_intersect_plan.dbf to FOTOINTS.DBF (464 easements/2282 records). Use the following database (FoxPro) commands [in bold]; other text that is preceded by "&&" is commentary. #### **USE FOTOINTS** **MODIFY STRUCTURE** && Add & rearrange fields to facilitate comparisons; Parse and $^{^{20}}$ from database command: INDEX ON AGREE_NUM TO [INDEXNAME] UNIQUE && cleanup data. (Separated bearing information from photo && numbers and photo && comments. Standardized entries && based on input from original photographers/surveyors). SELECTION 1 USE FOTOINTS INDEX ON AGREE_NUM TO XXX
SELECTION 2 USE MASTFOTO INDEX ON AGREE_NUM TO ZZZ SELECTION 1 SET RELATION TO AGREE_NUM INTO B BROWSE FIELD AGREE_NUM,B.AGREE_NUM,COMMENTS SET FILTER TO EMPTY(B.AGREE_NUM) COUNT COPY TO NOLINK && Contains easements/agreement numbers in the intersection of && the GIS photo points and monitored datasets that are not && found in MASTFOTO.DBF <u>CATEGORY</u>: Inventory of the physical stock of digital WRP photographs **METHOD 6:** [Auxiliary Conventional method to] Create a meta database from the photographic folder filing system, and use it for a precise inventory of easements and photographs on hand. <u>PURPOSE/USE</u>: Provides a database of meta information directly from the photographic filing structure. Facilitates vetting of irrelevant records to enable a precise count of easement photographs. The database can be imported into Excel in order to take advantage of Pivot Table functionality (for ease of analysis). Note: Contemporary digital photo technology enables storage of a number of ancillary photographic parameters. The most useful additional meta data available (in terms of this Missouri WRP easement analysis project) is the "date of photo." Unfortunately, the directory-listing method below cannot output this particular ancillary data in an easily accessible format (see footnote). For this reason, the method herein must be considered an <u>auxiliary method</u>, if a more flexible method is available like that described in "Method 4: Alternative database creation..." This latter method, in addition to accomplishing everything above, can also make "date of photo" meta information easily accessible. [See "preferred Method #3] # Technique to make and modify a directory listing to use in creating a database of photo-folders and photographs. ### Steps - 1. Call up the C:\> prompt in the command window. - 2. Type the following command²¹ (in bold): C:\>DIR /b /o /s C:\WRPDB\easement photos\ |FIND "@" /v > (type without a manual break here) C:\WRPDB\easement_photos\META\fotcount.txt <Enter> - 3. Save "fotcount.txt" as "fotocont.txt" and modify it as follows. Use a text editor to remove the non-essential text, namely header and footer, any non-mage files (e.g. *.txt or *.doc), the entire set of entries from the META subdirectory, directoryonly path statements, and the prefix directories of the path statements listing the individual photograph files. For example: remove "C:\WRPDB\easement photos\" from "C:\WRPDB\easement photos\photos04\6-142\6-142 0217.JPG" to derive "photos04\6-142\6-142 0217.JPG". Next, replace all "\" with "," (comma -- this will make a CSV or delimited file to use after the next step). ### Technique to create, fill and weed a database from a photographic directory listing. # <u>Steps</u> 1. Use database software to create the database FOTOCNT.DBF with this structure: Structure for database: C:\WRPDB\WORKSHOP\FOTOCNT.DBF Number of data records: 2492 Date of last update : 09/17/07 Code Page : 437 Field Field Name Type Width 1 DATASET Character 10 2 FOLDER Character 15 3 FILENAME Character 22 ** Total ** 48 2. Populate FOTOCNT.DBF with data from fotocont.txt using the following database commands: > **USE FOTOCNT** APPEND FROM FOTOCONT.TXT DELIMITED 3. Rid the meta database of records of all of the spurious/dubious, non-attributable, non-easement photos and non-photo files, which came to light by casual browsing ²¹ A variation of this command can include "date of file creation", a surrogate (in most cases) for "date of photo" in the output list. However, this form of output is not easy to import into a database. The output first requires excessive manual editing or a special parsing script must first be written and then run on the output. and running other procedures (e.g. FOTO&DAT.PRO²²). Copy the records marked for deletion to a database DELEFOTO.DBF and then delete (PACK) them, saving the results to FOTOCNT1.DBF. # Technique to utilize intermediate product "FOTOCNT1.DBF" in Excel (to take advantage of its flexible counting facility). ### Steps - 1. Open FOTOCNT1.DBF in Excel and save as PhotoCount1.xls²³. - 2. In PhotoCount1.xls, select the FOTOCNT1 tab. - 3. From the **Data** menu - 4. Select PivotTable and PivotChart Report - 5. Select Microsoft Excel list or database | PivotTable - 6. Click **Next** - 7. Where is the data that you want to use? Use the automatic selection: database - 8. Click Next - 9. Select **New worksheet** - 10. Click Finish - 11. Use this pivot table to tally the folders (easements) and files (photographs) in each main folder CATEGORY: Cross-checking disparate sources of digital WRP photographic records. **METHOD 7:** Compare the GIS attribute table records of "photo numbers" with the set of digital photograph filenames that have been named with their "photo number." <u>PURPOSE/USE</u>: Provides a data entry check and/or a basis of linkage between the two sources of information. Technique to check, modify and compare the labeling of GIS photo records and the digital photos they represent. ### Steps - 1. Add a field [PHOTONUMBS] to ALLPHOTO.DBF using the same parameters for the field as found in FOTOINTS.DBF. - 2. Replace all [PHOTONUMBS] with [FILENAME] in ALLPHOTO.DBF. ²² A multi-part FoxPro procedure developed for analyzing the WRP photographic resource within the WRP analysis project. The refined PhotoCount.xls is a component output of product 4: Photographic Documentation. - 3. Manually "tweak" the contents of [PHOTONUMBS] until they resemble [PHOTONUMBS] in FOTOINTS.DBF. This entails removing file extensions (e.g. "JPG" and the filename prefix "DSC00" (where applicable), etc. - 4. Make a relation between ALLPHOTO.DBF (the file of relevant digital photographs) and FOTOINTS.DBF (the intersection of GIS photo points and the monitored WRP dataset); See below. Key database commands are in bold; other text that is preceded by "&&" is commentary. **SELECTION 1 USE ALLPHOTO** INDEX ON AGREE_NUM+PHOTONUMBS TO XXX **SELECTION 2 USE FOTOINTS** INDEX ON AGREE_NUM+PHOTONUMBS TO ZZZ **SELECTION 1** SET RELATION TO AGREE_NUM+PHOTONUMBS INTO B **BROWSE FIELD** AGREE NUM, PHOTONUMBS, B.AGREE NUM, B. PHOTONUMBS SET FILTER TO !EMPTY(AGREE_NUM) **BROWSE FIELD** AGREE NUM, PHOTONUMBS, B. AGREE NUM, B. PHOTONUMBS COUNT FOR EMPTY(B.AGREE_NUM) && 717 RECORDS COUNT FOR !EMPTY(B.AGREE NUM) && 1663 RECORDS SET FILTER TO !EMPTY(AGREE_NUM) AND !EMPTY(B.AGREE_NUM) **COUNT** COPY TO GIS&FOTO && 1663 RECORDS **CLOSE ALL** <u>NOTE</u>: Substituting FOTINTUQ.DBF (the uniquely labeled records from FOTOINTS.DBF) for FOTOINTS.DBF above yields the same results.