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Key Questions

1. How S3D (DNS) can address the science challenges Jackie
identified

2. Performance requirements of the science and how we can meet
them

3. Optimizations and refactoring

4. What we can do on Titan

5. Future work
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The governing physics

Compressible Navier-Stokes for Reacting Flows

— PDEs for conservation of momentum, mas, energy and composition

— Chemical reaction network governing composition changes

— Mixture averaged transport model

— Flexible thermochemical state description (IGL)

— Modular inclusion of case-specific physics
– Optically thin radiation
– Compression heating model
– Lagrangian particle tracking
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Solution Algorithm (What does S3D do?)

— Method of lines solution:
– Replace spatial derivatives with finite-difference approximations

to obtain coupled set of ODEs
– 8th order centered approximations to first derivative
– Second derivative evaluated by repeated application of first

derivative operator
∂2φ

∂x2
≈ ∂

∂x

[

∂

∂x
φ

]

— Integrate explicitly in time

— Thermochemical state and transport coefficients evaluated
pointwise

— Chemical reaction rates evaluated point-wise

— Block spatial parallel decomposition between MPI ranks
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Solution Algorithm

— Fully compressible formulation
– Fully coupled acoustic/thermochemical/chemical interaction

— No subgrid model: fully resolve turbulence-chemistry interaction

— Total integration time limited by large scale (acoustic, bulk velocity,
chemical) residence time

— Grid must resolve smallest mechanical, scalar, chemical
length-scale

— Time-step limited by smaller of chemical timescale or acoustic CFL
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Resolution requirements in detail

1. Kolmogorov lengthscales

η ≈ Λ

Re
(3/4)
t

; Λ = k1L L = N∆x

η > k2∆x ⇒ Re
(3/4)
t <

k1

k2
N ⇒ Ret <

(

k1

k2

)4/3

N4/9

2. Batchelor lengthscales

λβ =
η√
Sc

Sc =
ν

D
≈ O(1)

Hydrogen-air, Sc ≈ 0.2; n-heptane-air, Sc ≈ 2.4

3. Chemical lengthscales:

∆x <
δ

Q
⇒ L

δ
<

N

Q
Q ≈ 20
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Resolution requirements (temporal)

1. Acoustic CFL

∆t <
∆x

a

∆ta

∆tu′

= Ma

2. Advective CFL
∆ta

∆tu′

= Ma

3. Chemical timescale

— Flame timescale
(

τc ∼ δ
sL

)

— Species creation rates max
(

Ṡ−1
i

)

— Reaction rates max
(

ω̇−1
j

)

— Eigenvalues of reaction rate jacobian
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Combustion regimes

Thickened-

wrinkled flame, 

distributed 

reaction

Wrinkled 

flamelets

Thickened flame / 

Well stirred 

reactor

Wrinkled 

flamelets, 

Corrugated 

flamelets

Integral length scale / flame thickness

RMS velocity 

/ flame speed
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Chemistry reduction and stiffness removal

— Reduce species and reaction count through extensive static
analysis and manipulation of reaction mechanism

— Literature from T. Lu, C.K. Law et al.
– DRG analysis of reaction network
– Quasi-steady state approximations
– Partial equilibrium approximations

— Dynamic analysis to adjust reactions that are assumed ‘fast’
relative to diffusion at runtime (implications later)
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Benchmark problem for development

— HCCI study of stratified configuration

— Periodic

— 52 species n-heptane/air reaction mechanism (with dynamic
stiffness removal)

— Mixture average transport model

— Based on target problem sized for 2B gridpoints

— 483 points per node (hybridized)

— 203 points per core (MPI-everywhere)

— Used to determine strategy, benchmarks, memory footprint

— Alternate chemistry (22 species Ethylene-air mechanism) used as
surrogate for ‘small’ chemistry
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Evolving chemical mechanism

— 73 species bio-diesel mechanism now available; 99 species
iso-octane mechanism upcomming

— Revisions to target late in process as state of science advances

— ‘Bigger’ (next section) and ‘more costly’ (last section)

— Continue with initial benchmark (acceptance) problem
– Keeping in mind that all along we’ve planned on chemistry

flexibility
– Work should transfer
– Might need smaller grid to control total simulation time
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Target Science Problem

— Target simulation: 3D HCCI study

— Outer timescale: 2.5ms

— Inner timescale: 5ns ⇒ 500 000 timesteps

— As ‘large’ as possible for realism:
– Large in terms of chemistry: 73 species bio-diesel or 99 species

iso-octane mechanism preferred, 52 species n-Heptane
mechanism alternate

– Large in terms of grid size: 9003, 6503 alternate
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Summary (I)

— Provide solutions in regime targeted for model development and
fundamental understanding needs

— Turbulent regime weakly sensitive to grid size: need a large change
to alter Ret significantly

— Chemical mechanism is significantly reduced in size from the full
mechanism by external, static analysis to O(50) species
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Performance profile for legacy S3D

Where we started (n-heptane)

242 × 16, 720 nodes 5.6s
242 × 16, 7200 nodes 7.9s
483, 8 nodes 28.7s
483, 18 000 nodes 30.4s
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S3D RHS

u =
qu(~x, t)

ρ
; Yn =

qn(~x, t)
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S3D RHS

Cp = p4(T ); h = p4(T )

(Polynomials tabulated and
linearly interpolated)
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S3D RHS
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S3D RHS

∂Yn

∂xi

;
∂uj

∂xj

;
∂T

∂xi

— Historically computed
using sequential 1D
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S3D RHS

λ = f
(

T, ~X
)
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(these polynomials
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S3D RHS

τij = 2µ

[

∂uk
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S3D RHS

∂ρu
∂t

= ∂
∂x

[−ρuu− p + τxx]
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∂
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S3D RHS

A + B ⇔ C + D

kf = AfjT
βj exp

(

−Taj

T

)

Rf = [A][B]kf

Ṡn = Wn

M∑

j=1

νkjRj
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Communication in Chemical Mechanisms

— Need diffusion term separately from advective term to facilitate
dynamic stiffness removal
– See T. Lu et al., Combustion and Flame 2009.
– Application of quasi-steady state (QSS) assumption in situ
– Applied to species that are transported, so applied by correcting

reaction rates (traditional QSS doesn’t conserve mass if species
transported)

— Diffusive contribution usually lumped with advective term:

∂

∂x
(ρuY − Jx)

— We need to break it out separately to correct Rf , Rb
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Readying S3D for Titan

— Migration strategy:
1. Requirements for host/accelerator work distribution
2. Profile legacy code (previous slides)
3. Identify key kernels for optimization

– Chemistry, transport coefficients, thermochemical state
(pointwise)

– Derivatives (reuse)
4. Prototype and explore performance bounds using cuda
5. “Hybridize” legacy code: MPI for inter-node, OpenMP intra-node
6. OpenACC for GPU execution
7. Restructure to balance compute effort between accelerator and

host
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Chemistry

— Reaction rate — temperature dependence
– Need to store rates: temporary storage for Rf , Rb

— Reverse rates from equilibrium constants or separate set of
constants

— Multiply forward/reverse rates by concentrations

— Number of algebraic relationships involving non-contiguous access
to rates scales with number of QSS species

— Species source term is algebraic combination of reaction rates
(non-contiguous access to temporary array)

— Extracted as a ‘self-contained’ kernel; analysis by nVidia suggested
several optimizations

— Captured as improvements in code generation tools (see
Sankaran, AIAA 2012)
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Move everything over . . .

— Memory footprint for 483 gridpoints per node
52 species n-Heptane 73 species bio-diesel

Primary variables 57 78
Primitive variables 58 79
Work Variables 280 385
Chemistry Scratch a 1059 1375
RK Carryover 114 153
RK Error control 171 234
Total 1739 2307
MB for 483 points 1467 1945

aFor evaluating all gridpoints together
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Communication aggregation
for all species do

MPI_IRecv
snd_left( 1:4,:,:) = f(1:4,:,:,i)
snd_right( 1:4,:,:) = f(nx-3:nx,:,:,i)
MPI_ISend
evaluate interior derivative
MPI_Wait
evaluate edge derivative

end for

for all species do
MPI_IRecv

end for
for all species do

snd_left( 1:4,:,:,i) = f(1:nx,:,:,i)
snd_right( 1:4,:,:,i) = f(nx-3:nx,:,:,i)

end for
for all species do

MPI_ISend
end for
MPI_Wait
for all species do

evaluate interior derivative
evaluate edge derivative

end for
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RHS reorganization
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RHS reorganization
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RHS reorganization
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Optimize ∇Y for reuse

— Legacy approach: compute components sequentially:
for all interior i, j, k do

∂Y
∂x =

∑4
l=1 cl

(

Yi+l,j,k − Yi−l,j,k

)

sxi

end for
for all i, interior j, k do

∂Y
∂y =

∑4
l=1 cl

(

Yi,j+l,k − Yl,j−l,k

)

syj

end for
for all i, j, interior k do

∂Y
∂z =

∑4
l=1 cl

(

Yi,j,k+l − Yi,j,k−l

)

szk

end for

— Points requiring halo data handled in separate loops
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Optimize ∇Y for reuse

— Combine evaluation for interior of grid
for all ijk do

if interior i then
∂Y
∂x =

∑4
l=1 cl

(

Yi+l,j,k − Yi−l,j,k

)

sxi

end if
if interior j then

∂Y
∂y =

∑4
l=1 cl

(

Yi,j+l,k − Yl,j−l,k

)

syj

end if
if interior k then

∂Y
∂z =

∑4
l=1 cl

(

Yi,j,k+l − Yi,j,k−l

)

szk

end if
end for

— Writing interior without conditionals requires 55 loops
– 43, 42(N − 8), 4(N − 8)2, (N − 8)3 points
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Restructure to rebalance

 

All GPU CPU + GPU
Halo→host nx3 − (nx − 8)3 nx3 − (nx − 8)3

Halo→device nx3 − (nx − 8)3 0
Interior buffer→host 0 (nx − 8)3 − (nx − 16)3

Result→device 0 nx3 − (nx − 8)3

— Compute derivative “inner-halos” on host

— Data traffic (∼ 30%), but move work to host
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New cost profile

Overall: GPU vs original vs hybrid performance
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Summary (2)

1. Significant restructuring to expose node-level parallelism

2. Resulting code is hybrid MPI+OpenMP and MPI+OpenACC
(-DGPU only changes directives)

3. Optimizations to overlap communication and computation

4. Changed balance of effort

5. For small per-rank sizes, accept degraded cache utilization in favor
of improved scalability
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Reminder: Target Science Problem

— Target simulation: 3D HCCI study

— Outer timescale: 2.5ms

— Inner timescale: 5ns ⇒ 500 000 timesteps

— As ‘large’ as possible for realism:
– Large in terms of chemistry: 73 species bio-diesel or 99 species

iso-octane mechanism preferred, 52 species n-Heptane
mechanism alternate

– Large in terms of grid size: 9003, 6503 alternate
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Benchmark problem

— 1200
3, 52 species n-Heptane mechanism

7200 nodes 18000 nodes

XK6 XK6 XE6 XK6 XK6 XE6

(no GPU) (GPU) (2 CPU) (no GPU) (GPU) (2 CPU)

Adjustment 3.23 2.2 2.4 1.5 1.0 1.1

Size per node 62
3

48
3

WC per timestep 8.4 5.6 6 3.9 2.58 2.78

Total WC time (days) 48.6 32.4 34.7 22.6 15 16.1

— Very large by last years’ standards — 225M core-hours
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Time to solution
Problem 7200 nodes 18000 nodes

CPU CPU+GPU CPU CPU+GPU

650
3, 52 spc Size per node 35

3
25

3

(6859, 665
3) (17576, 650

3)

WC per timestep 1.5 1.0 0.55 0.36

Total WC time 8.8 5.8 3.2 2.1

900
3, 52 spc Size per node 46

3
35

3

(8000, 920
3) (17576, 910

3)

WC per timestep 3.4 2.3 1.5 1.0

Total WC time 20 13 8.8 5.8
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Time to solution
Problem 7200 nodes 18000 nodes

CPU CPU+GPU CPU CPU+GPU

650
3, 73 spc Size per node 35

3
25

3

(6859, 665
3) (17576, 650

3)

WC per timestep 2.1 1.4 0.77 0.51

Total WC time 12.3 8.1 4.5 3

900
3,73 spc Size per node 46

3
35

3

(8000, 920
3) (17576, 910

3)

WC per timestep 4.8 3.2 2.1 1.4

Total WC time 28 18 12.3 8.1
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Further optimization potential
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Temporary storage

— Two of the main time consuming kernels (reaction rates, transport
coefficients) generate significant intermediate results

— Reaction rate ‘spill’
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— We are working to expose another dimension of parallelism to
improve this and permit evaluating much large reaction
mechanisms.
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Future algorithmic improvements

— Second Derivative approximation

— Chemistry network optimization to minimize working set size

— Replace algebraic relations with in place solve

— Time integration schemes - coupling, semi-implicit chemistry

— Several of these are being looked at by ExaCT co-design center,
where the impacts on future architectures are being evaluated
– Algorithmic advances can be back-ported to this project
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Outcomes

— Reworked code is ‘better’: more flexible, well suited to both
manycore and accelerated
– GPU version required minimal overhead using OpenACC

approach
– Potential for reuse in derivatives favors optimization (chemistry

not easiest target despite exps

— We already have ‘Opteron + GPU’ performance exceeding 2
Opteron performance
– Majority of work is done by GPU: extra cycles on CPU for new

physics (including those that are not well suited to GPU)
– We have the ‘hard’ performance
– Specifically moved work back to the CPU
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Outcomes

— Significant scope for further optimization
– Performance tuning
– Algorithmic
– Toolchain
– Future hardware

— Broadly useful outcomes

— Software is ready to meet the needs of scientific research now and to be a
platform for future research

– We can run as soon as the Titan build-out is complete . . .
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