March 29-30, 2012

Not Your Father's Math Library MAGMA for Dense Matrix Problems

Matrix Algebra on GPU and Multicore Architectures (MAGMA) Parallel Linear Algebra for Scalable Multi-core Architectures (PLASMA)

> Jack Dongarra & Stan Tomov University of Tennessee Oak Ridge National Laboratory

Major Changes to Algorithms/Software

- Must rethink the design of our algorithms and software
 - Manycore and Hybrid architectures are disruptive technology
 - Similar to what happened with cluster computing and message passing
 - Rethink and rewrite the applications, algorithms, and software
 - Data movement is expensive
 - Flops are cheap

Challenges for Software/Libraries

- **1.** Synchronization
 - Break Fork-Join model
- 2. Communication
 - Use methods which have lower bound on communication
- **3. Mixed precision methods**
 - SP:DP; 2x speed of ops and 2x speed for data movement

4. Autotuning

- Today's machines are too complicated, build "smarts" into software to adapt to the hardware
- **5.** Fault resilient algorithms
 - Implement algorithms that can recover from failures/bit flips

Fork-Join Parallelization of LU and QR.

Parallelize the update:

- Easy and done in any reasonable software.
- This is the $2/3n^3$ term in the FLOPs count.
- Can be done efficiently with LAPACK+multithreaded BLAS

1. Synchronization (in LAPACK LU)

PLASMA/MAGMA: Parallel Linear Algebra s/w for Multicore/Hybrid Architectures

POTR

TRSM

SYRK

GEMM

GEMM

POTRF

TRSM

SYRK

POTRE

TRSM

GEMM

SYRK

TRSM

SYRK

Cholesky 4 x 4

TRSM

GEMM

SYRK

Objectives

- High utilization of each core
- Scaling to large number of cores
- Synchronization reducing algorithms

Methodology

- Dynamic DAG scheduling (QUARK)
- Explicit parallelism
- Implicit communication
- Fine granularity / block data layout
- Arbitrary DAG with dynamic scheduling

Pipelining: Cholesky Inversion 3 Steps: Factor, Invert L, Multiply L's

Pipelined: 18 (3t+6)

Hybrid Algorithms

A methodology to use all available resources:

MAGMA uses HYBRIDIZATION methodology based on

- Representing linear algebra algorithms as collections of TASKS and DATA DEPENDENCIES among them
- Properly SCHEDULING tasks' execution over multicore and GPU hardware components
- Successfully applied to fundamental linear algebra algorithms
 - One and two-sided factorizations and solvers
 - Iterative linear and eigen-solvers

Productivity

- High-level
- Leveraging prior developments
- Exceeding in performance homogeneous solutions

Hybrid CPU+GPU algorithms (small tasks for multicores and large tasks for GPUs)

MAGMA Performance (single GPU)

* Computation consumed power rate (total system rate minus idle rate), measured with KILL A WATT PS, Model P430

MAGMA Performance (scaling)

Keeneland system, using one node

3 NVIDIA GPUs (M2070 @ 1.1 GHz, 5.4 GB) 2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

Cholesky Factorization (DP)

- Weak scalability on many nodes (NSF Keeneland system; node: 2-Intel 6 core & 3-Nvidia M2070)
- Input size: 34560, 46080, 69120, 92160, 138240, 184320, 276480, 460800

The Need for HP Linear Algebra

Electronic structure calculations

 Density functional theory Many-body Schrödinger equation (exact but exponential scaling)

$$\{-\sum_{i}\frac{1}{2}\nabla_{i}^{2}+\sum_{i,j}\frac{1}{|r_{i}-r_{j}|}+\sum_{i,j}\frac{Z}{|r_{i}-R_{j}|}\}\Psi(r_{1},..r_{N})=E\Psi(r_{1},..r_{N})$$

 Nuclei fixed, generating external potential (system dependent, non-trivial)
 N is number of electrons

Kohn Sham Equation: The many body problem of interacting electrons is reduced to non-interacting electrons (single particle problem) with the same electron density and a different effective potential (cubic scaling).

$$\begin{aligned} &\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|} dr' + \sum_{i} \frac{Z}{|r-R_{i}|} + V_{xc} \} \psi_{i}(r) = E_{i} \psi_{i}(r) \\ &\rho(r) = \sum_{i} |\psi_{i}(r)|^{2} = |\Psi(r_{i},..r_{N})|^{2} \end{aligned}$$

- V_{xc} represents effects of the Coulomb interactions between electrons
- ρ is the density (of the original many-body system)

Vxc is not known except special cases ⇒ use approximation, e.g. Local Density Approximation (LDA)

where V_{xc} depends only on ρ

• A model leading to self-consistent iteration computation with need for HP LA (e.g, **diagonalization** and **orthogonalization**)

Generalized Hermitian Eigen-Problem

 $A x = \lambda B x$

- Compute Cholesky factorization of B = LL^H
- Transform the problem to a standard eigenvalue problem $\tilde{A} = L^{-1}AL^{-H}$
- Solve Hermitian standard Eigenvalue problem $\tilde{A}y = \lambda y$
- Transform back the eigenvectors
 x = L^{-H} y

Performance Comparison of Generalized Eigenproblem in Double Complex Precision

Test system:

2 x Intel X5650 (6 core), 2 x Nvidia M2090

ELPA solver from:

Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations $^{\pm}$

T. Auckenthaler^a, V. Blum^b, H.-J. Bungartz^a, T. Huckle^a, R. Johanni^c, L. Krämer^d, B. Lang^{d,*}, H. Lederer^c, P.R. Willems^d

* Fakultät für Informatik, Technische Universität München, D-85748 Garching, Germany

* Fritz-Haber-Institut der Max-Planck-Gesellschaft, D-14195 Berlin, Germany

^cRechenzentrum Garching der Max-Planck-Gesellschaft am Max-Planck-Institut f
ür Plasmaphysik, D-85748 Garching, Germany
^d Fachbereich C, Bergische Universit
ät Wuppertal, D-42097 Wuppertal, Germany

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Two-Stage Approach to Tridiagonal Form (Communication Reducing)

Reduction to band

- On multicore + GPUs
- Performance as in the one-sided factorizations [derived from fast Level 3 BLAS]

Band to tridiagonal

- Leads to "irregular" (bulge chasing) computation
 - Done very efficiently on multicore !
- GPUs are used to assemble the orthogonal Q from the transformations [needed to find the eigenvectors]

Tridiagonalization in double precision on Fermi

Keeneland system, using one node 3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB) 2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)

Mixed Precision Methods

- Mixed precision, use the lowest precision required to achieve a given accuracy outcome
 - Improves runtime, reduce power consumption, lower data movement
 - Reformulate to find correction to solution, rather than solution
 [\Delta x rather than x].

Mixed Precision Solvers

MAGMA LU-based solvers on Fermi (C2050)

COMPUTATIONAL ROUTINES IN MAGMA 1.1

DRIVER ROUTINES IN MAGMA 1.1

	MATRIX	OPERATION	ROUTINE	INTER	FACES		MATRIX	OPERATION	ROUTINE	INTER	FACES
LINEAR	GE SPD/HPD	LU Solve	{sdcz}getrf {sdcz}getrs	1	<<<<	S EQUATIONS	GE	Solve using LU	(sdcz)gesv	1	1
		Invert Cholesky	{sdcz}getri {sdcz}potrf				SPD/HPD	Solve using Cholesky	(sdcz)posv	1	1
		Solve	(sdcz)potrs		1		GE	Solve using MP Solve LLS using QR	{zc,ds}posv {sdcz}geqrs		1
	TR	Invert	(sdcz)trtri	1		3		Solve using MP	{zc,ds}geqrsv		1
ORTHOGONAL FACTORIZATIONS	GE	QR	{sdcz}geqrf	1	,	STANDARD EVP	GE	Compute e-values,	{sdcz}geev	1	
		Generate Q	{sd}orgqr {cz}ungqr	1	1		SY/HE	Computes all e-values,	{sd}syevd	1	1
		Multiply matrix by Q	(sd)ormar (cz)unmar	1	1			optionally e-vectors Range (D&C)	{cz}heevd {cz}heevdx	~	1
	GE	LQ factorization	{sdcz}gelqf	1	1			Range (B & I It.)	{cz}heevx	1	1
		Multiply matrix by Q	(sd)ormql	1	1	STAND.	GE	Range (MRRR) Compute SVD,	{cz}heevr {sdcz}gesvd	1	*
STANDARD EVP	GE	Hessenberg reduction	{cz}unmql {sdcz}gehrd	1	1	SVP	SPD/HPD	optionally s-vectors	hvove(he)	1	
		Generate Q	{sd}orghr {cz}unghr	1				optionally e-vectors	{cz}hegvd	1	
	SY/HE	Tridiagonalization	{sd}sytrd	1		NERA		Range (D&C) Range (B & I It.)	{cz}hegvdx {cz}hegvx	1	
		Generate Q	(sd)orgtr		1	GE		Range (MRRR)	{cz}hegvr	1	
		Multiply by Q	{cz}ungtr {sd}ormtr {cz}unmtr	4	5						
SVD	GE	Bidiagonalization	(sdcz)gebrd	1							
GENER- ALIZED EVP	SPD/HPD	Reduction to standard form	{sd}sygst {cz]beast	1	1						20

Collaborators / Support

- MAGMA team <u>http://icl.cs.utk.edu/magma/</u>
- PLASMA team <u>http://icl.cs.utk.edu/plasma</u>
- DAGuE team <u>http://icl.cs.utk.edu/dague/</u>
- Collaborating partners

University of Tennessee, Knoxville University of California, Berkeley University of Colorado, Denver

INRIA, France KAUST, Saudi Arabia

