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•  Must rethink the design of our 
algorithms and software 
! Manycore and Hybrid architectures are 

disruptive technology 
•  Similar to what happened with cluster 

computing and message passing 
! Rethink and rewrite the applications, 

algorithms, and software 

! Data movement is expensive 
!  Flops are cheap 
 
 

Major Changes to Algorithms/Software  
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1.  Synchronization 
!  Break Fork-Join model 

2.  Communication 
!  Use methods which have lower bound on communication 

3.  Mixed precision methods 
!  SP:DP; 2x speed of ops and 2x speed for data movement 

4.  Autotuning 
!  Today’s machines are too complicated, build “smarts” into 

software to adapt to the hardware 

5.  Fault resilient algorithms 
!  Implement algorithms that can recover from failures/bit flips 

Challenges for Software/Libraries 
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1. Synchronization (in LAPACK LU) 

•  Fork-join, bulk synchronous processing 27 

Step 1 Step 2 Step 3 Step 4 . . . 
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"  fork join 
"  bulk synchronous processing 

5 Allowing for delayed update, out of order, asynchronous, dataflow execution 



• Objectives 
!  High utilization of each core 
!  Scaling to large number of cores 
!  Synchronization reducing algorithms 

• Methodology 
!  Dynamic DAG scheduling (QUARK) 
!  Explicit parallelism 
!  Implicit communication 
!  Fine granularity / block data layout 

• Arbitrary DAG with dynamic scheduling 
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Cholesky 
4 x 4 

Fork-join 
parallelism 

PLASMA/MAGMA: Parallel Linear Algebra 
s/w for Multicore/Hybrid Architectures 

DAG scheduled 
parallelism 

Time 



Pipelining: Cholesky Inversion 
3 Steps: Factor, Invert L, Multiply L’s 
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POTRF+TRTRI+LAUUM: 25 (7t-3) 
Cholesky Factorization alone: 3t-2 

48 cores 
POTRF, TRTRI and LAUUM. 
The matrix is 4000 x 4000,tile size is 200 x 200, 

Pipelined: 18 (3t+6) 



Hybrid Algorithms  

#  MAGMA uses HYBRIDIZATION methodology based on 
–  Representing linear algebra algorithms as collections  

of TASKS and DATA DEPENDENCIES among them 
–  Properly SCHEDULING tasks' execution over  

multicore and GPU hardware components 
 

#  Successfully applied to fundamental 
linear algebra algorithms 
–  One and two-sided factorizations and solvers 
–  Iterative linear and eigen-solvers 

 

#  Productivity 
–  High-level 
–  Leveraging prior developments 
–  Exceeding in performance homogeneous solutions 

Hybrid CPU+GPU algorithms
(small tasks for multicores and large 
      tasks for GPUs) 

A methodology to use all available resources: 
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MAGMA Performance (single GPU) 
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MAGMA Performance (scaling) 
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Cholesky Factorization (DP) 
•  Weak scalability on many nodes (NSF Keeneland system; 

 node: 2-Intel 6 core & 3-Nvidia M2070) 
•  Input size: 34560, 46080, 69120, 92160, 138240, 184320, 276480, 
460800  

(node: 2-Intel 6 core & 3-Nvidia M2070) 



The Need for HP Linear Algebra 

$  A model leading to self-consistent iteration computation with 
need for HP LA (e.g, diagonalization and orthogonalization) 



•  Compute Cholesky factorization of  
    B   = LLH 
                                                                

•  Transform the problem to a standard 
eigenvalue problem  
    Ã  = L!1AL!H 

                                     
•  Solve Hermitian standard Eigenvalue problem  

    Ãy = "y 
                                    

•  Transform back the eigenvectors 
    x    = L!H y                                        

A x = " B x  

Generalized Hermitian Eigen-Problem 



Hybridization detail 
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Performance Comparison of Generalized 
Eigenproblem in Double Complex Precision 

!  Test system:  
 2 x Intel X5650 (6 core), 2 x Nvidia M2090 

Thomas Schulthess 
Raffaele Solcà 

Time shown, so  
lower is better 

ELPA solver from: 



Two-Stage Approach to Tridiagonal Form  
(Communication Reducing) 

•  Reduction to band 
!  On multicore + GPUs 
!  Performance as in the one-sided factorizations 

[derived from fast Level 3 BLAS] 

•  Band to tridiagonal 
!  Leads to “irregular” (bulge chasing) computation 

!  Done very efficiently on multicore ! 
!  GPUs are used to assemble the orthogonal Q 

from the transformations 
[needed to find the eigenvectors]  



Performance results 

Keeneland system, using one node!
3 NVIDIA GPUs (M2070@ 1.1 GHz, 5.4 GB)!
2 x 6 Intel Cores (X5660 @ 2.8 GHz, 23 GB)!

   Tridiagonalization in double precision on Fermi!
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DSYTRD comparison on Keeneland

 

 

DSYTRD_2stages_1 GPU
DSYTRD_3 GPU’s
DSYTRD_2 GPU’s
DSYTRD_1 GPU
DSYTRD_MKL (12 threads)

10X

!
#  Communication reducing!

#  Developed routines for multiGPUs "
   obtaining scalable performance"
!
#  The new algorithm (2 stages     !
   approach) on a Keeneneland node  !
   bring a  speedup of  ~  10 X  !



Mixed Precision Methods 
•  Mixed precision, use the lowest 

precision required to achieve a given 
accuracy outcome 
!  Improves runtime, reduce power 

consumption, lower data movement 
! Reformulate to find correction to 

solution, rather than solution 
[ !x rather than x ]. 
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Mixed Precision Solvers 

FERMI       Tesla C2050: 448 CUDA cores @ 1.15GHz
                  SP/DP peak is 1030 / 515 GFlop/s 

MAGMA LU-based solvers on Fermi (C2050) 
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"   Similar results for Cholesky & QR 
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Collaborators / Support 
#  MAGMA team 

http://icl.cs.utk.edu/magma/ 
 

#  PLASMA team 
http://icl.cs.utk.edu/plasma 
 

#  DAGuE team 
http://icl.cs.utk.edu/dague/ 
 

#  Collaborating partners 
     University of Tennessee, Knoxville 

University of California, Berkeley 
University of Colorado, Denver 
 
INRIA, France 
KAUST, Saudi Arabia 
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