Computing Nuclei: Present Status, Future Prospects

David J. Dean

Director Physics Division

Oak Ridge National Laboratory Oak Ridge, Tennessee

March 29, 2012 ACSS workshop

Outline

- The Physics
- Where we are:
 - Nuclear Density Functional Theory
 - Nuclear Coupled Cluster theory
- Prospects for the future

The Physics

Thematic unification of nuclear physics

ACSS 2012

Some unresolved physics questions

- What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes?
- What is the origin of simple patterns in complex nuclei?
- What is the origin of the elements in the cosmos?
- What is the nature of neutrinos?

5 Managed by UT-Battelle for the U.S. Department of Energy

Cannot synthesize all elements created in stellar explosions Require accurate descriptions for certain applications → PREDICTIVE Theory

Where we are: Nuclear Density Functional Theory

Degree of freedom: nuclear densities and quasiparticle densities (think HFB)

6 Managed by UT-Battelle for the U.S. Department of Energy

Example: Large Scale Mass Table Calculations

HFB+LN mass table, HFBTHO

for the U.S. Department of Energy

Where is the neutron drip line? UQ in action

Nuclear DFT Benchmark 2012

How many protons and neutrons can be bound in a nucleus?

9 Managed by UT-Battelle for the U.S. Department of Energy Netional Leboratory

Where we are: Nuclear Coupled Cluster Theory

Degrees of freedom: protons and neutrons (nucleons)

10 Managed by UT-Battelle for the U.S. Department of Energy

Nuclear Coupled Cluster Theory: 2001 – 2010

- First paper, 2004, Dean & Hjorth-Jensen...laid out some things we wanted to do. Followed by exploratory papers with chemists (PRLs, PRC)...
- Major steps forward (2007-2010, all Hagen et al.):
 - 3-body hamiltonians
 - CC in the continuum
 - CC benchmark (2-body) through Ca-40
 - Solution to center of mass problem
- I went to DC...Gaute now leads the effort...

11 Managed by UT-Battelle for the U.S. Department of Energy

What does it take for CC...

- Excellent scientists and computational science ties
- A "GOOD" Hamiltonian
- A "machine appropriate" algorithm
 - Evolves over time
 - HW design affects algorithms
- Today:
 - 150k cores to look at one nucleus at current model spaces
 - Bundled runs across ~20k cores...oscillator parameter varied
 - CCSD scaling (with symmetry)
 - Λ -CCSD(T) scaling

Nuclear Hamiltonian from chiral effective field theory

[Weinberg; van Kolck; Epelbaum et al.; Entem & Machleidt; ...]

13 Managed by UT-Battelle for the U.S. Department of Energy

Oxygen isotopes from chiral interactions

- Integrate over the third leg in infinite nuclear matter
- Derive density dependent corrections to the nucleon-nucleon interaction
- J. Holt . Phys.Rev.C81, 024002, (2010)

4 Managed by UT-Battelle for the U.S. Department of Energy

Oxygen isotopes from chiral interactions

Excited states in ²⁴O computed with EOM-CCSD and Compared to experiment

J^{π}	2_1^+	1_{1}^{+}	4_1^+	3_1^+	2^+_2	1_{2}^{+}
$E_{\rm CC}$	5.2	5.9	6.8	7.4	7.6	8.9
$E_{\rm Exp}$	4.7(1)	5.33(10)				
$\Gamma_{\rm CC}$	0.03	0.05	0.006	0.02	0.04	0.57
$\Gamma_{\rm Exp}$	$0.05^{+0.21}_{-0.05}$	$0.03^{+0.12}_{-0.03}$				

- three-nucleon forces decompress the spectra
- good agreement with experiment

We predict the newly observed resonance at 7.5MeV in 24 O to be a super position of several states with spin and parity 4⁺,3⁺,2⁺

Matter and charge radii for ²¹⁻²⁴O Computed from intrinsic densities and Compared to experiment.

15

Calcium isotopes from chiral interactions

2+ systematics in Calcium isotopes from chiral interactions

	⁴⁸ Ca			⁵² Ca			⁵⁴ Ca			
	2+	4+	4+/2+	2+	4+	4+/2+	2+	4 +	4+/2+	
CC	4.02	4.67	1.13	2.70	5.349	1.92	2.76	5.83	2.16	
AXD ged I or the U.S	3.83	4.50	1.17	2.56	?	?	?	?	?	Nati

"Machine appropriate" algorithms

18 Managed by UT-Battelle for the U.S. Department of Energy

ACSS_2012

Hagen and Nam, arxiv.org/pdf/1203.3765.pdf

Prospects for the future

Nuclear Structure INCITE on Jaguar; UNEDF SciDAC

- Three basic codes fold into INCITE
 - Shell Model (CI) James Vary
 - Nuclear DFT (Nazarewicz)
 - Coupled Cluster
- UNEDF (SciDAC-II) played a major role in developments; 9 universities, 7 national labs

For a popular description of UNEDF, see:

SciDAC Review Winter 2007

http://www.scidacreview.org/0704/pdf/unedf.pdf

• Nucl. Phys. News 21, No. 2, 24 (2011)

54 Papers in 2011, 6 in 2012: 1 Science, 15 PRL

Coupled-cluster scaling

- System of non-linear coupled algebraic equations: solve by iteration; lots of matrix-matrix and matrix-vector multiplies
 - CCSD O(n²N⁴) (n=number of nucleons; N=size of space)
- Λ -CCSD(T) O(n²N⁵) 1E+26 Rotational symmetry ullet1E+24 REDUCED by 1E+22 power of 2/31E+20 Sdol 1E+18 100 90 Known 1E+16 80 FRIB Number of Isotopes 70 Possible 1E+14 40Ca, NUCCOR-j 60 40Ca. NUCCOR-m 1E+12 78Ni. NUCCOR-i 50 78Ni, NUCCOR-m 132Sn, NUCCOR-j 40 1E+10 Q 10 12 26 28 30 32 30 Major Shells (Model Space) 20 10 Major Shell 8 20 30 20 40 60 80 100 J-coupled 72 930 420 from Brad Sherrill Atomic Number M-scheme 480 6160 19720

21 Managed by UT-Battelle for the U.S. Department of Energy

Acceleration Options on Jaguar XK6

** Libraries are based on CUDA

Accelerating CC equations

Basic numerical operation:

t _{new} (ab, ij) =	$\sum_{\substack{k,l=1,n\\c,d=n+1,N}} V $	(kl, cd)t _{old} (cd,	ij)t _{old} (ab, k	(I)
-----------------------------	---	-------------------------------	----------------------------	-----

Many such terms exist Use matrix-matrix multiply algorithm

- A first foray into accelerators
 - Libsci_acc (Cray)
 - OpenACC, cce
- Modified DGEMM in t2 eq.
- 1 MPI process + 16 OpenMP threads vs. 1 MPI process + GPU per node
- Time for a single iteration (~30+ iterations for convergence)

23 Managed by UT-Battelle for the U.S. Department of Energy

Time to mature

OpenMP/MPI are supported on a variety of architectures with C/C++/ Fortran

Final notes

- Excellent science to do!
- For faster adoption of GPUs across disciplines
 - Improve GPU Programming tools (i.e. directives, libraries)
 - Standardization
 - Increased documentation/examples
 - Portability
 - What is the "MPI" for GPUs (robust/portable)?
- Codes can be restructured as we know the rules
 - i.e. use of allocatable derived types does not work with GPU directives
 - Size of data/work on GPUs is crucial