Toward Global Seismic Imaging based on Spectral-Element and Adjoint Methods

Jeroen Tromp

ACSS 2012

Collaborators: Ebru Bozdag, Joseph Charles, Dimitri Komatitsch, Daniel Peter, Max Riethmann, Olaf Schenk, and Hejun Zhu

Outline

Forward Modeling

Adjoint Tomography

Thursday, April 5, 2012

Finite-elements:

Finite-elements:

hexahedral elements

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature
- diagonal mass matrix

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature
- diagonal mass matrix

explicit time-marching scheme

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature
- diagonal mass matrix

explicit time-marching scheme

 $M\ddot{U} = -KU + F$

Open Source Software SPECFEM3D & SPECFEM3D_GLOBE

- 3D crust and mantle models
- Topography & Bathymetry
- Rotation
- Ellipticity
- Gravitation
- Anisotropy
- Attenuation

www.geodynamics.org

Coffee Cup Simulation

Coffee Cup Simulation

Parallel Implementation

Global mesh partitioning

Cubed Sphere: 6 n² mesh slices

Parallel Implementation

Global mesh partitioning

SPECFEM3D_GLOBE

Cubed Sphere: 6 n² mesh slices

Thursday, April 5, 2012

Tohoku Earthquake March 11, 2011, M=9.1 resolution 17 s 5 h on 384 cores

Dennis McRitchie

Thursday, April 5, 2012

Near Real-Time Earthquake Information

global.shakemovie.princeton.edu

IRIS

Observed and Simulated Seismograms

Another Seismometer....

Forward Modeling

Adjoint Tomography

Thursday, April 5, 2012

Seismic Imaging of Europe

160 earthquakes 750 seismographic stations

Depth

Thursday, April 5, 2012 🗦 —

Hejun Zhu

Seismic Imaging of Europe

Thursday, April 5, 2012 🛛 —

Starting 3D Crustal Model

A A REPORT OF A

Starting 3D Crustal Model

Adjoint Tomography: Workflow

The Western Mediterranean since the Oligocene

Gideon Rosenbaum, Gordon Lister & Cécile Duboz

School of Geosciences, Australian Crustal Research Centre Monash University, Victoria, Australia

<u>http://magma.earth.uq.edu.au/rosenbaum/Movies.html</u>

Thursday, April 5, 2012

Mediterranean-Calabria Paleotectonics

Mediterranean-Calabria Paleotectonics

Depth 625 km

Depth 625 km

Depth 625 km

start of the lower mantle

start of the lower mantle

Thursday, April 5, 2012

Towards Global Seismic Imaging

254 earthquakes $5.8 \le Mw \le 7$

shallow: d \leq 50 km intermediate: 50 km < d \leq 300 km deep: d > 300 km

Station Coverage

2.2 million measurements for 254 earthquakes

• Forward modeling at unprecedented speeds, scales & accuracy

- Forward modeling at unprecedented speeds, scales & accuracy
- Implications for near real-time simulations & hazard assessment

- Forward modeling at unprecedented speeds, scales & accuracy
- Implications for near real-time simulations & hazard assessment
 - 'Adjoint tomography' is feasible

- Forward modeling at unprecedented speeds, scales & accuracy
- Implications for near real-time simulations & hazard assessment
 - 'Adjoint tomography' is feasible
 - Future extensions:
 - Include frequency-dependent amplitudes
 - Shear attenuation
 - More general anisotropy

- Forward modeling at unprecedented speeds, scales & accuracy
- Implications for near real-time simulations & hazard assessment
 - 'Adjoint tomography' is feasible
 - Future extensions:
 - Include frequency-dependent amplitudes
 - Shear attenuation
 - More general anisotropy

• Ultimate goal: To image our entire planet

- Forward modeling at unprecedented speeds, scales & accuracy
- Implications for near real-time simulations & hazard assessment
 - 'Adjoint tomography' is feasible
 - Future extensions:
 - Include frequency-dependent amplitudes
 - Shear attenuation
 - More general anisotropy

	# earthquakes	# simulations	CPU core hours
Europe	160	11,200	806,400
Globe (Phase 1)	250	17,500	14,437,400
Globe (Phase 2)	5,000	350,000	739,200,000

- Forward modeling at unprecedented speeds, scales & accuracy
- Implications for near real-time simulations & hazard assessment
 - 'Adjoint tomography' is feasible
 - Future extensions:
 - Include frequency-dependent amplitudes
 - Shear attenuation
 - More general anisotropy

	# earthquakes	# simulations	CPU core hours
Europe	160	11,200	806,400
Globe (Phase 1)	250	17,500	14,437,400
Globe (Phase 2)	5,000	350,000	739,200,000

• Assimilation of 50 million measurements