Toward Global Seismic Imaging based on Spectral-Element and Adjoint Methods

Jeroen Tromp

ACSS 2012
Collaborators: Ebru Bozdag, Joseph Charles, Dimitri Komatitsch, Daniel Peter, Max Riethmann, Olaf Schenk, and Hejun Zhu

Outline

Forward Modeling

Adjoint Tomography

Spectral-Element Method

Finite-elements:

Spectral-Element Method

Finite-elements:

- hexahedral elements

Spectral-Element Method

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature

Spectral-Element Method

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature

- diagonal mass matrix

Spectral-Element Method

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature

- diagonal mass matrix
- explicit time-marching scheme

Spectral-Element Method

Finite-elements:

- hexahedral elements
- Gauss-Lobatto-Legrendre quadrature

- diagonal mass matrix
- explicit time-marching scheme

$$
M \ddot{U}=-K U+F
$$

Open Source Software

SPECFEM3D \& SPECFEM3D_GLOBE

Www.geodynamics.org

- 3D crust and mantle models
- Topography \& Bathymetry
- Rotation
- Ellipticity
- Gravitation
- Anisotropy
- Attenuation

Coffee Cup Simulation

Coffee Cup Simulation

SPECFEM3D

Parallel Implementation

Global mesh partitioning

Cubed Sphere: $6 n^{2}$ mesh slices

Parallel Implementation

Global mesh partitioning

SPECFEM3D_GLOBE
Cubed Sphere: $6 n^{2}$ mesh slices

Tohoku Earthquake

Near Real-Time Earthquake Information global.shakemovie.princeton.edu

IRIS

Observed and Simulated Seismograms

September 3, 2008, Argentina ($M=6.3,571 \mathrm{~km}$)

Another Seismometer....

Forward Modeling

Adjoint Tomography

Seismic Imaging of Europe

160 earthquakes
750 seismographic stations

Seismic Imaging of Europe

Starting 3D Crustal Model

Starting 3D Crustal Model

Adjoint Tomography: Workflow

The Western Mediterranean since the Oligocene

Gideon Rosenbaum, Gordon Lister \& Cécile Duboz

School of Geosciences, Australian Crustal Research Centre Monash University, Victoria, Australlia

Mediterranean-Calabria Paleotectonics

Mediterranean-Calabria Paleotectonics

Depth 75 km

Depth 75 km

Bohemian massif

Depth 75 km

Depth 75 km

Depth 75 km

Depth 75 km

Depth 75 km

Eifel hotspot \&
Rhine graben

Depth 75 km

Depth 75 km

Depth 625 km

Hellenic Subduction

A "Hole" Beneath Bulgaria

Towards Global Seismic Imaging

254 earthquakes

$$
5.8 \leq \mathrm{Mw} \leq 7
$$

shallow: $\mathrm{d} \leq 50 \mathrm{~km}$ intermediate: $50 \mathrm{~km}<\mathrm{d} \leq 300 \mathrm{~km}$ deep: $\mathrm{d}>300 \mathrm{~km}$

Station Coverage

2.2 million measurements for 254 earthquakes

Conclusions

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy
- Implications for near real-time simulations \& hazard assessment

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy
- Implications for near real-time simulations \& hazard assessment
- 'Adjoint tomography' is feasible

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy
- Implications for near real-time simulations \& hazard assessment
- 'Adjoint tomography' is feasible
- Future extensions:
- Include frequency-dependent amplitudes
- Shear attenuation
- More general anisotropy

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy
- Implications for near real-time simulations \& hazard assessment
- 'Adjoint tomography' is feasible
- Future extensions:
- Include frequency-dependent amplitudes
- Shear attenuation
- More general anisotropy
- Ultimate goal: To image our entire planet

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy
- Implications for near real-time simulations \& hazard assessment
- 'Adjoint tomography' is feasible
- Future extensions:
- Include frequency-dependent amplitudes
- Shear attenuation
- More general anisotropy

	\# earthquakes	\# simulations	CPU core hours
Europe	160	11,200	806,400
Globe (Phase 1)	250	17,500	$14,437,400$
Globe (Phase 2)	5,000	350,000	$739,200,000$

Conclusions

- Forward modeling at unprecedented speeds, scales \& accuracy
- Implications for near real-time simulations \& hazard assessment
- 'Adjoint tomography' is feasible
- Future extensions:
- Include frequency-dependent amplitudes
- Shear attenuation
- More general anisotropy

	\# earthquakes	\# simulations	CPU core hours
Europe	160	11,200	806,400
Globe (Phase 1)	250	17,500	$14,437,400$
Globe (Phase 2)	5,000	350,000	$739,200,000$

- Assimilation of 50 million measurements

