
R&D in Trilinos for
Emerging Parallel Systems

Christopher Baker
Computational Engineering and Energy Studies

Oak Ridge National Laboratory, USA

Accelerating Computational Science
Symposium 2012 (ACSS 2012)

March 29-30, 2012, Washington, D.C.

2 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Related Developers

• Oak Ridge National Laboratory
–  Chris Baker
–  Ross Bartlett

• Sandia National Laboratories
–  Mike Heroux
–  Mark Hoemmen
–  Alan Williams
–  Carter Edwards

• École Polytechnique Fédérale de Lausanne
–  Radu Popescu

3 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Challenges of Heterogeneous Many-Core

• MPI-only not enough
–  Need to port: it doesn’t work for accelerators.
–  Inefficient: it misses a lot of shared-memory benefits.

• MPI+ can entail significant work
–  We want to minimize the number of code bases.
–  We want to minimize the effort to add a new code base.

• Programming language issues
–  Many APIs require a particular language.
–  Developers resent being told what language to use.

•  Lib/User interface issues
–  Extending the library should not introduce serial bottlenecks.
–  Shouldn’t require users to be shared-memory API experts.

4 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Algorithm R&D Directions

• Current focus on MPI+X, where X is any/all
reasonable industry standard.
–  Distributed memories ! distributed memory programming

• New efforts on efficient kernels and problem setup
• Support for embedded UQ and optimization
• Krylov solvers for emerging problems (e.g., UQ):
–  Interacting subspace methods for simultaneous/sequenced

systems (incl. block and recycling methods)
–  Communication avoiding methods for single RHS systems
–  Numerically fault-resilient solvers, e.g., FT-GMRES

• Mixed/multi-precision solvers and preconditioners

5 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Software R&D Directions

•  Templated C++ code
–  Templating data allows more efficient use of cache and bandwidth.
–  Templating data expands capability (e.g., integer limit, complex)

• Generic shared memory parallel node
–  Template metaprogramming shared memory parallel node API
–  Static translation layer to, e.g., TBB, Thrust, OpenMP

• Hybrid programming model
–  Hybrid programming skeletons to support most common patterns
–  Expose models for high-productivity, performance-portable apps

• Non-intrusive modification of structures and algorithms
–  Expose the shared-memory parallel node API to apps
–  Static polymorphism to support node-optimized kernels

6 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Example: A Benefit of Generic Kernels
•  Tpetra distributed linear algebra library provides a set of

methods for executing user kernels on vectors, e.g.:
–  unary_transform<UOP>(Vector &v, UOP op)
–  binary_transform<BOP>(Vector &v1, const Vector &v2, BOP op)
–  reduce<G>(const Vector &v1, const Vector &v2, G op_glob)

•  Fine level for expressiveness, coarser levels for convenience.
// single-prec dot() with double-prec accumulator via custom kernel
result = reduce(*x, *y, myDotProductKernel<float,double>());
// Or a composite adaptor and STL functors
result = reduce(*x, *y, reductionGlob<ZeroOp<double>>(
 std::multiplies<float>(),
 std::plus<double>()));
// Or using inline functors via C++11 lambda functions
result = reduce(*x, *y, reductionGlob<ZeroOp<double>>(
 [](float x, float y) {return x*y;} ,
 [](double a, double b){return a+b;});
// Or using a convenience macro to generate all of that
result = REDUCE2(x, y, x*y, ZeroOp<float>, std::plus<double>());

7 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Example: Inline, Templated MPI+ CG

for (k=0; k<numIters; ++k) {
 A->apply(*p, *Ap); // Ap = A*p
 S pAp = REDUCE2(
 p, Ap,
 p*Ap, ZeroOp<S>, plus<S>()); // p'*Ap
 const S alpha = rr / pAp; // alpha = r’*r/p’*Ap
 BINARY_TRANSFORM(x, p,
 x + alpha*p); // x = x + alpha*p
 S rrold = rr;
 rr = BINARY_PRETRANSFORM_REDUCE(
 r, Ap, // fused kernels
 r - alpha*Ap, // r - alpha*Ap
 r*r, ZeroOp<S>, plus<S>()); // sum r'*r
 const S beta = rr / rrold; // beta = r’*r/old(r’*r)
 BINARY_TRANSFORM(p, r,
 r + beta*p); // p = z + beta*p
}

•  The API supports rapid prototyping of algorithms
–  Fun game: Find the MPI or threading!

8 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Example: Recursive Multi-Prec. FPCG
for (k=0; k<numIters; ++k) {
 A->apply(*p,*Ap); // Ap = A*p

 T pAp = REDUCE2(p, Ap,
 p*Ap, ZeroOp<T>, plus<T>()); // p'*Ap
 const T alpha = zr / pAp;
 BINARY_TRANSFORM(x, p, x + alpha*p); // x = x + alpha*p
 BINARY_TRANSFORM(rold, r, r); // rold = r
 T rr = BINARY_PRETRANSFORM_REDUCE(
 r, Ap, // fused:
 r - alpha*Ap, // r - alpha*Ap
 r*r, ZeroOp<T>, plus<T>()); // sum r'*r

 recursiveFPCG<TS::next,LO,GO,Node>(out,db_T2); // recurse

 auto plusTT = make_pair_op<T,T>(plus<T>());
 pair<T,T> both = REDUCE3(z, r, rold, // fused:
 make_pair(z*r, z*rold), // z'*r, z'*r_old
 ZeroPTT, plusTT);
 const T beta = (both.first - both.second) / zr;
 zr = both.first;
 BINARY_TRANSFORM(p, z, z + beta*p); // p = z + beta*p
}

9 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Example: Simple CG

• MPI+TBB parallel node
•  #threads = #mpi x #tbb
• Single codebase,

solver instantiated on either
qd_real or double.

!" #" $" %" !&"

!"
#$

%
&'
'()
*+
'',
&-
.'

/*01)'#"%2&3'*4'053&16,'

'()"!"

'()"#"

'()"$"

'()"%"

'()"!&"

!" #" $" %" !&"

!"
#$

%
&'
'()
*+
'',
&-
.'

/*01)'#"%2&3'*4'053&16,'

'()"!"

'()"#"

'()"$"

'()"%"

'()"!&"

 Double precision

 Quad-double precision

10 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Example: Recursive Multi-Prec. FPCG

TBBNode initializing with numThreads == 2
TBBNode initializing with numThreads == 2
Running test with Node==Kokkos::TBBNode on rank 0/2
Beginning recursiveFPCG<qd_real>
 Beginning recursiveFPCG<dd_real>
 |res|/|res_0|: 1.269903e-14
 |res|/|res_0|: 3.196573e-24
 |res|/|res_0|: 6.208795e-35
 Convergence detected!
 Leaving recursiveFPCG<dd_real> after 2 iterations.
|res|/|res_0|: 2.704682e-32
 Beginning recursiveFPCG<dd_real>
 |res|/|res_0|: 4.531185e-09
 |res|/|res_0|: 6.341084e-20
 |res|/|res_0|: 8.326745e-31
 Convergence detected!
 Leaving recursiveFPCG<dd_real> after 2 iterations.
|res|/|res_0|: 3.661388e-58
Leaving recursiveFPCG<qd_real> after 2 iterations.

•  Problem: Oberwolfach/gyro, N=17K, NNZ=1M
•  Single solver code-base, templated on qd_real/dd_real/double

2 iters. of qd_real,
4 iters. of dd_real,
99.9% of time spent

in double iters.

Solved to nearly 60 digits

11 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Example: Problems with Generic Kernels

• Generic kernels are not always successful:
–  e.g., CRS mat-vec on GPUs is typically sub-optimal

• Different sparse mat-vec kernels use different data structure.
• We want vendors/researchers to substitute their own kernels.
• One solution treats the kernel as a first-class object.
–  Template param. dictating data structure and mat-vec kernel

• Another specializes a class for a unique platform, non-
intrusively, e.g., CrsMatrix< double, XK6Node >
•  These mirror the solutions undertaken by many others:
–  static polymorphism via #ifdefs
–  runtime polymorphism, often object-oriented

12 Managed by UT-Battelle
 for the U.S. Department of Energy Engineering a Large-Scale Library

Closing Comments

• What about issues reliability and resilience?
–  How much can we handle via analytically robust algorithms?

• What is the proper balance of generic kernels and
architecture specific kernels?
• We are current focused on leveraging generic

programming and abstract interfaces for flexible
implementations and easy composition for larger
problems.
•  The goal is to maximize programmer efficiency (both

library and app) without significant performance
sacrifices.

