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Our Interests, Trials, Errors &
Occasional Successes in Computation



MD Simulation Challenges

Simulations

Extreme detail

Sampling issues?

Parameter quality?

Experiments

Efficient averaging

Less detail

Chemistry
s -3 0-6-15 -12 -9 310 10 10 10 10 10 10s s s s s s

Where we are
Where we 

want to be

Where we 

need to be

BiologyPhysics



3

rc rc
1
2
rc

(a) (b) (c)

FIG. 1: Communication patterns for the (a) half shell, (b) eighth shell and (c) midpoint methods illustrated for 2D domain
decomposition. rc is the cut-off radius. The lines with circles show examples of pair interactions that are assigned to the
processor of the central cell. For (a) and (b) the assignment is based on the endpoints of the line, for (c) on the midpoint.
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FIG. 2: The domain decomposition cells (1-7) that communi-
cate coordinates to cell 0. Cell 2 is hidden below cell 7. The
zones that need to be communicated to cell 0 are dashed, rc

is the cut-off radius.

are calculated.
Bonded interactions are distributed over the processors

by finding the smallest x, y and z coordinate of the charge
groups involved and assigning the interaction to the pro-

cessor with the home cell where these smallest coordi-
nates reside. This procedure works as long as the largest
distance between charge groups involved in bonded inter-
actions is not larger than the cut-off radius. To check if
this is the case, we count the number of assigned bonded
interactions during domain decomposition and compare
it to the total number of bonded interactions in the sys-
tem.

For full dynamic load balancing the boundaries be-
tween the cells need to move during the simulation. For
1D domain decomposition this is trivial, but for a 3D
decomposition the cell boundaries in the last two dimen-
sions need to be staggered along the first dimensions to
allow for complete load balancing (we will go into the
details of the load balancing later). Fig. ?? shows the
communicated zones for 2D domain decomposition in the
most general case, namely a triclinic unit cell with dy-
namic load balancing. Zones A, B and C indicate the
parts of cells 1, 2 and 3 respectively that are within the
cut-off radius rc of home cell 0. Without dynamic load
balancing this would be all that would need to be com-
municated to the processor of cell 0. With dynamic load
balancing the staggering can lead to an extra volume C’
in cell 3 that needs to be communicated, due to the non-
bonded interactions between cells 1 and 3 that must be
calculated on the processor of cell 0. For bonded interac-
tions zones A and B might also need to be expanded. To
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FIG. 3: The zones to communicate to the processor of cell 0,
see the text for details.

ensure that all bonded interaction between charge groups

can be assigned to a processor, it is sufficient to ensure

that the charge groups within a sphere of radius rc are

present on at least one processor for every possible cen-

ter of the sphere. In Fig. ?? this means we also need to

communicate volumes B’ and C’. When no bonded inter-

actions are present between charge groups, these volumes

are not communicated. For 2D decomposition A’, B’ and

C’ are the only extra volumes that need to be considered.

For 3D domain decomposition the pictures becomes quite

a bit more complicated, but the procedure is analogous

apart from more extensive book-keeping. All three cases

have been fully implemented for general triclinic cells.

The communication of the coordinates and charge

group indices can be performed efficiently by ’pulsing’ the

information in one direction simultaneously for all cells.

This needs to be repeated for each dimension. Consider

a 3D domain decomposition where we decompose in the

order x, y, z; meaning that the x boundaries are aligned,

the y boundaries are staggered in along the x direction

and the z boundaries are staggered along the x and y

directions. Each processor first sends the zone that its

neighboring cell in -z needs to this cell. Now each pro-

cessor can send the zone it neighboring cell in -y needs,

plus the part of the zone it received from +z, that is also

required by the neighbor in -y. The last step consists

of a pulse in -x where (parts of) 4 zones are sent over.

In this way on 3 communication steps are required to

communicate with 7 processors, while no information is

sent over that is not directly required by the neighbor-

ing processor. The communication of the forces happens

according to the same procedure, but in reversed order

and direction.

Another example of a minor complication in the com-

munication is virtual interaction sites constructed from

atoms in other charge groups. This is used in some poly-

mer (anisotropic united atom) force fields, but GRO-

MACS can also employ virtual sites to entirely remove

hydrogen vibrations and construct the hydrogens in their

equilibrium positions from neighboring heavy atoms each

timestep. Since the constructing atoms are not necessar-

ily interacting on the same node, we have to track the

virtual site coordinate dependencies separately to make

sure they are both available for construction and that

forces are properly communicated back.

III. DYNAMIC LOAD BALANCING

Calculating the forces is by far the most time consum-

ing part in MD simulations. In GROMACS, the force

calculation is preceded by the coordinate communication

and followed by the force communication. We can there-

fore balance the load by determining the time spent in the

force routines on each processor and then adjusting the

volume of every cell in the appropriate direction. The

timings are determined using inline assembly hardware

cycle counters and supported for virtually all modern

processor architectures. For a 3D decomposition with or-

der x, y, z the load balancing algorithm works as follows:

First the timings are accumulated in the z direction to

the processor of cell z=0, independently for each x and y

row. The processor of z=0 sums these timings and sends

the sum to the processor of y=0. This processor sums the

timings again and send the sum to the processor of x=0.

This processor can now shift the x boundaries and send

these to the y=0 processors. They can then determine

the y boundaries, send the x and y boundaries to the

z=0 processors, which can then determine z boundaries

and send all boundaries to the processors along their z

row. With this procedure only the necessary information

is sent to the processors that need it and global commu-

nication is avoided.

As mentioned in the introduction, load imbalance can

come from several sources. One needs to move bound-

aries in a conservative fashion in order to avoid oscil-

lations and instabilities, which could for instance occur

due to statistical fluctuations in the number of particles

in small cells. We found that scaling the relative lengths

of the cells in each dimension with 0.5 times the load

imbalance, with a maximum scaling of 5% produced ef-

ficient and stable load balancing. Of course, with our

current decision to only communicate to nearest neigh-

bors one has to make sure that cells do not get smaller

than the cut-off radius in any dimension, but when/if this

becomes a bottleneck it is straightforward to add another

step of communication. For a large numbers of cells or

inhomogeneous systems two more checks are required. A

first restriction is that boundaries should not move more

than halfway an adjacent cell (where instead of halfway

one could also choose a different value). This prevents

cells from moving so far that a charge group would move

5

two cells in a single step. It also prevents load balanc-
ing issues when there are narrow zones of high density in
the system. A second problem is that due to the stagger-
ing, cell boundaries along neighboring rows could shift to
such an extent that additional cells would enter the cut-
off radius. To avoid this, we limit the new position of each
boundary to the old limit plus half the old margin. In this
way we make sure that one boundary can move up and
independently an adjacent staggered boundary can move
down, without extra communication. The neighboring
boundaries are communicated after load balancing, since
they are needed to determine the zones for communi-
cation. When pressure scaling is applied the limits are
increase by 2% to allow the system to adjust at the next
domain decomposition before hitting cut-off restrictions
imposed by the staggering.

In practical tests, load imbalances of a factor of 2 on
several hundreds of processors were reduced to 2% af-
ter a few load balancing steps, or a couple of seconds of
simulation time.

IV. PARALLEL HOLONOMIC CONSTRAINTS

There are two strong reasons for using constraints in
simulations: First, a physical reason is that constraints
are a more faithful representation of chemical bonds in
their quantum mechanical ground state than a classical
harmonic potential. Second, a practical reason is that
the rapid bond vibrations limit the time step. Removing
these vibrations by constraining the bonds thus allows
us to increase the time step. A frequently used rule-
of-thumb is 1 fs without constraints, 1.4 fs with bonds
to hydrogens constrained, and 2 fs when all bonds are
constrained. Unfortunately, the common SHAKE? con-
straint algorithm is iterative and therefore not very suit-
able for parallelization - in fact, there has previously not
been any efficient algorithm that could handle constraints
connected over different processors. Most biomolecular
packages therefore use only constraints for bonds involv-
ing hydrogens; the actual time step value can be dicussed,
but since there is clearly a factor 2 difference in reduced
mass between C-H and C-C bonds, holonomic constraints
will always enable time steps a factor

√
2 larger.

By default, GROMACS uses a non-iterative con-
straints algorithm called linear constraint solver
(LINCS), which proved much easier to fully parallelize
as hinted already in the original paper? . In the LINCS
algorithm, the range of influence of coupled constraints
is set by the order of the expansion for the matrix
inversion. Before applying the LINCS algorithm one
can communicate a subset of the old coordinates and
the new unconstrained coordinates between neighboring
cells. The atoms connected by up to one plus the
expansion order bonds away need to be communicated
(see Fig. ??). One can then constrain the local bonds
plus the extra bonds. The communicated atoms will
not have the final correctly constraint positions (since

FIG. 4: Three domain decomposition cells with in circles the

atoms that need to be communicated between the cells for

the parallel LINCS constraint algorithm. Here the LINCS

order is 3, so atoms up to 1+3=4 bonds away need to be

communicated. For simplicity each atom is assumed to be a

separate charge group.

they interact with additional neighbors), but the local
atoms will. The beauty of the algorithm is that normal
molecular simulations only requires a single iterative
step (and even when multiple steps are used for very
high accuracy the number of iterations is fixed), after
which the updated positions are communicated and
adjustment forces calculated locally. The results of
parallel LINCS are identical to those of the single
processor version. The constraint communication can be
accomplished with a single forward and backward pulse
of the decomposition grid in each dimension, similar to
the domain decomposition communication.

Note that the same principle could also be used to
parallelize other constraint algorithms. However, apart
from multiple communication steps for iterative methods
such as SHAKE? , another problem is that one does not
know a priori which atoms need to be communicated,
because the number of iterations is not fixed. To our
best knowledge, this is the first implementation of an
efficient parallel holonomic constraint algorithm.

The accuracy of the velocities of constrained parti-
cles has further been improved both for LINCS and
SHAKE using a recently described procedure based on
Lagrangian multipliers? . For SETTLE? we have ap-



DPPC & Cholesterol
130k atoms

...on a single dual 
dual-core Opteron!

Blue Gene/L & Blue Matter: 
scaled to 3 atoms/CPU

~10ns/day on 8192 CPUs

GROMACS 3: 2ns/day

(Scaling data from 2008)



It is easier to get a simple
problem/algorithm to scale!

i.e., you see much better 
relative scaling before

introducing any optimization



Even with amazing network we 
hit a limit at ~200 atoms/core

100 atoms/core is certainly 
within reach, maybe 10, not 1

We need faster nodes, not just
more nodes at lower clock



Programming model
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Simpli!ed execution path

Wallclock time for an MD step: 
~0.5 ms if we want to simulate 1μs/day



From neighborlists to
pairs of proximity cells

X X X X
X X X X
X X X X
X X X X

Organize
as tiles with

all-vs-all
interactions:



Tiling circles is di#cult!

• You need a lot of cubes to cover a sphere

• All interactions beyond cuto$ need to be zero



The art of calculating zeros
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including data X-fer to & from device
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Complete time step including
kernel, h2d, d2h, CPU constraints,

CPU PME, CPU integration,OpenMP & MPI

480 μs/step (1500 atoms)

700 μs/step (6000 atoms)



Example performance: 24,000 atom protein (ns/day)



1x C2075

2x C2075

3x C2075

4x C2075

0 50 100 150 200

178.53

182.25

117.32

87.69

Current performance (Still 24k atoms)

ns/day

Domain decomposition overhead 
enters from 1 to 2 GPUs

3  cores

6 cores

9 cores

12 cores
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http://www.cse.scitech.ac.uk/cbg/benchmarks/Report_II.pdf

Challenge: GROMACS has very short iteration times - 
hard requirements on latency/bandwidth

Scaling of Reaction-!eld & PME

http://www.cse.scitech.ac.uk/cbg/benchmarks/Report_II.pdf
http://www.cse.scitech.ac.uk/cbg/benchmarks/Report_II.pdf
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We’re essentially hitting the hard scaling limit. 
Communication/calculation must overlap to proceed

At least low/high priority; more levels could be used
for background tasks like compression of output data

Prioritize calculations on remote data when available



• Move PME to GPU if necessary

• Communicate asynchronously from 
GPU/CPU with other nodes if necessary

• But we want to keep the CPU for complex stu$!

• We don’t need a Xeon, but
if you go ARM we need
• Tight coupling (on die)

• High-end future 64bit ARM

• Flexible memory handling

• Fine-grained thread control 

Future directions



Exascale?



2010: ~300,000 cores

2014: ~3M cores
2012: ~1M cores

2016: ~10M cores
2018: ~30M cores

2020: ~100M cores
2022: ~300M cores

~2024: 1B ‘cores’
These will soon be small computers

How will YOU
use a billion cores?







Scaling as an Obsession?

prior to the improvement. The new implementation of the
load balancing is now part of the GIT version of the
GROMACS and will also be included in GROMACS 4.1.

To highlight the computational benefit of using the RF,
the scaling of a simulation of the 3.3 million lignocellulose
system using the PME method is also shown in Figure 9.
The PME simulation was run using NAMD, since this MD
application is known to have good parallel efficiency.57 To
ensure a “fair” comparison between the two electrostatics
methods, some of the parameters of the PME simulation were
adjusted to improve its performance (standard 2 fs time step
for RF and 6 fs full electrostatics time step and neighbor-
list distance update for PME, see Section 2.1 for details). In
particular, the reason the RF calculation is faster than the
PME at low levels of parallelization is that, on a single
processor, the time per step for GROMACS with RF is

shorter than for NAMD with PME. However, we stress that
the aim of this benchmark is a comparison between the
electrostatic treatments and not between the different MD
applications. Two different applications were used simply
because a direct comparison of simulations using different
electrostatics methods with one application is presently not
possible: NAMD, which is presently the most scalable code
using PME on Cray XT, does not have RF implemented,
and GROMACS does not yet have an efficiently scaling PME
implemented, with the consequence that PME calculations
using GROMACS currently scale up to less than 1 000 cores
for large systems (for more details see the Supporting
Information).

The significant difference in the parallel efficiency of the
PME and the RF electrostatics methods, demonstrated in
Figure 9, can be understood by examining the weak scaling
of the parallel FFT required for PME, shown in Figure 11.
In weak scaling, the ratio of the problem size to the number
of cores used in the simulation is held constant. The FFT is
a new and improved implementation, the technical details
of which are presented in Supporting Information, A.3. The
Inset of Figure 11 shows that the new FFT is faster than the
FFTs from LAMMPS-FFT,58 FFTE 4.0,59 and FFTW 3.2.60

In ideal weak scaling, the time, tf, required to perform one

Figure 8. Potentials of mean force for the primary alcohol dihedral ω ) O6-C6-C5-C4: (a) results from all 36 origin chains
and (b) results from all 36 center chains.

Figure 9. Strong scaling of 3.3 million atom biomass system
on Jaguar Cray XT5 with RF. With 12 288 cores the simulation
produces 27.5 ns/day and runs at 16.9TFlops. As a compari-
son, the performance of PME is shown.

Figure 10. Strong scaling of 5.4 million atom system on
Jaguar Cray XT5. With 30 720 cores, 28 ns/day and 33TFlops
are achieved.

Figure 11. Weak scaling of complex-to-complex FFT on Cray
XT5 with FFT implemented as described in Supporting
Information, A.3. The 3.3 million atom system requires the
588 × 128 × 128 FFT. The time required to compute one
FFT step is represented by tf.

ohio2/yct-yct/yct-yct/yct99907/yct2688d07z xppws 23:ver.3 8/11/09 11:00 Msc: ct-2009-00292r TEID: mmh00 BATID: 00000

H J. Chem. Theory Comput., Vol. xxx, No. xx, XXXX Schulz et al.
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prior to the improvement. The new implementation of the
load balancing is now part of the GIT version of the
GROMACS and will also be included in GROMACS 4.1.

To highlight the computational benefit of using the RF,
the scaling of a simulation of the 3.3 million lignocellulose
system using the PME method is also shown in Figure 9.
The PME simulation was run using NAMD, since this MD
application is known to have good parallel efficiency.57 To
ensure a “fair” comparison between the two electrostatics
methods, some of the parameters of the PME simulation were
adjusted to improve its performance (standard 2 fs time step
for RF and 6 fs full electrostatics time step and neighbor-
list distance update for PME, see Section 2.1 for details). In
particular, the reason the RF calculation is faster than the
PME at low levels of parallelization is that, on a single
processor, the time per step for GROMACS with RF is

shorter than for NAMD with PME. However, we stress that
the aim of this benchmark is a comparison between the
electrostatic treatments and not between the different MD
applications. Two different applications were used simply
because a direct comparison of simulations using different
electrostatics methods with one application is presently not
possible: NAMD, which is presently the most scalable code
using PME on Cray XT, does not have RF implemented,
and GROMACS does not yet have an efficiently scaling PME
implemented, with the consequence that PME calculations
using GROMACS currently scale up to less than 1 000 cores
for large systems (for more details see the Supporting
Information).

The significant difference in the parallel efficiency of the
PME and the RF electrostatics methods, demonstrated in
Figure 9, can be understood by examining the weak scaling
of the parallel FFT required for PME, shown in Figure 11.
In weak scaling, the ratio of the problem size to the number
of cores used in the simulation is held constant. The FFT is
a new and improved implementation, the technical details
of which are presented in Supporting Information, A.3. The
Inset of Figure 11 shows that the new FFT is faster than the
FFTs from LAMMPS-FFT,58 FFTE 4.0,59 and FFTW 3.2.60

In ideal weak scaling, the time, tf, required to perform one
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Figure 9. Strong scaling of 3.3 million atom biomass system
on Jaguar Cray XT5 with RF. With 12 288 cores the simulation
produces 27.5 ns/day and runs at 16.9TFlops. As a compari-
son, the performance of PME is shown.

Figure 10. Strong scaling of 5.4 million atom system on
Jaguar Cray XT5. With 30 720 cores, 28 ns/day and 33TFlops
are achieved.

Figure 11. Weak scaling of complex-to-complex FFT on Cray
XT5 with FFT implemented as described in Supporting
Information, A.3. The 3.3 million atom system requires the
588 × 128 × 128 FFT. The time required to compute one
FFT step is represented by tf.
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Gromacs has scaled
to 150k cores on 
Jaguar @ ORNL

But: Small systems won’t scale to large numbers of cores!
How shall we break this impasse?

...

Only gigantic systems scale - limited number of applications
...
...
...
...

......
1M-100M atoms



A New Open Source Marriage: 
The Copernicus Project

+

+
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A di$erent approach
• Each project is really a simulation ensemble

• As a user, I don’t run a single trajectory, but e.g.

• A markov state model of dynamics

• A free energy calculation for 1,000 compounds

simulation

simulation

simulation

simulation

build
Markov

state
model

simulation

simulation

simulation

build
Markov

state
model



Markov State Models

Vince Vaughn 

Start many simulations
Cluster conformations
Identify macrostates

Calculate transition
rates between them
Restart from states with 
least sampling

Monitor convergence
of eigenvalues of 
transition matrix

Ensemble simulation is not
an approximation - chemistry is 

ALL about ensembles!



Copernicus in action
The villin headpiece 244 trajectories

3840-5736 cores used
MSM clustering 
Each generation 50ns,
and takes ~10h to run
(we stick to 24 cores)



30 hours later



We can predict the structure
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Convergence
of transition
state matrix
after ~72h



Ab initio prediction
1.4 Å RMSD

Update: With vsites we 
now achieve TSM 

convergence in 46h!

Compared to ASIC HW:
4-5X better throughput

2X more e#cient sampling
10X total



Sort of a vision...
• Multithreading & multigrid to get lattice-based 

algorithms to scale e#ciently

• Individual simulation parts scaling to >10,000 
cores even for small systems

• (Large systems will scale to anything)

• Ensembles of ~1000 active simulations that 
exchange MSM data as a single job

• While we hope for more general stream 
processors than GPUs, this is not the bottleneck
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