Used Fuel Disposition Campaign

FY13 Focus for the Used Fuel Disposition Campaign

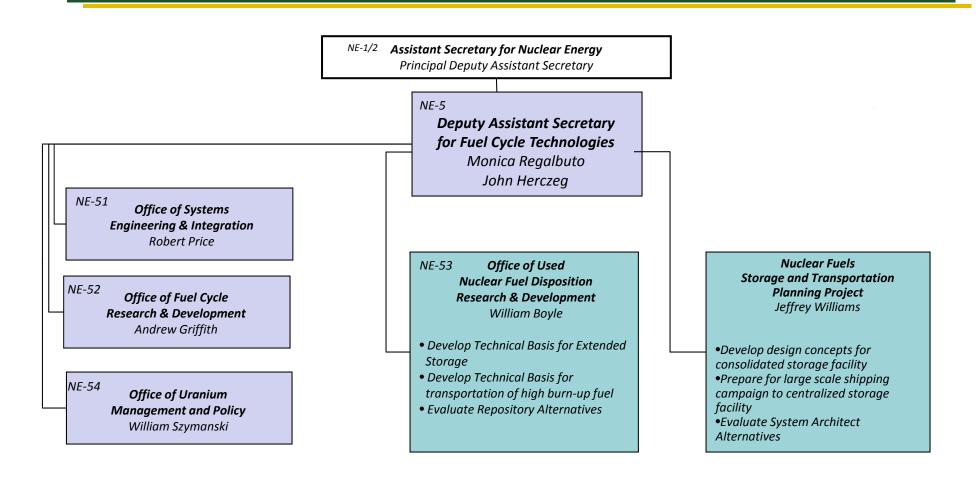
Storage & Transportation

Ken B. Sorenson, Sandia National Laboratories

Control Account Manager for UFD Storage & Transportation

INMM Spent Fuel Management Seminar XXVIII
January 14, 2013
Washington DC

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.


Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Document # SAND 2012-4029C, approved for unlimited release

Contents

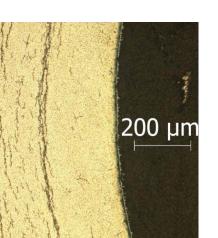
- DOE/NE-5 Organization
- UFD Storage & Transportation R&D Focus
- FY13 Major Thrusts
- **■** Conclusions

NE-5 Organization

UFD Storage &Transportation R&D Focus

The UFD Campaign conducts work using Control Accounts (CAs) that are related to specific technical or programmatic areas. For the FY13 S&T program, there are 5 Control Accounts:

- Experiments
- Engineering Analysis
- Transportation
- Field Demonstration
- Security

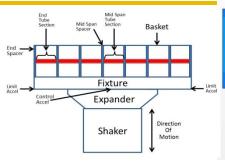

Objectives:

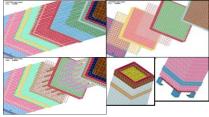
- 1. Develop the technical bases to demonstrate used fuel integrity for extended storage periods
- 2. Develop the technical bases for fuel retrievability and transportation after long term storage
- 3. Develop the technical basis for transportation of high burnup fuel

Focus:

- 1. Experimental and analytical R&D
- 2. Collaborating with industry to integrate the R&D work with the confirmatory the storage demonstration project

FY13 Major Thrusts

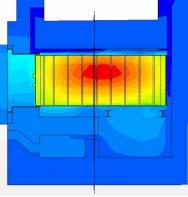

UFD Telecon, April 12, 2012 Billone, Liu; Argonne


Experiments

- Complete PWR ring compression tests: **DBTT**
- Hydride doping

Analysis

• Hydride re-orientation

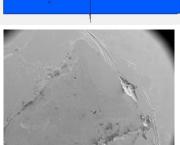

UFD Telecon, April 12, 2012 Wagner, Adkins; ORNL

Transportation

Shaker table test

Analysis

• Stress profiles


304 SS 100µg/cm² corrosion test

Experiments

• Site inspections

Field Demo

• Industry collaborations

UFD Telecon, April 12, 2012 Bryan, Enos; SNL

Experiments

- Canister corrosion
- Stress corrosion cracking

Analysis

Thermal profiles

Science based. Engineering driven

'Jones 2010.ppt',

Calvert Cliffs Dry Fuel Storage

and Industry Lessons Learned

FY13 Major Thrusts: R&D informed by earlier technical gap analyses

Hanson, et al.; FCRD-USED-2012-000109, PNNL-21360, <u>Used Fuel Storage and Transportation Data Gap Prioritization (Draft)</u>; April 30, 2012

Gap	Priority	Gap	Priority
Thermal Profiles	1	Neutron poisons – Thermal aging	7
Stress Profiles	1	Moderator Exclusion	8
Monitoring – External	2	Cladding – Delayed Hydride Cracking	9
Welded canister – Atmospheric corrosion	2	Examination of the fuel at the INL	10
Fuel Transfer Options	3	Cladding – Creep	11
Monitoring – Internal	4	Fuel Assembly Hardware – SCC	11
Welded canister – Aqueous corrosion	5	Neutron poisons – Embrittlement	11
Bolted casks – Fatigue of seals & bolts	5	Cladding – Annealing of radiation damage	12
Bolted casks – Atmospheric corrosion	5	Cladding – Oxidation	13
Bolted casks – Aqueous corrosion	5	Neutron poisons – Creep	13
Drying Issues	6	Neutron poisons – Corrosion	13
Burnup Credit	7	Overpack – Freeze-thaw	14
Cladding – Hydride reorientation	7	Overpack – Corrosion of embedded steel	14

Imminent need
Immediate to facilitate demonstration early start
Near-term High or Very High

Long-term High Near-term Medium or Medium High Long-term Medium

Conclusions

- The FY13 ST R&D work is closely tied to the earlier technical data gap analysis work that identifies and prioritizes the technical gaps that need to be addressed to satisfy the ST objectives
- The R&D work is closely coupled with industry efforts to field a confirmatory storage demonstration project
- The R&D work is aligned with the Blue Ribbon Committee recommendations