

Extended Storage Technical Issues

John Kessler

Manager, Used Fuel and HLW Management Program

INMM Spent Fuel Management Seminar XXVIII

16 January 2013

Extended Storage – an International Issue

- Most "nuclear" countries face extended storage
 - No reprocessing
 - No disposal
 - Centralized (consolidated) storage is still storage

EPRI Initiates Extended Storage-specific Work in 2009

- Recognized need for international collaboration
- Share existing information
- Are there common technical issues for future technical work?
- Identify specific industry needs for R&D

"Extended Storage Collaboration Program" (ESCP) Launched in 2009

Bring together US and international organizations engaged with active or planned R&D

- Storage and transportation system vendors
- Regulators and their R&D contractors
- National waste management organizations
- R&D organizations
- Industry (utilities/cask vendors)

Currently >200 members from ~20 countries

EPRI Extended Storage Collaboration Program (ESCP)

- Purpose: "Provide the technical bases to ensure continued safe, long-term used fuel storage and future transportability"
- Modeled on prior dry storage license extension research
- Phased approach
 - Phase 1: Review current technical bases and conduct gap analysis for storage systems
 - Phase 2: Conduct experiments, field studies, and additional analyses to address gaps (already underway)
 - Phase 3: Coordinate research that results in a program documenting the performance of a dry storage system loaded with high burnup fuel (>45 GWd/MTU)

ESCP Subcommittees

- Fuel/Internals
- "Marine environments"
- Non-destructive evaluation (NDE)
- Concrete Systems
- High burnup confirmatory demonstration
- "International"
- 2013: Aging Management
 - Build on ANL and industry work

Gap Analyses: Highest Priority Items

- Welded SS canisters SCC
- High burnup cladding: hydride effects (reorientation, embrittlement)
- Bolted casks:
 - Corrosion of bolts
 - Embrittlement and mechanical degradation of bolts
- Fuel pellet swelling

Cross-Cutting Needs

- Improved thermal modeling
- Stress profiles
- Degradation monitoring systems
- Adequacy of drying
- Sub-criticality: burnup credit
- Examine casks at INL (DOE)
- Retrievability: fuel transfer options

ESCP-Generated Collaboration

• Stainless steel dry storage canister field inspections (EPRI)

- DOE providing co-funding and laboratory analysis support (thermal, potentially more)
- Laboratory experiments identifying conditions to support SCC in SS
 - Initiated by CRIEPI
 - Several countries and programs expanding initial testing
- High burnup used fuel confirmatory data demonstration
 - Several years of discussion within ESCP
 - EPRI proceeding with a demo
 - DOE issues RFP

Field Inspections and Large-scale Testing

- In situ inspections of SS canisters
- Full-scale, high burnup confirmatory data collection (the "demo" program)

EPRI Plans for In Situ Inspection of SS Canisters

Inspection #1: Calvert Cliffs (June 2012)

- ISFSI ~ ¹/₂ mile from Chesapeake Bay
- Canisters in service for > 15 years
- Low decay heat canisters
- Two canisters were inspected
 - Aging management inspection for license renewal
 - Marine environment effects

 $\ensuremath{\textcircled{C}}$ 2012 Electric Power Research Institute, Inc. All rights reserved.

General Inspection Plans

Scope of inspections:

- Visual
- Temperature
- Surface contaminants

Additional data collection on environment

- Air temperature & humidity
- Salt content in air

Calvert Cliffs Visual Inspection through NUHOMS Air Outlets

Calvert Cliffs NUHOMS Design

DSC Inspection Locations

DSC-6 Top Cover Plate and Closure Weld

Both in good condition with no signs of corrosion

DSC-6 Lower East DSC Shell

Surface rust on scratched area near Top End

Possible carbon steel contamination due to gouging by tooling during fabrication or handling

Bottom DSC-6 Shell Between Rails

Light surface rust stain on near middle of DSC

Future SS Canister Inspection and Aging Management Plans

- Mid 2013:
 - Hope Creek (southern New Jersey shore, next to cooling tower)
 - Diablo Canyon (West Coast)
- Potential third site
- Aging management
 - EPRI initiating FMEA (failure modes and effects analysis) as first step in an industry-wide aging management plan
 - New ESCP subcommittee

Full-scale, High Burnup Confirmatory Data Collection ("high burnup demo") Plans

Confidence in understanding longer-term behavior of dry storage system requires

- Model development and benchmarking data
- "Separate effects testing"
- Confirmatory testing under "prototypic" conditions
 - Full scale
 - Representative dry storage conditions
 - Drying process and inerting
 - Thermal evolution
 - Geometry
 - Prefer multiple high BU fuel types (if possible)

High Burnup Demo Option that Keeps Startup Time Short

- Initiate the demo at a reactor site
 - Avoids up-front transportation to a national lab
 - Avoids having to wait for a full-scale hot cell to be funded and constructed
 - Keeps costs low(er) prior to test initiation
- EPRI-Dominion-TN (start test in ~3 years)
 - Willing host (North Anna)
 - Multiple, high burnup fuel types
 - Partner with a cask vendor supplying cask(s) at low cost
 - EPRI providing funding for instrumented lid design
 - NRC may waive license review fees
 - Looking for co-funding

Together...Shaping the Future of Electricity

