

Spent Fuel Management at Savannah River Site

David B. Rose

Spent Fuel Project Chief Engineer

Savannah River Nuclear Solutions, LLC

January 14 – 16, 2013

INMM Spent Fuel Management Seminar XXVIII

Crystal Gateway Marriott Hotel - Arlington, VA

Outline

- Fuel inventory and future receipts
- Disposition status and options
- Extended storage mission
- Augmented monitoring and condition assessment program
- Summary

L Basin Inventory

	# Assemblies
Aluminum-based fuels	~13,000
Higher Actinide targets	~200
Non-Al-based fuels	~2000
TOTAL	~15,000

Material Test Reactor (MTR) Fuels

High Flux Isotope Reactor (HFIR)

Forecast Future Fuel Receipts

- Foreign Research Reactors (FRR)
 - Authorized through May 2019
 - Estimated 3,200 additional assemblies
 - Estimated 125 casks

- Domestic Research Reactors (DRR)
 - No defined end date
 - 40 100 assemblies per year
 - 5 20 casks per year

Fuel Disposition

- Ongoing vulnerable fuel dissolution campaign
 - Declad thorium/uranium fuel from Sodium Reactor Experiment (SRE)
 - Bare metal fuel with a sealed can providing single barrier from basin water
 - Co-processing selected high-aluminum MTR fuel; no uranium recovery
- Aluminum-based fuels
 - Prepared to ship standard MTR fuels to H Canyon for processing
 - Down blend highly enriched uranium (up to 93% U-235) to lower enrichment for use in commercial power reactors
 - Awaiting DOE direction and NEPA action to proceed with this disposition alternative
 - Other Al-based fuel types (e.g., HFIR) are also candidates for H
 Canyon processing
 - Requires additional facility and transportation preparations due to irregular sizes and shapes

Fuel Disposition

- Higher actinide targets
 - Produced in Savannah River reactors
 - Isotopes of programmatic value
 - Exploring alternatives for recovery of rare isotopes
- Stainless steel and zirconium clad fuels
 - Many non-standard geometries and packages
 - Not compatible with current H Canyon process
- Dry Fuel Storage Project
 - Conceptual strategy developed in FY12

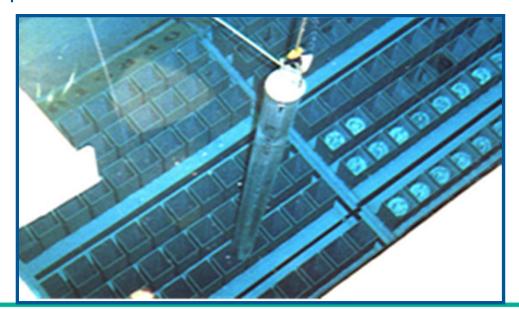
Extended Safe Storage of Used Fuel

Past planning basis

- All fuel receipts to be terminated during 2019
- Facility to be deinventoried late 2019 via fuel exchange with INL and H Canyon processing; followed immediately by facility deactivation
- Fuel and facility long-term viability assessments based on these key assumptions

Current planning basis

- FRR receipts to terminate in 2019; DRR receipts to continue indefinitely
- Presently using mid 2030s deinventory as basis for infrastructure and system viability assessments
- Re-evaluated fuel storage and basin viability for extended life
 - Evaluation concluded extended safe storage possible; recommended activities to improve understanding of conditions and potential long-term degradation
 - Developed Augmented Monitoring & Condition Assessment Program (AMCAP)

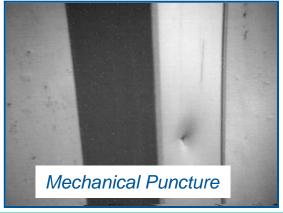

Augmented Monitoring and Condition Assessment Program (AMCAP)

- Continue existing programs
 - Basin water chemistry control program
 - Stringent controls on water purity; minimize corrosion of fuel and storage fixtures
 - Corrosion surveillance programs
 - Corrosion coupon surveillance; predict corrosion rates of fuel and fixture materials
 - Microbial monitoring program
 - Structural integrity program
 - Periodic visual examination of basin floor & walls and accessible exterior walls
- Implement three additional programs to assess long term viability of:
 - 1. Al-based fuels in standard storage configurations
 - Isolation cans containing degraded/damaged fuels
 - 3. Basin structural integrity

Al-Based Fuels in Standard Storage Configurations - Description

- Standard storage configuration
 - Typically 4 to 5 assemblies placed in cylindrical tube, called a 'bundle'
 - Bundle has openings at ends; assemblies immersed in treated basin water
 - Bundles placed in vertical racks

Al-Based Fuels in Standard Storage Configurations - Concerns


General corrosion of aging fuels

- L Basin began receiving research reactor fuels in 1997
- Fuels stored at originating facilities or interim storage locations prior to receipt in L Basin; some dating back to 1961

Further degradation of fuels received in failed/degraded condition

- Assemblies cut, sectioned, or dismantled for experiments/tests
- Cladding penetrated in handling
- Corroded / degraded fuels

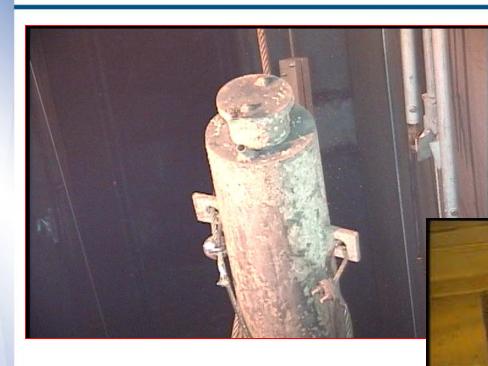
Al-Based Fuels in Standard Storage Configurations – AMCAP Plan

- Establish in-service inspection program for bundled MTR fuel
 - Selection of fuels for inspection (complete)
 - Fuels with known defects; various burnups
 - Develop inspection equipment and procedures (in progress)
 - Sample water inside fuel bundle tubes before disturbing; evaluate localized water chemistry surrounding fuel (samples pulled; analyses in progress)
 - Conductivity, pH, alpha, beta/gamma, chlorides, metals, microbes
 - Perform baseline visual inspections; evaluate results
 - Defined regions of interest for each assembly
 - Underwater cameras with reproducible geometry & lighting
 - Periodic reexamination; trend changes

Al-Based Fuels in Standard Storage Configurations – AMCAP Plan

< Pulling water sample from within bundle

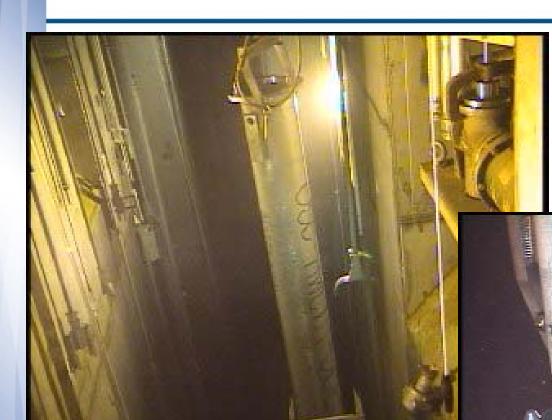
Filling sample bottle >



Isolation Cans Containing Damaged/Degraded Fuels - Description

- Many different types of fuels in over 400 isolation cans
 - Fuel: uranium, plutonium, thorium, and blends
 - Fuel form: metals, oxides, silicides, various alloys
 - Cladding: zirconium, stainless steel, aluminum, declad
 - Fuel conditions: destructively tested, failed, intact
 - Containers: mostly aluminum, some stainless steel; vented or sealed
 - Storage configurations: mostly small containers placed in oversized cans or standard bundles
- Most were packaged about 50 years ago
- All were handled and shipped to L Basin from Receiving Basin for Offsite Fuels (RBOF) facility in early 2000s
- Some cans known to have failed in prior storage; overpacked for shipment and storage
- No existing capability to open these containers or inspect contents

Isolation Cans Examples –



< Fuel Element Container (FEC)

L Basin Oversized Can (OSC)

- Eight inch diameter aluminum pipe
- Flanged lid with j-tube gas vent

Isolation Cans Containing Damaged/Degraded Fuels - Concerns

- Water chemistry inside cans
 - No means to monitor or control
- Failure of inner cans allowing direct water contact with degraded fuel
- Integrity of outer cans; corrosion from within
- Continued degradation of known failed fuels and containers
- Increased difficulties in disposition
- Corrosion product gas accumulation / pressurization
 - Venting of gas bubbles
- Criticality (loss of geometry)

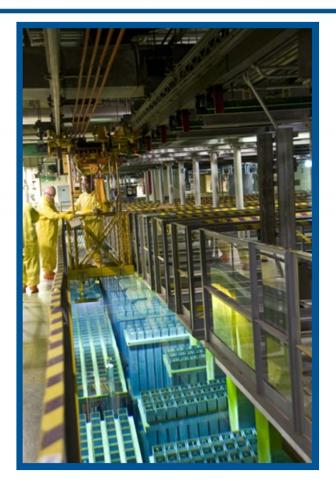
L Basin Oversized Can – Gas Bubble Video Loop

Isolation Cans Containing Damaged/Degraded Fuels – AMCAP Plan

- In-situ examination of L Basin oversized cans
 - Visual and ultrasonic examination of cans (complete)
- Corrosion and degradation evaluation of Isolation Can configurations
 - Compile details and history of isolation containers and contents (complete)
 - Evaluate configurations for degradation susceptibility (in progress)
 - Identify items for further study; bounding configurations/risks
 - Continuing oxidation of degraded fuels
 - Integrity of containment, types and levels of containment
 - Evaluate fuel isotope characteristics & alteration products
 - Develop and deploy indirect characterization methods

Isolation Cans Containing Damaged/Degraded Fuels – AMCAP Plan

- Results of ultrasonic and visual examination of oversized cans
 - Oversized cans in good condition
 - No thinning of container walls
 - No gas accumulation
 - Internal contents covered with water
 - Inner contents at anticipated elevation
 - No accumulation of sediment at bottom of cans


Basin Structural Integrity

Description

- Steel reinforced concrete basin
- Approximately 3.4 million gallons
- Placed in service in 1954
- Epoxy coating reapplied in early 1980s

Concerns

- General aging
- Effects of prolonged exposure to basin water

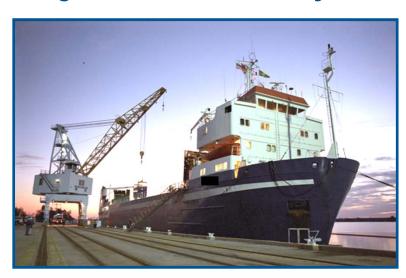
Basin Structural Integrity – AMCAP Plan

- Test concrete of similar age and operating history
 - Determine concrete sampling requirements (complete)
 - Identify suitable surrogate material (complete)
 - Collect samples (complete)
 - Test samples and evaluate results
 - Strength of concrete
 - Condition of rebar
 - Effects at water interface
- Update structural predictive models, if necessary
- Incorporate into revised structural analysis for L Basin

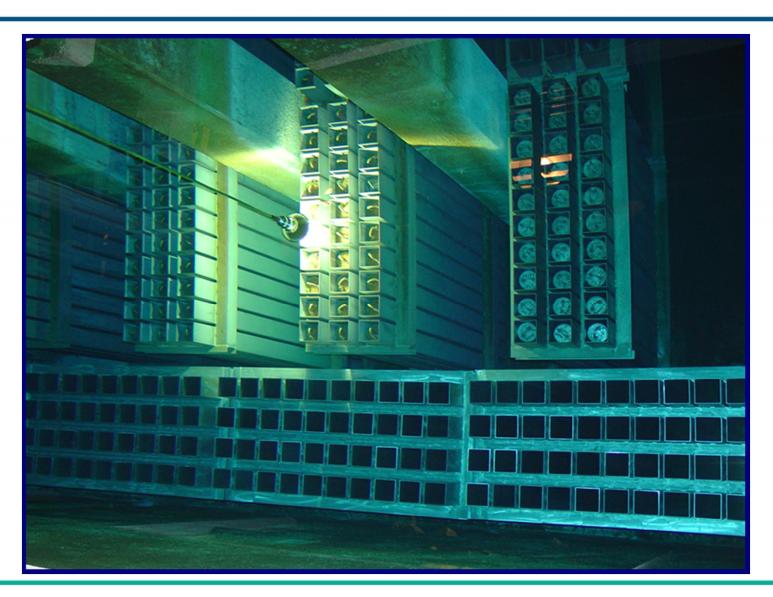
Basin Structural Integrity – AMCAP Plan Progress

- Obtained concrete core samples from below water line in C Basin wall
 - Integrated with basin dewatering and grouting activities
- Cut to size for testing
- Shipped to Savannah River National Laboratory for storage and analysis

Core Drilling Rig



Concrete Core Sample


Summary

- L Basin mission has been extended
- Continue foreign and domestic reactor fuel receipts
- Safeguard HEU for reduction of global threat
- Disposition fuels as directed
- Implement Augmented Monitoring and Condition Assessment Program to ensure safety of extended basin storage

