

CHALLENGES AND OPPORTUNITIES FOR BETTER INTEGRATION IN SPENT FUEL MANAGEMENT; BEGINNING WITH THE END IN MIND

Juan C. Subiry
NAC International

INMM Spent Fuel Management Seminar January 14-16, 2013

CHALLENGES AND OPPORTUNITIES FOR BETTER INTEGRATION IN SPENT FUEL MANAGEMENT WITH PROBABLE ENDS IN MIND

Perspective

The U.S. fractured, open market approach to interim spent fuel management has created a diversity of solutions that make it more expensive and difficult to re-integrate when it comes to final disposition.

- None of the current licensed dry storage systems are compatible with any current repository option.
- Considerable work to repackage current storage canisters into a disposal configuration
- Diversity of dry storage systems currently require a diversity of transportation systems
- Current storage systems and facilities are not well integrated into the R&D programs assessing fuel storage and disposition performance

"The reason we come up with a spent fuel strategy is to ensure un-interrupted operation of the site"

Zita Martin 1/15/2013

- Nuclear Power Generators primary goal is to produce Electricity –
 Spent Fuel dry storage is a necessity / nuisance that will continue (CIS or Not)
- DOE's responsibility is to pay for remedies/settlements but they have no current direction for integrating utility storage cask selection into final waste disposition requirements
 - This has contributed to a diversity of designs / lack of integration
 - Disposal packaging requirements differs from MPC systems requirements
 - \$500 M/yr for liability and increasing --- Results?

There is limited incentives to optimize / integrate solutions when someone else pays the bill. DOE must drive the change in strategy

What is our strategy?

The Options

Long-term onsite storage

- ✓ On that path
- Pilot Centralized Interim Storage by ✓ "Possible" 2021 / Comm. CIS by 2025

Repository by 2048

- ✓ "Probable"
- Spent Fuel Recycle "Old" or "New"

 ▼ TBD technology

New Reactor Technologies

✓ Questionable

Any credible near term strategy to improve our position?

Integration Opportunities

Incentivize Migration to Higher Capacity or More Efficient Systems

- •Reduce the number of current system designs loaded
- •Lower costs of dry storage by at least 20%
- •Reduce the number of systems to be transported and repackaged
- •Reduce the size of a future centralized storage site

Pursue True Multi-purpose System Configurations

- •Transport ready storage
- •Retains disposal and reprocessing options
- •SF and HLW Integration
- •Addresses issues related to fuel and canister performance

Universal Transport Cask and Infrastructure

- 13 dry storage canister designs each with its own transport cask
- Significant benefits; equipment, training, crews, facilities, etc.
- •Opportunity to include other DOE waste packages

Conclusion

- In the packaging arena you don't need certainty in spent fuel disposition to pursue integration and optimization
 - Focus on universal transport technology to efficiently support CIS and other DOE transport requirements
 - Reduce the number of systems to be loaded, transported and disposed by incentivizing transition to high capacity
 - Include HLW into the integrated solutions to be proposed
- Some of these low hanging fruit benefits can be achieved with current funding profile and without any legal or political inhibitors

Conclusion

What can we do with these lemons we got?

