

Nonproliferation and International Security (NIS)

www.nnsa.doe.gov

Nondestructive Assay of Spent Fuel for International Safeguards

Marc Humphrey

January 16, 2013

Safeguard nuclear material to prevent its diversion for illicit use.

Control the spread of WMD-related material, equipment, technology and expertise.

Verify nuclear reductions and compliance with international nonproliferation treaties and agreements.

Develop and implement nonproliferation and arms control policy.

International Nuclear Safeguards

- International nuclear safeguards comprise a set of technical measures to verify that civil nuclear materials are not diverted to undeclared uses
- Measures include inspections, nuclear material accountancy, containment and surveillance activities, and design information verification
- Carried out by the International Atomic Energy Agency (IAEA) subject to terms of safeguards agreements

Next Generation Safeguards Initiative

Objective: To develop the policies, concepts, technologies, expertise, and international infrastructure necessary to strengthen and sustain the international safeguards system as it evolves to meet new challenges.

- Policy Development
- Concepts and Approaches
- Technology Development
- Human Capital Development
- International Engagement

"We need more resources and authority to strengthen international inspections." President Barack Obama

Next Generation Safeguards Initiative Safeguards Technology Development

 Sponsor safeguards technology development projects at U.S. National Laboratories

\$14 million budget11 National Laboratories~ 35 projects in 2013

- Transition advanced technologies with medium-term safeguards applications from the laboratory into the field
- Organize field trials with international and domestic partners
- Strengthen safeguards technology development infrastructure at the U.S. National Laboratories

Spent Fuel Safeguards – Status Quo

Spent Fuel Safeguards – Status Quo Spent Fuel Attribute Tester

Qualitative verification of spent fuel using fission product gammas

Spent Fuel Safeguards – Status QuoFork Detector

 Measures total neutrons and gross gammas to "verify" operating history of assembly (initial enrichment, burnup, cooling time)

Spent Fuel Safeguards – Status Quo Digital Cerenkov Viewing Device

 Measures intensity of near ultraviolet Cerenkov light in a spent fuel pond to detect and deter pin diversion ("partial defect")

NGSI Spent Fuel NDA Project Safeguards Objectives

- Primary Goal to enable direct and independent quantification of Pu mass in spent fuel with an uncertainty of better than 5%
 - Input accountability at reprocessing facilities
 - Shipper/receiver difference
 - Special inspections
- Secondary Goal to improve the toolkit of safeguards inspectors
 - Improved partial defect detection
 - Assure integrity of transport (e.g., fingerprinting)
 - Recovery from loss of "continuity-of-knowledge" (e.g., by determining initial enrichment, burn-up, cooling time and multiplication)
 - Improved understanding of the limits of spent fuel NDA

NGSI Spent Fuel NDA Project Overview

Underlying premise:

While no existing NDA technique is capable of determining plutonium content singlehandedly to acceptable accuracy, plutonium quantification can be achieved through integration of several NDA techniques with complementary features.

- Five-year effort, begun in 2009:
 - Modeling and peer review (2009-2010)
 - Down-selection and system integration (2011)
 - Prototype development and field tests (2012-2014)

Systematic evaluation of 14 NDA techniques:

	Passive	Active
Neutron	Total Neutron	²⁵² Cf Interrogation with Prompt Neutron
	Passive Neutron Albedo Reactivity	Differential Die-Away
	Self-integration Neutron Resonance Densitometry	Delayed Neutrons
	Differential Die-Away Self-Interrogation	Lead Slowing Down Spectrometer
	Coincident Neutron	Neutron Resonance Transmission Analysis
Gamma	Passive Gamma	Delayed Gamma
		Nuclear Resonance Fluorescence
X-Ray	X-Ray Fluorescence	

 Simulated response of each against a common library of spent fuel assemblies

Differential Die-Away

External committee provided in-depth review of each technique

	PG	XRF	SINRD	DDSI	NM	PNAR-FC	PNAR-3He	CIPN	AIPN
General Characteristics									
Time Required for Development	Short	Short	Short	Short	Short	Short	Short	Short	Short
Portable	Maybe	Maybe	Y	N	N	Y	N	N	N
Cost (High, Med, Low)4	L	M	M	M	M	L	M	Н	L
Practical Implementation (Short Notice Inspection)	Y	N	Y	N	N	Y	N	N ⁵	N
Hardware Maturity	High	High	High	High	High	High	High	High	High
Quantification Ability for Assemblies									
Elemental Pu	N	Y	N	N	N	N	N	N	N
²³⁹ Pu	N	N	Y	N	N	N	N	N	N
235U	N	N	Y	N	N	N	N	N	N
²⁴¹ Pu	N	N	Maybe	N	N	N	N	N	N
²⁴⁰ Pu	N	N	Maybe	N	N	N	N	N	N
²³⁹ Pu _{eff}	N	N	Ý	Y	Y	Y	Y	Y	Y
FP absorbers	Maybe	Maybe	N	N	N	N	N	N	N
Other actinide absorbers	Maybe	Maybe	N	N	N	N	N	N	N
²³⁹ Pu _{eff} Quantification Penetrability (# rows)	3-5	<1	3-4	9	~9	3-6	3-6	9	9
Burnup	Y	Maybe	Y	Y	Y	Y	Y	Y	Y
Initial Enrichment	N	N	Maybe	N	N	N	N	N	N
Cooling Time	Y	N	N	N	N	N	N	N	N
Pin Diversion Sensitivity ⁶ (High, Med, Low)									
Outer Region (rows 1-2)	None	None	Н	M	?7	M	M	M	L
Middle Region (rows 3-5)	None	None	M	M	5	M	M	M	L
Center Region (rows 6-9)	None	None	None	Н	5	L	L	M	L
Independence of (for Fissile Mass Quantification)									
Burnup	N	Y	Y	N	N	N	N	N	N
Initial Enrichment	N	Y	Maybe	N	N	N	N	N	N
Cooling Time	N	Y	Maybe	N	N	N	N	N	N
Priority for More Work	4	5	1	2	8	3	7	6	9

• External committee provided in-depth review of each technique

	DDA	DN	DG	LSDS	NRF	NRTA	XRF	CIPN
General Characteristics		•	•	•	•	•		
Time Required for Development	Short	Short	Medium	Medium	Long	Long	Short	Short
Portable	N	N	N	N	N	N	Maybe	N
Cost (High, Med, Low)8	H	H	Н	Н	H	H	M	H
Practical Implementation (Accuracy)	Y	Y	Y	N	N	N	Y	Y^9
Hardware Maturity	High	High	High	High	Low	High	High	High
Quantification Ability for Assemblies	1							
Elemental Pu	N	N	N	N	N	N	Y	N
²³⁹ Pu	N	N	Maybe	Maybe	Y	Y	N	N
235[J]	N	N	Maybe	Maybe	Y	Y	N	N
²⁴¹ Pu	N	N	Maybe	Maybe	Y	Y	N	N
²⁴⁰ Pu	N	N	N	Maybe	Y	Maybe	N	N
²³⁹ Pu _{eff}	Y	Y	Y	Maybe	Y	Maybe	N	Y
FP absorbers	N	N	Maybe	Ň	Maybe	Maybe	Maybe	N
Other actinide absorbers	N	N	Maybe	N	Maybe	Maybe	Maybe	N
²³⁹ Pu _{eff} Quantification Penetrability (# rows)	9	9	5	9	9	5-7	<1	9
Burnup	N	N	N	N	N	N	N	Y
Initial Enrichment	N	N	N	N	N	N	N	N
Cooling Time	N	N	N	N	N	N	N	N
Pin Diversion Sensitivity ¹⁰ (High, Med, Low)]							
Outer Region (rows 1-2)	M	M	H	M	M	Н	None	M
Middle Region (rows 3-5)	M	M	M	M	M	M	None	M
Center Region (rows 6-9)	M	M	L	M	M	L	None	M
ndependence of (for Fissile Mass Quantification)]							
Burnup	N	N	Y	Y	Y	511	Y	N
Initial Enrichment	N	N	Y	Y	Y	5	Y	N
Cooling Time	N	N	Y	Y	Y	5	Y	N
Priority for More Work	2	2	1	5	6	4	3	3

Phase 2 Down-selection and System Integration

Down-selection criteria:

- Quality of signal (e.g., dynamic range, penetration)
- Hardware maturity
- Simplicity/applicability
- Robustness
- Complementary features (hardware or physics)

Plutonium mass the primary goal

Differential Die-Away

Phase 2 Down-selection and System Integration

System	Techniques	Key Attributes			
1	 Passive Neutron Albedo Reactivity (PNAR) Self-Interrogation Neutron Resonance Densitometry (SINRD) Passive Gamma / Total Neutron 	 Lightweight Relatively low cost Short measurement time Robust 			
2	 Californium Interrogation Passive Neutron (CIPN) Self-Interrogation Neutron Resonance Densitometry (SINRD) Passive Gamma / Total Neutron 	 Lightweight Relatively low cost Short measurement time Robust 			
3	 Differential Die-Away Self Interrogation (DDSI) Self-Interrogation Neutron Resonance Densitometry (SINRD) Passive Gamma / Total Neutron 	 Relatively heavy Intermediate cost Longer measurement time Robust 			
4	 Delayed Neutron (DN) Differential Die-Away (DDA) Delayed Gamma (DG) Passive Gamma / Total Neutron 	 Relatively heavy Relatively high cost Longer measurement time Less robust Potential for high accuracy 			

Phase 3 Prototype Development and Field Trials

Prototype development schedule:

Technique	Fabrication
Self-integration Neutron Resonance Densitometry (SINRD)	2012
²⁵² Cf Interrogation with Prompt Neutron (CIPN)	2012-13
Passive Neutron Albedo Reactivity (PNAR)	2012-13
Differential Die-Away Self-Interrogation (DDSI)	2013
Differential Die-Away (DDA)	2014
Differential Die-Away (DDA) Delayed Neutron (DN) Delayed Gamma (DG)	?

Phase 3 Prototype Development and Field Trials

Field trial schedule:

Technique	Partner	Date
Self-integration Neutron Resonance Densitometry (SINRD)	ROK/Japan	2013
²⁵² Cf Interrogation with Prompt Neutron (CIPN)	ROK	2013
Passive Neutron Albedo Reactivity (PNAR)	Japan	2013
Differential Die-Away Self-Interrogation (DDSI)	ROK	2014
Differential Die-Away (DDA)	Sweden	2014
Differential Die-Away (DDA) Delayed Neutron (DN) Delayed Gamma (DG)	?	?

Non-Safeguards Applications

Potential benefits to facility operators:

- Determination of burn-up credit (so fuel can be stored and shipped more efficiently)
- Optimization of reactor core reloading
- Optimization of assembly selection for reprocessing
- Determination of heat load in a geological repository

Measurement of multiplication, IE, BU, and CT could be integrated into normal fuel management

- Routine safeguards measurements for spent fuel assemblies rely on indirect measurements, computer simulation, and operator-supplied information.
- New technologies would improve input accountancy, recovery from loss of continuity-of-knowledge, or containment measures.
- While no single NDA technique can likely determine plutonium content singlehandedly to acceptable accuracy, integration of several techniques will help.
- Project will also advance our understanding of capabilities and limitations in the area of spent fuel NDA.

BERKELEY LAB

Several Universities and International Collaborators

Points of Contact

Marc Humphrey, Ph.D.

Team Leader, Safeguards Technology Development
Office of Nuclear Safeguards and Security

marc.humphrey@nnsa.doe.gov
1-202-586-2471

Steve Tobin, Ph.D.

Principle Investigator, NGSI Spent Fuel NDA Project
Los Alamos National Laboratory

tobin@lanl.gov

1-505-667-3315