INMM Spent Fuel Management Seminar XXVIII January 16, 2013, Washington, DC

NAC Technology and Experience: 2012 in Review

Charles W. Pennington, NAC International

NAC

NAC International Is a Wholly Owned Subsidiary of USEC Inc., a Leading Supplier of Enriched Uranium Fuel for Commercial Nuclear Power Plants

Topics

- ► NAC Corporate Overview
- **NAC Technology Background & Experience**
- ► The Year In Review
 - Current Project Update
 - New Business Update
 - Technology Update
- Prospects for the New Year
- Questions

NAC Corporate Overview

Dry Spent Fuel Storage Facility – 98 Casks Loaded at Palo Verde

NAC Corporate Overview Proven Nuclear System and Service Solutions

Wholly-owned Subsidiary of USEC40 Years in Nuclear Fuel Cycle ConsultingNumerous Cask Technologies LicensedU.S. Commercial SF Transportation LeadershipMore than 400 Storage and Transport Systems DeliveredNuclear Fuel Cycle Project EngineeringDry Storage Leadership: DOE, and HLW Haragement Groups for Dry Storage SolutionsSelected by domestic and global utilities, Storage Solutions44 Years of Nuclear System and ServiceService Solutions Experience	Norcross Tokyo		London Moscow		
SF Transportation Leadershipand Transport Systems DeliveredNuclear Fuel Cycle Project EngineeringDry Storage Leadership: Selected by domestic and global utilities, DOE, and HLW Management Groups for Dry Storage SolutionsNuclear Fuel Cycle Project Engineering		Fuel Cycle	Technologies		
DOE, and HLW Management Groups for Dry Storage Solutions	SF Transportation	and Transport			
44 Years of Nuclear System and Service Solutions Experience					

NAC Corporate Service Solutions

- NAC is a U.S. provider of global nuclear fuel cycle services and products
- ► NAC Services:
 - Fleet of 8 transportation casks
 - Loading and unloading operations
 - Transportation services (road, rail, marine, air)
 - Transport management
 - Dry spent fuel multipurpose canister systems (MCS), and GTCC and HLW storage systems
 - Design
 - ► Licensing
 - ► Fabrication
 - Construction
 - Operational Support
 - ► Fuel Cycle and Management Consulting

NAC Technology Background & Experience

Transfer Cask At McGuire Vertical Concrete Cask At Zion

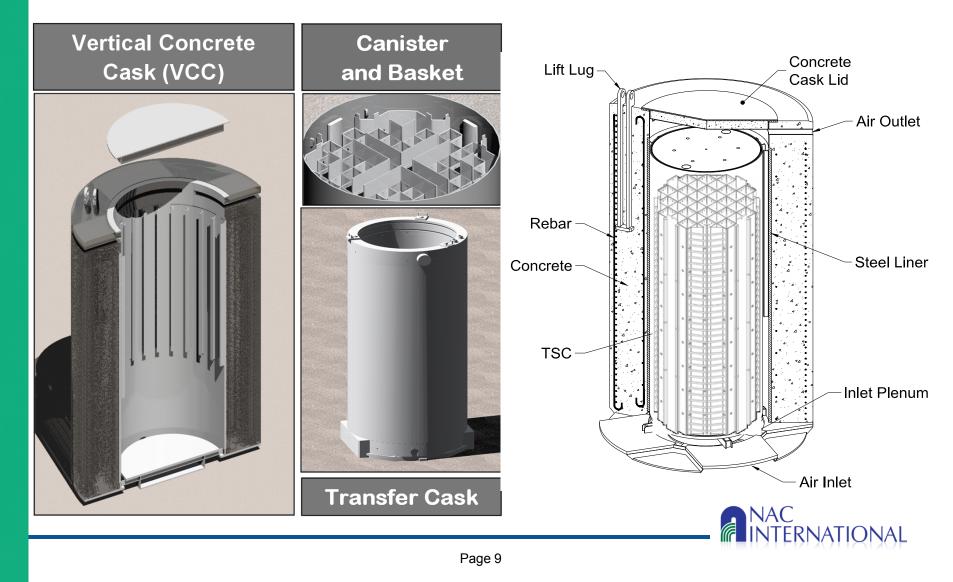
Vertical Concrete Cask At McGuire Transportable Storage Canister for Zion

NAC Spent Fuel Transport Technology: By Air, Sea, Rail and Road

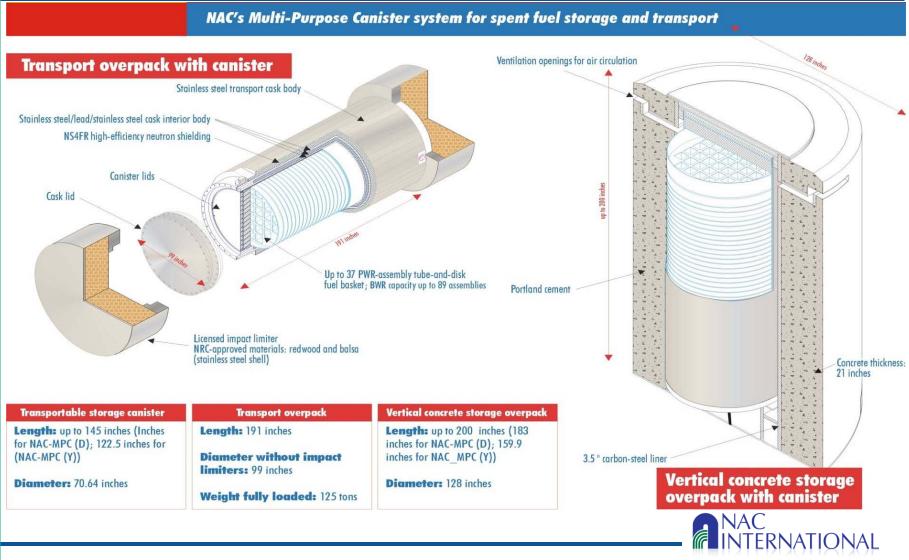
Greater than 3,700 spent fuel cask movements worldwide covering more than 7 million miles

Corporate Cask System Technology and Licensing Information

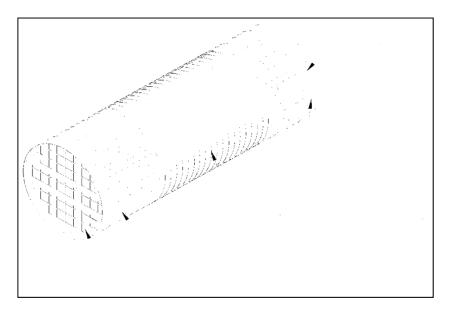
System Designation	U.S. NRC CoC Number or Docket Number	Amendment Number / Application
MAGNASTOR	72-1031 71-9356 Pending	2/Storage
UMS	71-9270 72-1015	3/Transport, 5/Storage
NAC-MPC	71-9235 72-1025	12/Transport, 6/Storage
NAC-MPC-WVDP	In Process	In Process
NAC-STC	71-9235 72-1013 **	12/Transport, 0/Storage
NAC-128 S/T	72-1020 *	0/Storage
NAC-C28 S/T	72-1003 *	0/Storage
NAC-I26 S/T	72-1002 *	0/Storage
NAC-LWT	71-9225 NRC 71-9225 DOE	57/Transport 8/Transport
NAC-1	71-9183 *	13/Transport
NLI-10/24	71-9034 *	9/Transport
NLI-1/2	71-9010 *	41/Transport


* Certificate no longer active. ** Site Specific. NAC acquired these cask designs.

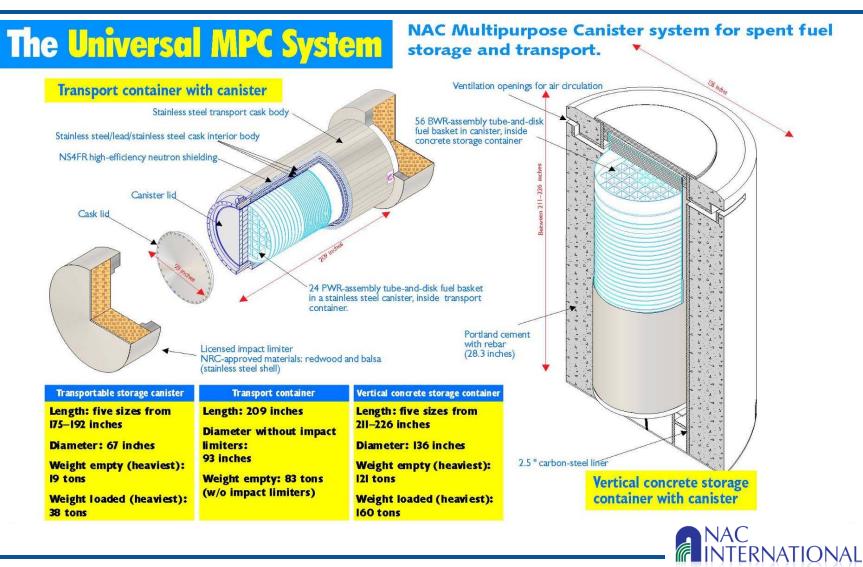
Page 8

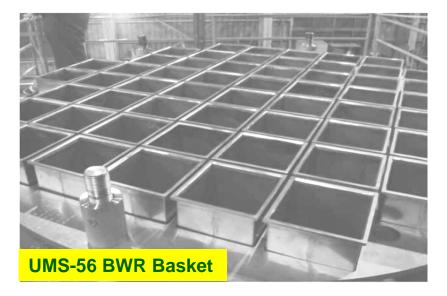


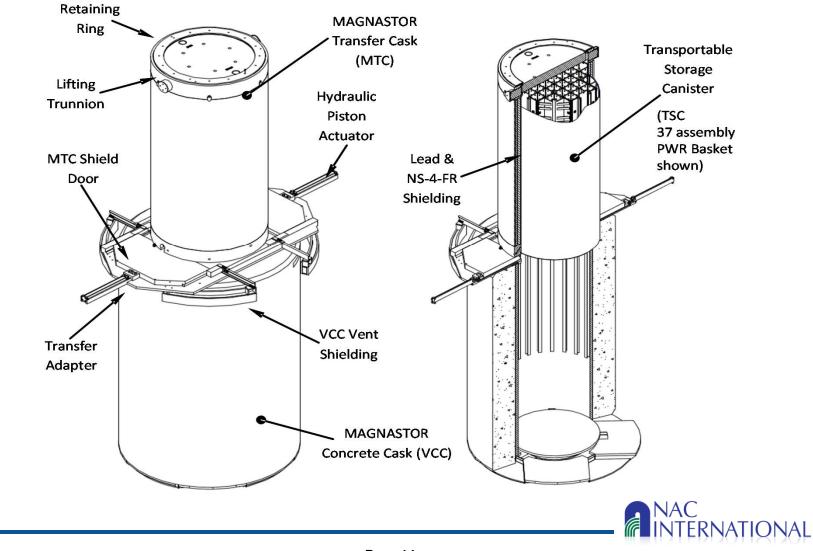
NAC Dry Storage Technology


NAC-MPC Summary

The NAC-MPC System


 Mid-1990's vintage MCS design for non-standard, older fuel
 Uses tube-and-disk basket design
 64 systems loaded at 3 sites, PWR and BWR
 First dry storage MCS technology for HLW storage and transport, the NAC-MPC-WVDP system; more on that system later


NAC UMS Summary


The NAC-UMS System

Late-1990's MCS design for use at facilities with standard fuel designs
 Uses tube-and-disk basket design similar to MPC's
 214 systems loaded and in use

NAC Dry Storage Technology Integration: The MAGNASTOR System

Page 14

The MAGNASTOR System

- ► 2005 MCS design for standard fuel
- Unique, first-of-kind, developed cell basket design
- ► 136 systems ordered
- Dry runs completed, major loading campaigns start soon

Conclusion about NAC MCS technology:

MPC, UMS, AND MAGNASTOR SYSTEMS IN DEMAND GLOBALLY, WITH STRONG DESIGN, OPERATIONS, ECONOMIC, AND COMMERCIAL VITALITY AND VIABILITY.

Storage and Transport System Experience

Customer	Technology	Systems
Various – Transport	NAC-LWT	8
Dominion – Surry	ST	2
ENSA – Spain	DPT	License
HZ – Japan	ST/STC	License
China Nuclear EIC	STC	2
Dairyland Power – Lacrosse BWR	MPC	5
Yankee Atomic – Rowe	MPC	16
Connecticut Yankee	MPC	43
CHBWV - HLW	MPC-WVDP	57
Maine Yankee	UMS	64
APS – Palo Verde	UMS	124
Duke Energy – McGuire	UMS	28
Duke Energy – Catawba	UMS	24
INER – Chinshan BWR	UMS	25
Duke Energy – McGuire	MAGNASTOR	20
Duke Energy – Catawba	MAGNASTOR	24
Zion – Energy Solutions	MAGNASTOR	65
Taiwan Power – Kuosheng BWR	MAGNASTOR	27
Totals		> 550

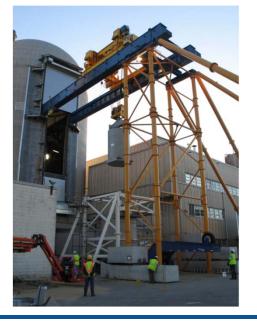
2012 In Review: Highlights

Current Projects: 2012 General Update

2012 was a very busy year

TSCs: 37 fabricated, 119 in process
VCCs: 101 constructed
Transfer systems: 2 fabricated
Damaged fuel cans: 45 fabricated
Dry runs: 3 completed

But . . .


3 loading campaigns delayed due to plant considerations

Specific Project Update: Dairyland

 Dairyland's Lacrosse BWR (LACBWR) completed loading of stand-alone ISFSI [completed site storage facility (CSSF)]
 There are 4 stand-alone CSSFs using NAC technology, with the 5th and 6th in process

Future Industry Options for Path Forward

Nuclear Facility

Spent Fuel Pool (on site)

Dry Storage Facility (on site)

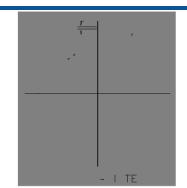
Centralized Storage Facility (CSF)

Potential Strategies

- Dry storage at site
- Transport from pool to CSF
- Transport to CSF from site storage
- CSF repackage for final disposal as needed.

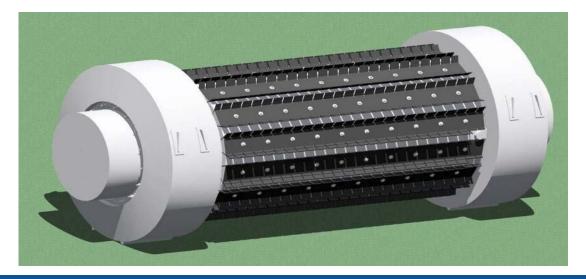
CSSF Experience in the U.S.

► NAC technology is used for about 75% of all spent fuel at CSSFs With Zion and West Valley to become **CSSFs** in the near future, NAC systems will store even more spent fuel at CSSFs ► NAC CSSF performance over 15 years shows that large centralized dry storage campaigns can be successful at CSFs with the right experience



New Business Highlight for 2012

- Contract with CH2MHill & B&W, LLC West Valley (CHBWV) for DOE HLW storage in dual purpose dry storage systems
- First U.S. application of spent fuel dual purpose storage technology to HLW dual purpose storage
- In the 1990s, NAC applied dry storage technology to lead development of GTCC waste storage systems
- 275 WVDP HLW canisters to be stored in 57 NAC-MPC-WVDP systems at West Valley
- NAC-MPC system with the NAC-STC transport cask (in operation) is perfect fit for West Valley needs
- ► Loading scheduled for 2014



Technology Update for 2012: The NAC MAGNATRAN Cask System

- Designed to transport MAGNASTOR TSCs
- ► License application submitted in 2012
- Universal transport package capabilities
- ► Designed to meet USNRC, DOT and IAEA (-96) requirements
- ► High burnup spent fuel (62 GWd / Mtu)
- Peak thermal heat loads 23 kW / 22 kW (PWR / BWR)

2013 Prospects: What We Expect

► Projects:

- ► Hardware fabrication of 100+ systems
- ► Major MAGNASTOR and UMS loading campaigns
- ► Major loading campaign at Chinshan
- ► Total loadings may exceed 30
- More MAGNASTOR sales
- Substantial spent fuel transport
- ► Technology:
 - Innovations in dry storage system loading
 - Economic solutions to issue of stainless steel SCC
 - ► First HLW storage / transport licensing submittal
 - Further MAGNASTOR and MAGNATRAN advances

NAC INTERNATIONAL

QUESTIONS?

Visit us at www.nacintl.com

Charles W. Pennington NAC International Marketing and Business Development

