

2012 INMM Meeting

Arlington, VA Jan 31- Feb 2, 2012

Tennessee
Valley
Authority
Used Fuel
Management

Mike Keck

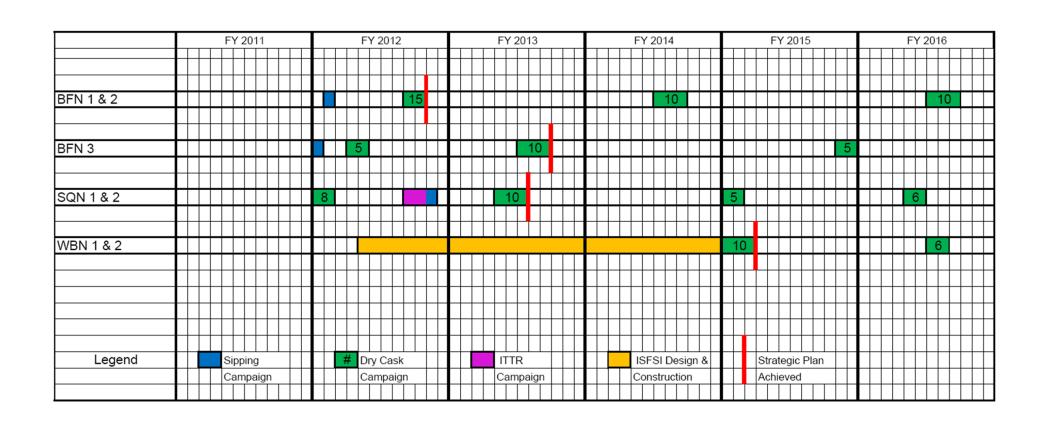
Plant Information / Goals

	BFN	SQN	WBN
Plant Information			
Location	Athens, AL	Soddy Daisy, TN	Spring City, TN
Reactor Type	GE BWR	<u>W</u> PWR	<u>W</u> PWR
Mwe / unit	1135	1160	1170
No. of Units	1/2/3	1/2	1/2
Operational	1973 / 1975 / 1977	1980 / 1981	1995 / 2013 est.
Strategic Plan			
Full Core Reserve (FCR)	764	193	193
New Fuel	342	160 (80 each)	176 (84/92)
Fuel Insp Equip /Downcomer	15	100	81
Core Design Changes	30	10	10
Total Open Cells	1151	463	460

2

ISFSI Status

	BFN	SQN	WBN	Total
ISFSI Pad Capacity	96	90	TBD	
New Pad Need	2018	2026	2014	
System Type				
MPC	MPC-68 / MPC-68M	MPC-32	TBD	
Overpack	HS 100S VB	HS 100S VB	TBD	
Current Status				
2004	0	3	N/A	3
2005	3	0	N/A	3
2006	0	5	N/A	5
2007	1	6	N/A	7
2008	0	6	N/A	6
2009	12	0	N/A	12
2010	9	3	N/A	12
2011	0	9	N/A	9
Total on Pad	25	32	N/A	57



ISFSI Loading Plans

	BFN	SQN	WBN	Total
2012	5/15	0	N/A	20
2013	5	10	N/A	15
2014	10	5	10	25
2015	5	0	0	5
2016	10	6	6	22
2017	5	5	6	16
2018	10	0	0	10
2019	5	5	5	15
2020	10	6	5	21
Total	80	37	32	149

ISFSI Planning Overlay

- Prompt decisions already made by TVA
 - Decision made to forego the high density re-rack of Watts Bar used fuel storage pools
 - Directly resulted in the need of ISFSI pad in 2014 versus 2020 and the performance of dry cask campaigns in 2014 as well
 - Decision made to include "downcomer" space as part of TVA strategic used fuel storage plan
 - Additional challenge of fuel selection for dry storage due to the decrease in storage locations from the inclusion of "downcomer" space and not re-racking at WBNP
 - "Cold" fuel needed to provide for optimized cask loading strategies, therefore it is not prudent or necessary to strictly empty the pools of all cooled fuel since it does not have a significant impact on surviving a Fukushima type event

NRC Near Term Task Force Recommendation 7 – Tier 1

enhancing spent fuel pool makeup capability and instrumentation for the spent fuel pool

TVA Actions

- Provide sufficient safety-related instrumentation to monitor key
 Spent Fuel Pool parameters from the control room
- Current vendor solutions have been reviewed that will serve to meet this requirement, but the technology is antiquated and maintenance intensive
- Industry "push back" on the need to be Safety Related
- Study needed to identify alternatives

NRC Near Term Task Force Recommendation 7 – Tier 2

- 7.2 Provide safety-related AC power to the SFP makeup system (Industry push back on Safety Related)
- 7.3 Revise Technical Specifications to address requirements to have one train of onsite emergency power operable for SFP makeup and instrumentation, regardless of mode
- 7.4 Install a seismically qualified means to spray water into the SFP, including easily accessible connection points, using a portable pump outside the building
- 7.5 Initiate rulemaking or licensing activities or both to require Recommendation

TVA Actions

Under development

TVA Philosophy for response

- Utilized existing studies, Design Criteria, and Calculations
- Utilized existing emergency and abnormal operating procedures
- Utilized Owners Group analysis
- Performed computer simulations for information not available
- Participated in weekly industry conference calls
- Participated in industry meetings to align TVA response with other utilities
- Utilized common industry templates for consistency
- Coping strategies and durations have been benchmarked with other utilities.
- Each site has presented response to site Corrective Action Review Board
- All identified gaps are documented in the corrective action program

• Discussion

• Questions?