

RESPONDING TO FUKUSHIMA-DAIICHI

Michael Weber

Deputy Executive Director for Materials, Waste, Research,
State, Tribal, and Compliance Programs

U.S. Nuclear Regulatory Commission

INMM – U.S. NIC Meeting January 31, 2012

Overview

United States

NIC

Nuclear Infrastructure Council

- Timeline
- Near-Term Task Force
- Enhancements
- Spent Fuel Safety
- Conclusions

Timeline

December 16, 2011

Japan Announces Cold Shutdown Fukushima Units 1, 2, and 3

October 18, 2011

Commission approved proceeding with high priority recommendations

March 11, 2011

Earthquake, Tsunami, Nuclear Emergency

TODAY

Ongoing Stakeholder involvement as staff prepares to issue orders and requests for information

December 15, 2011

Commission approved proceeding with next highest priority recommendations

July 12, 2011

Near-Term Task Force Report

Current U.S. Plant Safety U.S.NRC Protecting People and the Environment

- Similar sequence of events in the U.S. is unlikely
- Existing mitigation measures could reduce the likelihood of core damage and radiological releases
- No imminent risk from continued operation and licensing activities

Enhancements without Delay

- Reevaluate external hazards, including seismic and flooding hazards
- Perform seismic and flooding hazard walkdowns
- Modify SBO rule to require enhanced capability to mitigate prolonged SBO

Enhancements without Delay (cont'd)

- Mitigation Strategies for Beyond Design Basis External Events
- Require reliable hardened vent designs in BWRs with Mark I and II containments
- Enhancement of spent fuel pool instrumentation

Enhancements without Delay (cont'd)

- Strengthen and integrate onsite emergency response capabilities
- Require staffing and communications equipment to respond to multiunit events and prolonged SBO

Recommendations for Other Actions

- Tier 2 Recommendations Could not be initiated in the near term due to resource or critical skill set limitations
- Tier 3 Recommendations Require further staff study to support a regulatory action

Additional Issues

- Filtration of Containment Vents
- Seismic Monitoring Instruments
- Emergency Planning Zone Size
- KI Beyond 10 Miles
- Dry Cask Storage
- Loss of Ultimate Heat Sink

Approach on Near Term Enhancements

- Commission approved implementation of specific recommendations
 - Issue orders, requests for information (50.54(f) letters), and new regulations
 - Seek stakeholder input in determining action on each recommendation

Schedule

- FY2012 Appropriations Accelerate schedule
- NRC goal is to issue Tier 1 Orders and 50.54(f) letters by March 11th
- Planning to submit to the Commission by February 17; Commission will direct the staff
- Overall Goal Complete enhancements in 5 years

NRC Follow-up

- Review and assess licensee responses
- Establish necessary regulatory framework
- Inspect to ensure compliance with all new regulatory requirements
- Consider implications for other nuclear facilities

U.S. Spent Fuel Pools

- Spent fuel rods stored in spent fuel pools (SFPs) under at least 20 feet of water
- Typically ~1/4 to 1/3 of fuel in reactor replaced with fresh fuel every 18 to 24 months
- Spent fuel stored in pools minimum of 5 years

Spent Fuel Safety

- Spent Fuel Pools (SFP) originally designed for limited storage of spent fuel until removed off-site
- Safety achieved primarily by maintaining water inventory, geometry, and soluble boron (PWRs)
- Drain down can lead to uncovered fuel, heat-up, and the release of radionuclides

Risk of Large Release

- SFP risk is low, due to the very low likelihood of events that could damage the thick reinforced pool walls
 - Likelihood of fuel uncovery is low; 6E-7 to 2E-6/yr (NUREG-1738)
 - Potential consequences may be large due to heatup of the fuel in the pool
 - Heatup of the fuel in the pool can lead to "zirconium fire" initiation and propagation
 - Large inventory of ¹³⁷Cs available for release

Spent Fuel Safety and Security

- NRC extensively reexamined pool safety and security after 9-11 attacks
 - Low vulnerability to attack
 - Significantly improved analysis of fuel coolability / heatup
 - Mitigation measures improved passive coolability of fuel
 - Improved fuel configuration within the pool achieves substantially greater <u>passive</u> cooling capability by natural convection

Spent Fuel Safety and Security

- NRC required spray capability for each site to improve active cooling capability
- Licensees performed site-specific assessments; NRC inspected
- Coolability of fuel within pools has been enhanced by measures identified and assessed as part of post-9/11 measures
- Conducting research to confirm understanding and validate analytical modeling

Zirconium Fire Investigations During SFP Loss of Coolant Accident (LOCA)

- Upper & lower tie plates with seven spacers
- Water tubes and channel box
- 74 electric heater rods with Zr-2 cladding (eight partial length)
- 5000 W simulating a 100 day old assembly

Measurements

- Temp profiles: Axial and radial
- Induced flow: Effect of ignition on flow
- O₂ concentration: Determine depletion
- Nature of fire: Initiation location & axial burn rate

Zirc Fire Investigations During SFP LOCA – Post-test

Removing Fuel from Pools

- NRC has considered benefits of removal of fuel from the pool and returning to a low density racking type configuration
- There are competing factors in such a consideration
 - Storage in dry casks must be consistent with cask design
 - Discharging of fuel increases the risk of cask drops and increases worker doses
 - Removal of fuel will decrease the inventory of Cesium-137
 - Removal of fuel does not appreciably reduce decay heat (most of the decay heat is from recently discharged fuel)
 - Reduction in potential land contamination and economic impacts, if a large release occurred

Impact of Removing Assemblies

Reduction of pool thermal heat load

Spent Fuel Pool Scoping Study

- NRC has initiated an updated SFP study
- Estimate the change in accident consequences associated with removing older fuel from the SFP and placing it in dry storage
- Limited scope analysis (e.g., single SFP/operating cycle for low/high density racking)
- Does not comprehensively consider competing factors (e.g., impact of more fuel moves)

Comparative Consequences

- Technical approach relies on realistic analysis using expedient and technically-defensible deterministic methods and assumptions
- Elements of study include
 - Information gathering
 - Seismic and structural assessment
 - Accessibility, decay heat, and radionuclide inventory assessment
 - Accident progression (MELCOR) and offsite consequence analysis (MACCS2)
 - Emergency planning assessment

Conclusions

- No immediate safety concerns based on Fukushima nuclear emergency
- Confirmed the existing safety measures for nuclear power plants, including SFPs
- Moving forward with nuclear power plant enhancements
- Examining additional near-term and longterm reviews
- Spent fuel must be managed safely and securely