



## NAC International Technology Update INMM Spent Fuel Management Seminar, Washington DC

February 1, 2012 Charles W. Pennington Marketing and Business Development

> NAC International Is a Wholly Owned Subsidiary of USEC Inc., MAGNASTOR a Leading Supplier of Enriched Uranium Fuel for Commercial Nuclear Power Plants

## NAC International Technology Update

- NAC Background and Experience
- NAC Multipurpose Canister System (MCS) Technology Updates
  - UMS, MPC Deployment
  - MAGNASTOR Deployment
  - MAGNATRAN Status
- New Technology Directions
  - Drivers, Determinants, Decisions



### **NAC Background and Experience** Proven Nuclear System and Service Solutions

| Norcross<br>Tokyo                                           |                                                             | London<br>Moscow                          |  |  |
|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|--|--|
| Wholly Owned<br>Subsidiary of USEC                          | 40 Years in Nuclear<br>Fuel Cycle<br>Consulting             | Numerous Cask<br>Technologies<br>Licensed |  |  |
| U.S. Commercial<br>SF Transportation<br>Leadership          | More than 320 Storage<br>and Transport<br>Systems Delivered | Nuclear Fuel Cycle<br>Project Engineering |  |  |
| 43 Years of Nuclear System and Service Solutions Experience |                                                             |                                           |  |  |



## **Robust and Proven Technology**

## NAC's history of proven and successful storage/transport technology development





## NAC Nuclear Site Experience in U.S.





## Dry Storage and Transport System Technology: Key NAC Projects

| 03                      |            | -       |
|-------------------------|------------|---------|
| Customer                | Technology | Systems |
| Various - Transport     | NAC-LWT    | 8       |
| Dominion - Surry        | ST         | 2       |
| ENSA – Spain            | DPT        | License |
| HZ-Japan                | ST/STC     | License |
| Yankee Atomic - Rowe    | MPC        | 16      |
| Connecticut Yankee      | МРС        | 43      |
| Maine Yankee            | UMS        | 64      |
| APS – Palo Verde        | UMS        | 124     |
| Duke Energy - McGuire   | UMS        | 28      |
| Duke Energy - Catawba   | UMS        | 24      |
| China Nuclear EIC       | STC        | 2       |
| License to INER, Taiwan | UMS        | 25      |
| Dairyland Power - BWR   | MPC        | 5       |
| Duke Energy – McGuire   | MAGNASTOR  | 20      |
| Duke Energy - Catawba   | MAGNASTOR  | 24      |
| Zion – Energy Solutions | MAGNASTOR  | 65      |
| Taiwan Power - Kuosheng | MAGNASTOR  | 27      |
| Totals                  |            | > 500   |



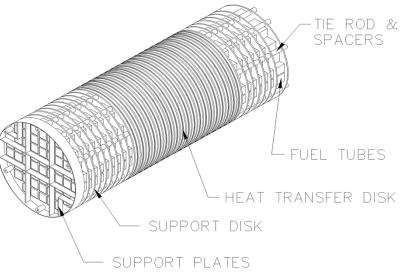






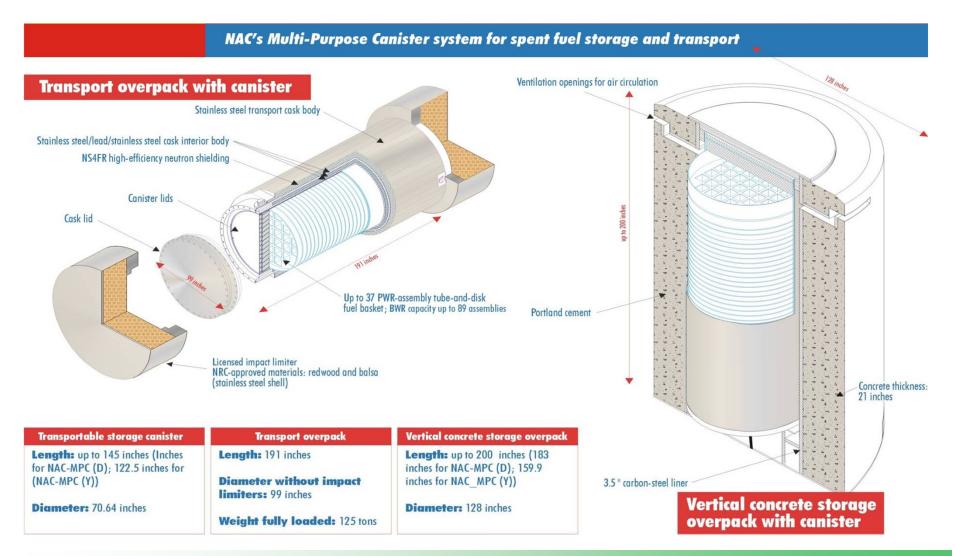
#### **MAGNA**STOR

## **NAC MCS Technology Updates**




| Cask<br>Designation | U.S. NRC<br>CoC<br>Number or<br>Docket<br>Number | License<br>Amendment<br>Number /<br>Application | Number of<br>Projects,<br>Systems<br>Ordered |
|---------------------|--------------------------------------------------|-------------------------------------------------|----------------------------------------------|
| MAGNASTOR           | 72-1031<br>Transport<br>Pending                  | 2/Storage,<br>Transport<br>Application          | 4 Projects,<br>136 Systems                   |
| UMS                 | 71-9270<br>72-1015                               | 2/Transport,<br>5/Storage                       | 5 Projects,<br>265 Systems                   |
| NAC-MPC             | 71-9235<br>72-1025                               | 9/Transport,<br>4/Storage                       | 3 Projects,<br>64 Systems                    |
| NAC-STC             | 71-9235<br>72-1013                               | 9/Transport,<br>0/Storage                       | 1 Project,<br>2 Systems                      |
| NAC-LWT             | 71-9225                                          | 55/Transport                                    | 8 Systems                                    |
| NLI-1/2             | 71-9010                                          | 41/Transport                                    | 5 Systems                                    |
| NAC-1               | 71-9183                                          | 13/Transport                                    | 6 Systems                                    |
| NLI-10/24           | 71-9034                                          | 9/Transport                                     | 2 Systems                                    |
| NAC-I28 S/T         | 72-1020                                          | 0/Storage                                       | 2 Systems                                    |
| NAC-C28 S/T         | 72-1003                                          | 0/Storage                                       | 0 Systems                                    |
| NAC-I26 S/T         | 72-1002                                          | 0/Storage                                       | 26+ Systems                                  |

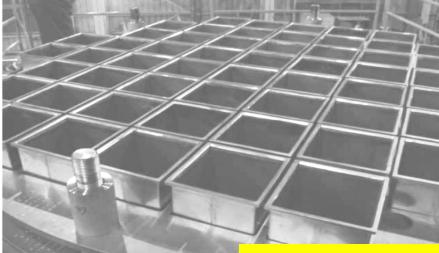



## **The NAC-MPC System**

- Mid-1990's MCS design for use with non-standard, older fuel
- Uses tube-and-disk basket design
- 59 systems loaded and in use
  - 15 Yankee Rowe (YR) systems and 1 GTCC canister
  - 40 Connecticut Yankee (CY) systems and 3 GTCC canisters
- 5 Dairyland Lacrosse (LAC-BWR) systems in process, loading begins in 2012
- Improvements since YR, CY projects:
  - More sophisticated models,
    - analyses
  - Enhanced fabrication, operations procedures
  - Technology: e.g., single lid closure; approved designs for BWR damaged/debris fuel






## **NAC-MPC MCS Summary**

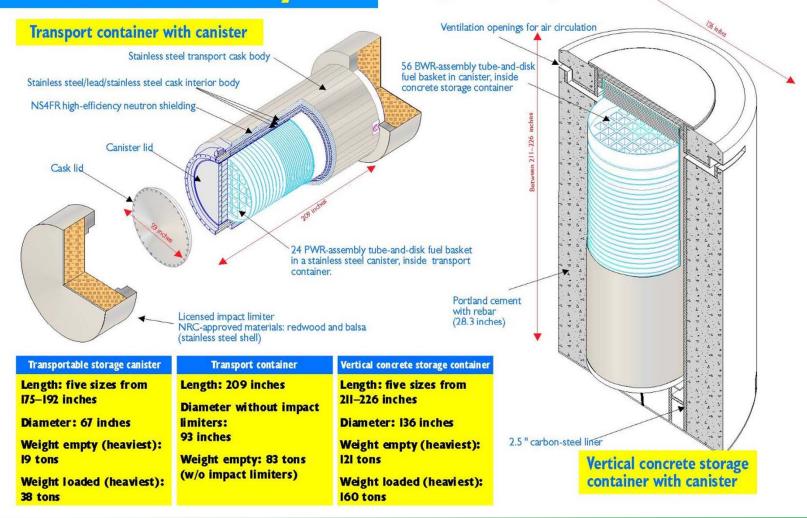




## **The NAC-UMS System**

- Late-1990's MCS design for use at facilities with standard fuel designs
- Uses tube-and-disk basket design similar to MPC's
- 205 systems loaded and in use
  - 64 at Maine Yankee
  - 91 at Palo Verde
  - 28 at McGuire
  - 24 at Catawba



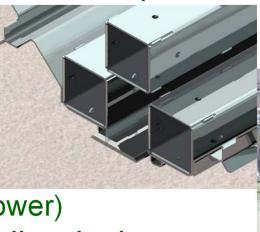

UMS-56 BWR Basket

- 25 at Chinshan (TaiPower) begin loading this year
- Improvements since earlier projects:
  - More sophisticated models, analysis
  - Enhanced fabrication, operations procedures
  - Technology: e.g., single MAGNASTOR-type lid; damaged/debris fuel cans



# The Universal MPC System NAC Multistorage at

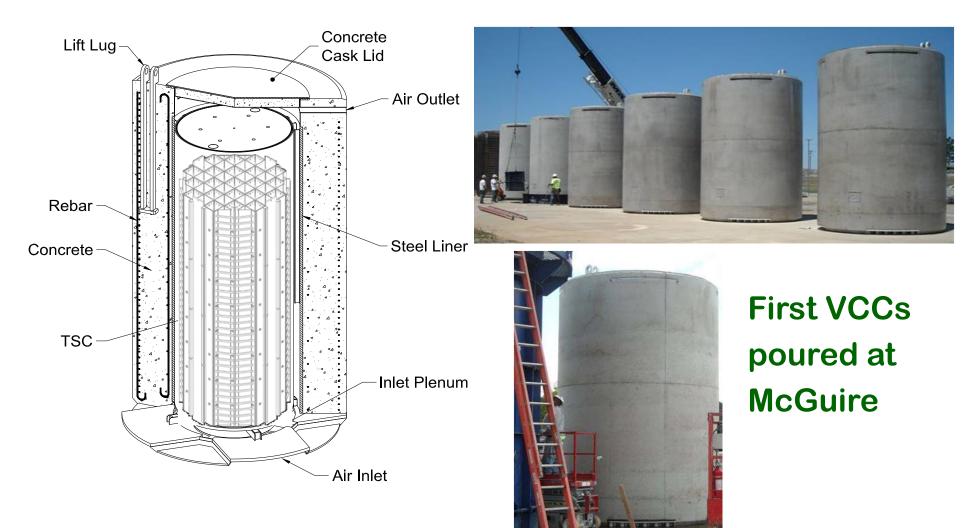
NAC Multipurpose Canister system for spent fuel storage and transport.






## **The MAGNASTOR System**

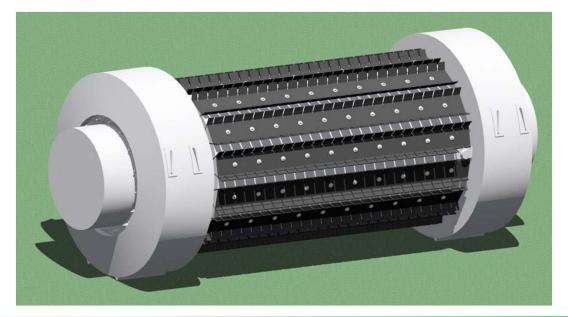
- 2005 MCS design for use with standard fuel
- Uses unique, first-of-kind, developed cell basket design
- 136 systems ordered
  - 20 for McGuire
  - 24 for Catawba
  - 65 for Zion
  - 27 for Kuosheng (TaiPower)
- Improvements since earlier designs:
  - More sophisticated computer models, analysis
  - Enhanced fabrication, operations methods
  - Technology: developed cell basket, single closure lid, convective heat transfer in TSC, handling methods








**MAGNA**STOR


## **MAGNASTOR System**





## **Transport Packaging : The NAC MAGNATRAN Cask**

- Transport package with capability for all NAC canisters
- Designed to meet USNRC, DOT and IAEA (-96) requirements
- License application in 2011 and testing in 2012
- Anticipated CoC in 2013





## **New Technology Directions: Drivers**

- 2012 may begin a transition by industry to new technology
  - Administration efforts to eliminate YM: huge time uncertainty for dry storage/transport and for its technology
  - New repository: new requirements? Old repository: old requirements or new requirements?
  - Current regulations are very conservative for applying to systems needed for 300 years in storage then transport
  - Extended storage and transportation (EST) of spent fuel may require changes in regulations and approach.
- EST may be the Ghost of Spent Fuel Future, offering a foreboding outlook that storage and transport will become far more difficult.
- Hyper-conservative regulations and staff positions must be modified for such a protracted, uncertain future.
- Utilities will find it difficult to accept the costs imposed by EST due to current regulations and further conservatisms anticipated.



### **New Technology Directions: Determinants**

- NRC's Draft Report for EIS Long Term Waste Confidence Update (December 2011) says the update will assume regulatory oversight is "at least as stringent as the current regulatory requirements" and might adjust the EIS scope for "additional safety and security measures."
- Current regulatory/licensing issues impose technical burden without safety enhancement; EST makes this burden beyond acceptable for dry storage/transport technology under current regulatory conditions:
  - Ready retrievability: spent fuel vs. canister
  - Staff-imposed, conservative criticality calculations: methods, administrative margin, etc.
  - Moderator intrusion (ModInt)
  - High burnup fuel
  - Reasonable burnup credit.



## **New Technology Directions: Decisions**

- For example:
  - ModInt does not make technical or safety sense for spent fuel, in light of modern package design. History shows that bases of current §71.55(b) regulatory requirements do not now apply
  - EPRI shows ModInt under accident conditions is beyond improbable and regulations should be revised for a more rational treatment, especially for MCS technology
  - Industry and NRC must enable a more rational regulatory framework for ModInt and MCS systems under EST.
- EST investigations will drive uncertainties under current regulations and dry storage/transport may become very difficult
- New regulations/staff positions will make new MCS technology more future-friendly, more economical with equal safety.
- Industry needs to push for this as EST determinations proceed. This will likely begin in 2012.



**MAGNA**STOR

### Visit us at www.nacintl.com

### **Charles W. Pennington**

### Marketing and Business Development









